

Online Instructor’s Manual
to accompany

The x86 PC: Assembly Language,
Design, and Interfacing

5th Edition

Muhammad Ali Mazidi

Janice Gillispie Mazidi

Danny Causey

Prentice Hall

Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Copyright © 2010 Pearson Education, Inc., publishing as Prentice Hall, Upper Saddle River, New Jersey and
Columbus, Ohio. All rights reserved. Manufactured in the United States of America. This publication is protected
by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-504081-2
 ISBN-10: 0-13-504081-7

 1

CHAPTER 0: INTRODUCTION TO COMPUTING

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1.
(a) 1210 = 11002
(b) 12310 = 0111 10112
(c) 6310 = 0011 11112
(d) 12810 = 1000 00002
(e) 100010 = 0011 1110 10002
2.
 (a) 1001002 = 3610
(b) 10000012 = 6510
(c) 111012 = 2910
(d) 10102 = 1010
(e) 001000102 = 3410
3.
(a) 1001002 = 2416
(b) 10000012 = 4116
(c) 111012 = 1D16
(d) 10102 = 0A16
(e) 001000102 = 2216
4.
(a) 2B916 = 0010 1011 10012, 69710
(b) F4416 = 1111 0100 01002, 390810
(c) 91216 = 1001 0001 00102, 232210
(d) 2B16 = 0010 10112, 4310
(e) FFFF16 = 1111 1111 1111 11112, 6553510
5.
(a) 1210 = 0C16
(b) 12310 = 7B16
(c) 6310 = 3F16
(d) 12810 = 8016
(e) 100010 = 3E816
6.
(a) 1001010 = 0011 0110
(b) 111001 = 0000 0111
(c) 10000010 = 0111 1110
(d) 111110001 = 0000 1111
7.
(a) 2C+3F = 6B
(b) F34+5D6 = 150A
(c) 20000+12FF = 212FF
(d) FFFF+2222 = 12221

8. (a) 24F-129 = 12616
(b) FE9-5CC = A1D16
(c) 2FFFF-FFFFF = 3000016
(d) 9FF25-4DD99 = 5218C16

9. (a) Hex: 30, 31, 32 , 33, 34, 35, 36, 37, 38, 39
(b) Binary: 11 0000, 11 0001, 11 0010, 11 0011, 11 0100, 11 0101, 11 0110, 11 0111, 11 1000, 11 1001.

ASCII (hex) Binary
 0 30 011 0000
 1 31 011 0001

 2
 2 32 011 0010
 3 33 011 0011
 4 34 011 0100
 5 35 011 0101
 6 36 011 0110
 7 37 011 0111
 8 38 011 1000
 9 39 011 1001

10. 000000 22 55 2E 53 2E 41 2E 20 69 73 20 61 20 63 6F 75 "U.S.A. is a cou
000010 6E 74 72 79 22 0D 0A 22 69 6E 20 4E 6F 72 74 68 ntry".."in North
000020 20 41 6D 65 72 69 63 61 22 0D 0A America"..

SECTION 0.2: DIGITAL PRIMER

11.

12.

A B C Y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

13.

 .

14.

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0

1

2
3

4

5
6

A

B

C

1

2
3

4

5
6

C

A

B

 3
1 1 0 0
1 1 1 1

15.

16.

A B C Y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

17.

A B C Y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

18.

A B C Y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

LSB

1

2
3

4

5
6

B

A

C

 4
19.

20.

CLK D Q
No X NC
Yes 0 0
Yes 1 1

SECTION 0.3: INSIDE THE COMPUTER

21. (a) 4
(b) 4
(c) 4
(d) 1 048 576, 220
(e) 1024K
(f) 1 073 741 824, 230
(g) 1 048 576 K
(h) 1024M
(i) 8388608, 8192K

22. Disk storage capacity / size of a page = (2*230) / (25*80) = 1 million pages
23. (a) 9FFFFh – 10000h = 8FFFFh = 589 824 bytes
(b) 576 kbytes
24. 232 – 1 = 4 294 967 295
25. (a) FFh, 255
(b) FFFFh, 65535
(c) FFFF FFFFh, 4 294 967 295
(d) FFFF FFFF FFFF FFFFh, 18 446 744 073 709 551 615
26. (a) 216 = 64K
(b) 224 = 16M
(c) 232 = 4096 Mega, 4G
(d) 248 = 256 Tera, 262144 Giga, 268435456 Mega
27. Data bus is bidirectional, address bus is unidirectional (exit CPU).
28. PC (Program Counter)
29. ALU is responsible for all arithmetic and logic calculations in the CPU.
30. Address, control and data

LSB

 5
CHAPTER 1: THE x86 MICROPROCESSOR

SECTION 1.1: BRIEF HISTORY OF THE x86 FAMILY

1. 8086

2. the internal data bus of the 386SX is 32 bits, whereas
 the internal data bus of the 286 is 16 bits

3. terms such as "16-bit" or "32-bit" microprocessors refer
 to the internal data bus and register size of the microprocessor

4. yes

5. upward compatibility means that any program written
 for a lower (earlier) system will run on more advanced (later) systems

6. the 8088 has an 8-bit external data bus but the 8086
 has a 16-bit external data bus

7. the 8088 has a 4-byte queue, the 8086 has a 6-byte queue

SECTION 1.2: INSIDE THE 8088/86

8. more efficient internal architecture such as pipelining
 and wider registers

9. the BIU (bus interface unit) fetches instructions into
 the CPU and the EU (execution unit) executes the instruction

10. (a) 8-bit registers are: AH, AL, BH, BL, CH, CL, DH,CL
 (b) 16-bit registers are: AX, BX, CX, DX

11. (a) CS (c) DS (d) SS (h) SI (i) DI

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING

12. (b) is illegal since the value is too large
 (c) is illegal since immediate addressing is not allowed for segment registers
 (f) is illegal since immediate addressing is not allowed for segment registers
 (i) is illegal since the operand types do not match
 (j) is illegal since the value is too large for the register
 (k) is illegal since the register sizes do not match
 (l) is illegal since the operand sizes do not match

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS

13. CS is the code segment register and holds the segment address for the code section
 DS is the data segment register and holds the segment address for the data section
 SS is the stack segment register and holds the segment address for the stack section
 ES is the extra segment register and holds the segment address for the extra segment
 which is used for many string operations

 6

14. (a) 3499:2500 (b) 36E90 (c) 34990 to 4498F

15. (a) 1296:0100 (b) 12A60 (c) 12960 to 2295F

16. (a) 38949 (b) 3499:3FB9 (c) 34990 to 4498F

17. (a) 1A648 (b) 1298:7CC8 (c) 12980 to 2297F

18. 0042:004C

19. no, because the upper range of the code segment would be 36FFF
 CS should be 3777

20. 12B0:0170 12C70 B0
 12B0:0171 12C71 76
 12B0:0172 12C72 B7
 12B0:0173 12C73 8F
 12B0:0174 12C74 00
 12B0:0175 12C75 C7
 12B0:0176 12C76 80
 12B0:0177 12C77 C7
 12B0:0178 12C78 7B
 12B0:0179 12C79 88
 12B0:017A 12C7A FB
 12B0:017B 12C7B 00
 12B0:017C 12C7C C3

21. 12B0:0100 12C00 B0
 12B0:0101 12C01 00
 12B0:0102 12C02 02
 12B0:0103 12C03 06
 12B0:0104 12C04 00
 12B0:0105 12C05 02
 12B0:0106 12C06 02
 12B0:0107 12C07 06
 12B0:0108 12C08 01
 12B0:0109 12C09 02
 12B0:010A 12C0A 02
 12B0:010B 12C0B 06
 12B0:010C 12C0C 02
 12B0:010D 12C0D 02
 12B0:010E 12C0E 02
 12B0:010F 12C0F 06
 12B0:0110 12C10 03
 12B0:0111 12C11 02
 12B0:0112 12C12 02
 12B0:0113 12C13 06
 12B0:0114 12C14 04
 12B0:0115 12C15 02

SECTION 1.5: THE STACK

22. (b)

23. (c)

 7

24. decremented, incremented

25. (b)

26. the stack is slower than registers, since the stack is a section of RAM

27. (a) 24578 (b) 2000:4578 (c) 20000 (d) 2FFFF

28. 24FB

29. after "PUSH AX", the stack pointer = FF2C and the stack is as follows:

 logical address stack contents
 SS:FF2C 91
 SS:FF2D 32

 after "PUSH BX", the stack pointer = FF2A and the stack is as follows:

 logical address stack contents
 SS:FF2A 3C
 SS:FF2B F4
 SS:FF2C 91
 SS:FF2D 32

 after "PUSH CX", the stack pointer = FF28 and the stack is as follows:

 logical address stack contents
 SS:FF28 09
 SS:FF29 00
 SS:FF2A 3C
 SS:FF2B F4
 SS:FF2C 91
 SS:FF2D 32

30. at the conclusion of Problem 28, SP = FF28,
 POP CX ;then SP = FF2A
 POP BX ;then SP = FF2C
 POP AX ;then SP = FF2E

31. (a) SS (b) DS (c) CS (d) DS
 (e) SS (f) DS

32. (a) SS overrides default register DS
 (b) SS overrides default register DS
 (c) DS overrides default register SS

SECTION 1.6: FLAG REGISTER

33. (a) CF = 1 indicating a carry occurred
 PF = 1 indicating even parity
 AF = 1 indicating a carry from bit 3
 ZF = 1 indicating the result is zero
 SF = 0 indicating a positive result

 (b) CF = 0 indicating no carry

 8
 PF = 0 indicating odd parity
 AF = 0 indicating no carry from bit 3
 ZF = 0 indicating that the result is not zero
 SF = 1 indicating negative result

 (c) CF = 0 indicating no carry
 PF = 1 indicating even parity
 AF = 1 indicating a carry from bit 3
 ZF = 0 indicating the result is not zero
 SF = 0 indicating positive result

SECTION 1.7: x86 ADDRESSING MODES

34. (a) location 24000 (20000 + 4000) contains FF
 (b) location 2A088 (20000 + 4000 + 6080 + 8) contains 25
 (c) location 26080 (20000 + 6080) contains FF
 location 26081 contains 25
 (d) location 25006 (20000 + 5000 + 6) contains 80
 location 25007 contains 60
 (e) location 2B0A8 (20000 + 5000 + 6080 + 28) contains 91
 location 2B0A9 contains 87
 (f) location 34010 (30000 + 4000 + 10) contains 99
 location 34011 contains 12
 (g) location 23600 (20000 + 3600) contains FF
 location 23601 contains 25
 (h) location 260B0 (20000 + 6080 + 30) contains 99
 location 260B1 contains 12
 (i) location 37200 (30000 + 7000 + 200) contains FF
 location 37201 contains 25
 (j) location 3B100 (30000 + 7000 + 4000 + 100) contains 80
 location 3B101 contains 60
 (k) location 24050 (20000 + 4000 + 50) contains 25
 (l) location 2C100 (20000 + 5000 + 7000 + 100) contains FF
 location 2C101 contains 25

35. (a) register (b) immediate
 (c) direct (d) register
 (e) register indirect (f) register indirect
 (g) based index (h) register
 (i) based (j) based index
 (k) index (l) based index

36. (a) DS:1450 contains 9F DS:1451 contains 12
 (b) DS:2348 contains 63 DS:2349 contains 8C

 9

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM
SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM
SECTION 2.3: MORE SAMPLE PROGRAMS

1.
 .MODEL SMALL
 .STACK 64
 .DATA

 ORG 10H
 DATA_IN DW 2525H,4FFFH,8555H,1F00H,2BBBH,0C4H
 ORG 28H
 COPY DW 6 DUP(?)

 ;------------
 .CODE
 MAIN PROC FAR
 MOV AX,@DATA
 MOV DS,AX
 MOV SI,OFFSET DATA_IN ;SI points to data to be copied
 MOV DI,OFFSET COPY ;DI points to copy of data
 MOV CX,06H ;loop counter = 6
 MOV_LOOP: MOV AX,[SI] ;move the next word area to AX
 MOV [DI],AX ;move the next word to COPY area
 INC SI ;increment DATA pointer
 INC SI
 INC DI ;increment COPY pointer
 INC DI
 DEC CX ;decrement LOOP counter
 JNZ MOV_LOOP ;jump if loop counter not zero
 MOV AH,4CH ;set up to return
 INT 21H ;return to DOS
 MAIN ENDP
 END MAIN

2. first the source file (extension "asm") must be produced with a word processor which produces an ASCII file

then the program is assembled to produce the object (extension "obj") file
 then the program is linked to produce the executable (extension "exe") file

3. the linker program

4. the assembler program

5. false

7. after

 SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS

8. when the procedure is called, IP (which points to the next instruction to be executed after the CALL) is saved on

 the stack since it is a NEAR procedure. After the CALL and all PUSH instructions have been executed, the stack
 is as follows with SP = 1278.

 1278 <- flag register
 127A <- DI

 10
 127C <- SI
 127E <- DX
 1280 <- CX
 1282 <- BX
 1284 <- AX 1285 = (AH) 1284 = (AL)
 1286 <- IP 1287 = (04) 1286 = (53)
 1288

9. SP = 1278

 POPF ;now SP = 127A
 POP DI ;now SP = 127C
 POP SI ;now SP = 127E
 POP DX ;now SP = 1280
 POP CX ;now SP = 1282
 POP BX ;now SP = 1284
 POP AX ;now SP = 1286
 ;SP = 1288 after the RET

 10. the address of the instruction immediately following the CALL is stored on the stack. The last instruction of a
 called subroutine must be RET in order to tell the system to pop off the return address from the stack.

11. CS and IP, IP

12. NEAR calls require two bytes to store IP
 FAR calls require four bytes to store CS and IP

13. IP = 673D will be stored in the stack at 1295 and 1294, therefore
 SS:1295 = 67 and SS:1294 = 3D

14. (a) 3F (displacement) + 6E (instruction after JNC) = E0AD, the offset of ERROR1
 (b) 39 (displacement) + 74 (instruction after JNO) = E0AD,the offset of ERROR1
 (c) E3 (displacement) + A9 (instruction after JMP) = E08C, the offset of C8

SECTION 2.5: DATA TYPES AND DATA DEFINITION

15. the following notation indicates "offset location: byte contents of location"
 for DATA1
 0020:31 0021:2D 0022:38 0023:30
 0024:30 0025:2D 0026:35 0027:35
 0028:35 0029:2D 002A:31 002B:32
 002C:33 002D:34
 for DATA2
 0040:4E 0041:61 0042:6D 0043:65
 0044:3A 0045:20 0046:4A 0047:6F
 0048:68 0049:6E 004A:20 004B:4A
 004C:6F 004D:6E 004E:65 004F:73
 for DATA3
 0060:35 0061:39 0062:35 0063:36
 0064:33 0065:34 0066:32
 for DATA4
 0070:60 0071:25 0072:06 0073:10
 for DATA5
 0074:31 0075:00
 for DATA6
 0080:6E 0081:7F 0082:69 0083:25

 11
 for DATA7
 0084:F2 0085:99 0086:1C 0087:A2
 0088:7B 0089:9E
 for DATA8
 0090:28 0091:98 0092:99 0093:24
 0094:79 0095:99 0096:39 0097:04
 0098:00 0099:00
 for DATA9
 009A:EE 009B:EE 009C:EE 009D:EE
 009E:EE 009F:EE

16.
 TITLE PROBLEM (EXE) PROBLEM 16 PROGRAM
 PAGE 60,132
 .MODEL SMALL
 .STACK 32
 ;----------------------------
 .DATA
 DATA DW 234DH,0DE6H,3BC7H,566AH ;leading zero
 ORG 10H
 SUM DW ?
 ;----------------------------

 .CODE

 START PROC FAR ;no colon after START
 MOV AX,DATA ;should be @DATA
 MOV DS,AX
 MOV CX,04
 MOV BX,0
 MOV DI,OFFSET DATA
 LOOP1: ADD BX,[DI]
 INC DI
 INC DI
 DEC CX ;DEC CX NOT BX
 JNZ LOOP1
 MOV SI,OFFSET SUM ;SUM instead of RESULT
 MOV [SI],BX
 MOV AH,4CH
 INT 21H
 START ENDP
 END START ;START not STRT

 12

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION

1. (a) BH = 84, CF = 0 (no carry), ZF = 0 (result not zero), AF = 1 (auxiliary carry)
 (b) CX = 79F1, CF = 0 (no carry), ZF = 0 (result not zero),AF = 1 (auxiliary carry)
 (c) AX = 0100, CF = 0 (no carry), ZF = 0 (result not zero),AF = 1 (auxiliary carry)
 (d) BL = 00, CF = 1 (carry), ZF = 1 (result is zero),AF = 1 (auxiliary carry)
 (e) CX = 0000, CF = 1 (carry), ZF = 1 (result is zero),AF = 1 (auxiliary carry)
 (f) AH = FF, CF = 0 (no carry), ZF = 0 (result not zero), AF = 0 (no auxiliary carry)

 2. The data is stored with directive DW. The program will loop 8 times to add the 8 words, and the loop count is
 set in data item COUNT, then moved to CX. SI is used to point to the data. As each word is added to AX, any
 carry that was generated is added to BX, then the result is stored with BX as the higher word and AX as the
 lower word. In this particular example, the result of the addition is 5CE4H, no carries were generated so the
 higher word (BX) = 0.

 TITLE PROB2 (EXE) ADDING 8 WORDS
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 COUNT EQU 08
 DATA DW 2300,4300,1200,3700,1298,4323,5673,986
 ORG 0010H
 SUM DW 2 DUP(?)
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV CX,COUNT ;CX is the loop counter
 MOV SI,OFFSET DATA ;SI is the data pointer
 MOV AX,00 ;AX will hold the sum
 MOV BX,AX ;BX will hold the carries
 BACK: ADD AX,[SI] ;add the next word to AX
 ADC BX,0 ;add carry to BX
 INC SI ;increment data pointer twice
 INC SI ; to point to next word
 DEC CX ;decrement loop counter
 JNZ BACK ;if not finished, continue adding
 MOV SUM,AX ;store the sum
 MOV SUM+2,BX ;store the carries
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 13
3. In order to rewrite Program 3-2 for multibyte addition, the following changes were made:
 (1) CX was changed from 4 (to add 4 words) to 8 (to add 8 bytes)
 (2) AL was used to accumulate the sum of the two bytes instead of AX
 (3) BYTE PTR was used to make the operands match in size

 (4) all pointers SI, DI and BX were incremented once to point to the next byte instead of twice to point to the
 next word

 The result of the addition is 945D09387874H.

 TITLE PROB3 (EXE) MULTIBYTE ADDITION
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 DATA1 DQ 548FB9963CE7H
 ORG 0010H
 DATA2 DQ 3FCD4FA23B8DH
 ORG 0020H
 DATA3 DQ ?
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CLC ;clear carry before first addition
 MOV SI,OFFSET DATA1 ;SI is pointer for operand1
 MOV DI,OFFSET DATA2 ;DI is pointer for operand2
 MOV BX,OFFSET DATA3 ;BX is pointer for the sum
 MOV CX,08 ;CX is the loop counter
 BACK: MOV AL,BYTE PTR[SI] ;move the first operand to AX
 ADC AL,BYTE PTR [DI] ;add the second operand to AX
 MOV BYTE PTR [BX],AL ;store the sum
 INC SI ;point to next byte of operand1
 INC DI ;point to next byte of operand2
 INC BX ;point to next byte of sum
 LOOP BACK ;if not finished, continue adding
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 4. This program subtracts one 8-byte number from another. The subtraction is performed one byte at a time,
 starting at the least significant byte. SBB is used to take care of any borrow that occurred from the previous
 byte subtraction. The result of the subtraction is 14C269F4015AH.

 The program is on the following page.

 14
 TITLE PROB4 (EXE) MULTIBYTE SUBTRACTION
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 DATA1 DQ 548FB9963CE7H
 ORG 0010H
 DATA2 DQ 3FCD4FA23B8DH
 ORG 0020H
 DATA3 DQ ?
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CLC ;clear carry before first subtraction
 MOV SI,OFFSET DATA1 ;SI is pointer for operand1
 MOV DI,OFFSET DATA2 ;DI is pointer for operand2
 MOV BX,OFFSET DATA3 ;BX is pointer for the result
 MOV CX,08 ;CX is the loop counter
 BACK: MOV AL,BYTE PTR [SI] ;move the first operand to AX
 SBB AL,BYTE PTR [DI] ;add the second operand to AX
 MOV BYTE PTR [BX],AL ;store the result
 INC SI ;point to next byte of operand1
 INC DI ;point to next byte of operand2
 INC BX ;point to next byte of sum
 LOOP BACK ;if not finished, continue subtracting
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 CDSEG ENDS
 END MAIN

5. The three steps are:
 (1) convert the subtrahend to two's complement
 (2) add the two numbers
 (3) invert the carry

 (a) 23H 0010 0011 0010 0011
 - 12H 0001 0010 1110 1110 step 1: two's complement
 11H 0001 0001 step2 : add the two
 step 3: invert carry CF=0

 (b) 43H 0100 0011 0100 0011
 - 51H 0101 0001 1010 1111 step1: two's complement
 F2H 1111 0010 step 2: add the numbers
 step 3: invert carry CF = 1

 (c) 99 0110 0011 0110 0011
 - 99 0110 0011 1001 1101 step 1:two's complement
 00 0000 0000 step 2: add the numbers
 step 3: invert carry CF = 0

 15

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION

6. (1) parts a, b, and c were combined into one program, shown below:

 (a) byte1 x byte2 BYTE1 is moved into AL, then AL is multiplied by BYTE2,the product (59D8H) is
 left is AX.

 (b) byte1 x word1 BYTE1 is moved into AL and AH is set to zero, then AX is multiplied by WORD1
 and the product, 231694H, is in DX AX, DX = 0023 and AX = 1694.

 (c) word1 x word2 WORD1 is moved into AX, then AX is multiplied by WORD2 and the product,
 2DC468H, is in DX AX, DX = 002D and AX = C468.

 TITLE PROB61 (EXE) MULTIPLICATION
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 BYTE1 DB 230
 BYTE2 DB 100
 WORD1 DW 9998
 WORD2 DW 300
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 ;(a) byte1 x byte2
 MOV AL,BYTE1
 MUL BYTE2 ;RESULT IN AX
 ;(b) byte1 x word1
 SUB AH,AH
 MOV AL,BYTE1
 MUL WORD1 ;RESULT IN DX AX
 ;(c) word1 x word2
 MOV AX,WORD1
 MUL WORD2 ;RESULT IN DX AX
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 16
 (2) parts a, b, and c were combined into one program, shown below:

 (a) BYTE1 is moved into AL and AH is set to zero, then AL is divided by BYTE2 and the result (2H) is in
 AL, with the remainder (0) in AH.

 (b) WORD1 is moved into AX and DX is set to zero, then AX is divided by WORD2and the result (21) is
 in AX and the remainder (62)is in DX.

 (c) DBLWORD is moved into DX AX with DX = 0001 and AX = 86A0, then DX AX is divided by

BYTE1 which is moved into BL (36H) with BH set to zero;
 the result (1B2H) is in AX with DX = B4H, the remainder.

 TITLE PROB62 (EXE) DIVISION
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 BYTE1 DB 230
 BYTE2 DB 100
 WORD1 DW 9998
 WORD2 DW 300
 DBLWRD DD 100000
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 ;(a) byte1 / byte2
 MOV AL,BYTE1
 SUB AH,AH
 DIV BYTE2 ;QUOTIENT IN AL REM IN AH
 ;(b) word1 / word2
 MOV AX,WORD1
 SUB DX,DX
 DIV WORD2 ;QUOTIENT IN AX REM IN DX
 ;(c) dblwrd / byte1
 MOV SI,OFFSET DBLWRD
 MOV AX,[SI]
 MOV DX,[SI+2]
 SUB BH,BH
 MOV BL,BYTE1
 DIV BX ;QUOTIENT IN AX REM IN DX
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 17

SECTION 3.3: LOGIC INSTRUCTIONS

7. (a) DX = E000 CF = 1 ZF = 0
 (b) DH = F7 CF = 0 ZF = 0
 (c) AL = 76 CF = 0 ZF = 0
 (d) DX = E390 CF = 0 ZF = 0
 (e) AX = 0 CF = 0 ZF = 1
 (f) BX = F7D6 CF = 0 ZF = 0
 (g) AH = F0 CF = 0 ZF = 0
 (h) AX = F999 CF = 0 ZF = 0
 (i) DX = 0D7E CF = 0 ZF = 0
 (j) BX = 0000 CF = 0 ZF = 1
 (k) AL = 00 CF = 0 ZF = 1
 (l) DX = 71C8 CF = 0 ZF = 0
 (m) DL = 12 CF = 0 ZF = 0
 (n) BX = 8AC0 CF = 0 ZF = 0
 (o) DX = E400 CF = 0 ZF = 0

8. (a) CF = 0 and ZF = 0, because 2500 > 1400
 (b) CF = 0 and ZF = 0, because FF > 6F
 (c) CF = 1 and ZF = 0, because 34 < 88
 (d) CF = 0 and ZF = 1, because 0 = 0
 (e) CF = 1 and ZF = 0, because 0 < FFFF
 (f) CF = 0 and ZF = 1, because FFFF = FFFF
 (g) CF = 0 and ZF = 0, because 4000 > 2378
 (h) CF = 0 and ZF = 1, because 0 = 0

9. (a) yes, because no carry was generated by shifting zero
 (b) no, because no carry was generated by shifting left 6D once
 (c) no, because a carry was generated by shifting left 55H 5 times

10.
 TITLE PROB10 (EXE)
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 DTSEG SEGMENT
 GRADES DB 69,87,96,45,75
 ORG 0008
 LOWEST DB ?
 DTSEG ENDS
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV CX,5 ;set up loop counter
 MOV BX,OFFSET GRADES ;BX points to GRADE data
 MOV AL,0FFH ;AL holds lowest grade found so far
 AGAIN: CMP AL,[BX] ;compare next grade to lowest
 JB NEXT ;jump if AL still lowest
 MOV AL,[BX] ;else AL holds new lowest
 NEXT: INC BX ;point to next grade
 LOOP AGAIN ;continue search
 MOV LOWEST,AL ;store lowest grade
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP

 18
 CDSEG ENDS
 END MAIN

 The following changes were made to Program 3-3 to find the lowest grade:
 (1) name HIGHEST was changed to LOWEST
 (2) AL was initialized to FF instead of 00
 (3) JA (jump above, or jump no carry) was changed to JB (jump below, or jump carry)

11.
 TITLE PROB11 (EXE) UPPER TO LOWER CASE CONVERT
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 DATA1 DB 'mY NAME is jOe'
 ORG 0020H
 DATA2 DB 14 DUP(?)
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV SI,OFFSET DATA1 ;SI points to original data
 MOV BX,OFFSET DATA2 ;BX points to lower case data
 MOV CX,14 ;CX is loop counter
 BACK: MOV AL,[SI] ;get next character
 CMP AL,5AH ;if greater than 'Z'
 JA OVER ;then no need to convert
 CMP AL,41H ;if less than 'A'
 JB OVER ;then no need to convert
 OR AL,00100000B ;make d5 = 1 to convert to lower case
 OVER: MOV [BX],AL ;store lower case character
 INC SI ;increment pointer to original
 INC BX ;increment pointer to lower case data
 LOOP BACK ;continue looping if CX 0
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 The following changes were made to Program 3-4 to convert to lower case:
 (1) the first compare was changed to check if the byte is greater than 'Z'
 (2) the jump after the compare was changed to JA
 (3) the second compare was changed to check if the byte is less than 'A'
 (4) the jump after the second compare was changed to JB
 (5) if the number was to be converted, the OR would make bit 5 one

 19
12. Notice that ERRO1 is at offset E0AD, C8 is at offset E08C, C9 is at offset E0A9. The displacement is
calculated
 by subtracting the offset of the instruction immediately after the jump from the target offset

(a) E05F 734C 313 JNC ERRO1
 E0AD - E061 = 4C
(b) E061 75 4A 314 JNZ ERRO1
 E0AD - E063 = 4A
(c) E063 7B48 315 JNP ERRO1
 E0AD - E065 = 48
(d) E065 7946 316 JNS ERRO1
 E0AD - E067 = 46
(e) E06C 733F 320 JNC ERRO1
 E0AD - E06E = 3F
(f) E072 7139 323 JNO ERRO1
 E0AD - E074 = 39
(g) E077 7634 326 JBE ERRO1
 E0AD - E079 = 34
(h) E079 7832 328 JS ERRO1
 E0AD - E07B = 32
(i) E07B 7A30 329 JP ERRO1
 E0AD - E07D = 30
(j) E082 7229 333 JC ERRO1
 E0AD - E084 = 29
(k) E086 7025 335 JO ERRO1
 E0AD - E088 = 25
(l) E0A0 7307 353 JNC C9
 E0A9 - E0A2 = 07
(m) E0A4 7507 355 JNZ ERRO1
 E0AD - E0A6 = 07
(n) E0A7 EBE3 357 JMP C8
 E08C - E0A9 = FFE3

SECTION 3.4: BCD AND ASCII CONVERSION

13. The following changes were made to Program 3-7:
 (1) data name DATA5_ADD was changed to DATA5_SUB
 (2) procedure name BCD_ADD was changed to BCD_SUB
 (3) within procedure BCD_SUB, ADC was changed to SBB
 (4) within procedure BCD_SUB, DAA was changed to DAS

 TITLE PROGB13 (EXE) ASCII - BCD CONVERSION AND SUBTRACTION
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP(?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 DATA1_ASC DB '0649147816'
 ORG 0010H
 DATA2_ASC DB '0072687188'
 ORG 0020H
 DATA3_BCD DB 5 DUP (?)
 ORG 0028H
 DATA4_BCD DB 5 DUP (?)
 ORG 0030H
 DATA5_SUB DB 5 DUP (?)
 ORG 0040H
 DATA6_ASC DB 10 DUP (?)
 DTSEG ENDS

 20
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV BX,OFFSET DATA1_ASC ;BX points to first ASCII data
 MOV DI,OFFSET DATA3_BCD ;DI points to first BCD data
 MOV CX,10 ;CX holds number bytes to convert
 CALL CONV_BCD ;convert ASCII to BCD
 MOV BX,OFFSET DATA2_ASC ;BX points to second ASCII data
 MOV DI,OFFSET DATA4_BCD ;DI points to second BCD data
 MOV CX,10 ;CX holds number bytes to convert
 CALL CONV_BCD ;convert ASCII to BCF
 CALL BCD_SUB ;subtract the BCD operands
 MOV SI,OFFSET DATA5_SUB ;SI points to BCD result
 MOV DI,OFFSET DATA6_ASC ;DI points to ASCII result
 MOV CX,05 ;CX holds count for convert
 CALL CONV_ASC ;convert result to ASCII
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 ;-----------------------------
 ;THIS SUBROUTINE CONVERTS ASCII TO PACKED BCD
 CONV_BCD PROC
 AGAIN: MOV AX,[BX] ;BX=pointer for ASCII data
 XCHG AH,AL
 AND AX,0F0FH ;mask ASCII 3s
 PUSH CX ;save the counter
 MOV CL,4 ;shift AH left 4 bits
 SHL AH,CL ; to get ready for packing
 OR AL,AH ;combine to make packed BCD
 MOV [DI],AL ;DI=pointer for BCD data
 ADD BX,2 ;point to next 2 ASCII bytes
 INC DI ;point to next BCD data
 POP CX ;restore loop counter
 LOOP AGAIN
 RET
 CONV_BCD ENDP
 ;-----------------------------
 ;THIS SUBROUTINE SUBTRACTS TWO MULTIBYTE PACKED BCD OPERANDS
 BCD_SUB PROC
 MOV BX,OFFSET DATA3_BCD ;BX=pointer for operand 1
 MOV DI,OFFSET DATA4_BCD ;DI=pointer for operand 2
 MOV SI,OFFSET DATA5_SUB ;SI=pointer for sum
 MOV CX,05
 CLC
 BACK: MOV AL,[BX]+4 ;get next byte of operand 1
 SBB AL,[DI]+4 ;subtract next byte of operand 2
 DAS ;correct for BCD subtraction
 MOV [SI] +4,AL ;save difference
 DEC BX ;point to next byte of operand 1
 DEC DI ;point to next byte of operand 2
 DEC SI ;point to next byte of difference
 LOOP BACK
 RET
 BCD_SUB ENDP
 ;-----------------------------
 ;THIS SUBROUTINE CONVERTS FROM PACKED BCD TO ASCII
 CONV_ASC PROC
 AGAIN2: MOV AL,[SI] ;SI=pointer for BCD data
 MOV AH,AL ;duplicate to unpack
 AND AX,0F00FH ;unpack
 PUSH CX ;save counter
 MOV CL,04 ;shift right 4 bits to unpack
 SHR AH,CL
 OR AX,3030H ;make it ASCII
 XCHG AH,AL ;swap for ASCII storage convention
 MOV [DI],AX ;store ASCII data
 INC SI ;point to next BCD data
 ADD DI,2 ;point to next ASCII data
 POP CX ;restore loop counter
 LOOP AGAIN2

 21
 RET
 CONV_ASC ENDP
 CDSEG ENDS
 END MAIN

 22
14. The following changes were made to Program 3-8:
 (1) procedure name ASC_ADD was changed to ASC_SUB
 (2) within ASC_SUB, ADC was changed to SBB
 (3) within ASC_SUB, AAA was changed to AAS

 Program changes are highlighted below:

 TITLE PROB14 (EXE) SUBTRACTING ASCII NUMBERS
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 VALUE1 DB '0999999999'
 ORG 0010H
 VALUE2 DB '0077777775'
 ORG 0020H
 RESULT1 DB 10 DUP (?)
 ORG 0030H
 RESULT2 DB 10 DUP (?)
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL ASC_SUB ;call ASCII subtraction subroutine
 CALL CONVERT ;call convert to ascii subroutine
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 ;-----------------------------
 ;THIS SUBROUTINE SUBTRACTS ASCII NUMBERS, RESULT IS UNPACKED
 ASC_SUB PROC
 CLC ;clear the carry
 MOV CX,10 ;set up loop counter
 MOV BX,9 ;point to LSD
 BACK: MOV AL,VALUE1[BX] ;move next byte of operand 1
 SBB AL,VALUE2[BX] ;add next byte of operand 2
 AAS ;adjust to make it ASCII
 MOV RESULT1[BX],AL ;store ASCII sum
 DEC BX ;point to next byte
 LOOP BACK
 RET
 ASC_SUB ENDP
 ;-----------------------------
 ;THIS SUBROUTINE CONVERTS UNPACKED BCD TO ASCII
 CONVERT PROC
 MOV BX,OFFSET RESULT1 ;BX points to ASCII data
 MOV SI,OFFSET RESULT2 ;SI points to BCD data
 MOV CX,05 ;CX is loop counter
 BACK2: MOV AX,WORD PTR [BX] ;get next 2 ASCII bytes
 OR AX,3030H ;remove ASCII 3s
 MOV WORD PTR [SI],AX ;store BCD
 ADD BX,2 ;increment ASCII pointer
 ADD SI,2 ;increment BCD pointer
 LOOP BACK2
 RET
 CONVERT ENDP
 CDSEG ENDS
 END MAIN

 23
15. The program follows:

 TITLE PROB15 (EXE) ADDING BCD NUMBERS
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 VALUE1 DT 87965141012
 ORG 0010H
 VALUE2 DT 31610640392
 ORG 0020H
 SUM DT ?
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL BCD_ADD ;call BCD addition subroutine
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 ;-----------------------------
 ;THIS SUBROUTINE SUBTRACTS ASCII NUMBERS, RESULT IS UNPACKED
 BCD_ADD PROC
 CLC ;clear the carry
 MOV CX,10 ;set up loop counter
 MOV BX,0 ;set pointer to 0
 BACK: MOV AL,BYTE PTR VALUE1[BX] ;move next byte of operand 1
 ADC AL,BYTE PTR VALUE2[BX] ;add next byte of operand 2
 DAA ;adjust to make it ASCII
 MOV BYTE PTR SUM[BX],AL ;store ASCII sum
 INC BX ;point to next byte
 LOOP BACK
 RET
 BCD_ADD ENDP
 CDSEG ENDS
 END MAIN

16. DAA

17.
 TITLE PROB17 (EXE)
 PAGE 60,132
 STSEG SEGMENT
 DB 32 DUP(?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 COUNT DB 99
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 START PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV AL,COUNT ;move count to AL
 BACK: SUB AL,1 ;count down by 1
 DAS ;adjust for BCD
 CMP AL,00 ;stop counting when = 0
 JA BACK
 MOV AH,4CH
 INT 21H
 START ENDP
 CDSEG ENDS
 END START

 24
18.
 TITLE PROB18 (EXE)
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS

 ;----------------------------
 DTSEG SEGMENT
 GRADES DB 81,65,77,82,73,55,88,78,51,91,86,76
 NUM_GRDS DW 12
 CURVE DB ?
 ORG 10H
 CURVED_GRD DB 30 DUP (?)
 ORG 0040H
 HIGHEST DB ?
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL FIND_HIGH
 CALL ADD_CURVE
 MOV AH,4CH
 INT 21H
 MAIN ENDP
 ;-----------------------------------
 FIND_HIGH PROC
 MOV CX,NUM_GRDS ;set up loop counter
 MOV BX,OFFSET GRADES ;BX points to GRADE data
 MOV AL,0 ;AL holds highest grade found so far
 AGAIN: CMP AL,[BX] ;compare next grade to highest
 JA NEXT ;jump if AL still highest
 MOV AL,[BX] ;else AL holds new highest
 NEXT: INC BX ;point to next grade
 LOOP AGAIN ;continue search
 MOV HIGHEST,AL ;store highest grade
 RET
 FIND_HIGH ENDP
 ;------------------------------------
 ADD_CURVE PROC
 MOV CX,NUM_GRDS ;loop count = number of grades
 MOV AL,99
 SUB AL,HIGHEST
 MOV CURVE,AL ;curve = 99 - highest
 MOV BX,OFFSET CURVED_GRD ;BX points to curved grades
 MOV SI,OFFSET GRADES ;SI points to original grades
 CURVE_LP: MOV AL,[SI] ;get original grade
 ADD AL,CURVE ;add curve
 MOV [BX],AL ;store curved grade
 INC BX ;increment curved grade pointer
 INC SI ;increment original grade pointer
 LOOP CURVE_LP ;loop through all grades
 RET
 ADD_CURVE ENDP
 CDSEG ENDS
 END MAIN

19. (a) the quotient (500000 = 7A120H) is too large for register AX
 (b) the CPU gives the "divide overflow" error when the program is executed

20. (d)

 25

SECTION 3.5: ROTATE INSTRUCTIONS

21.
 TITLE PROB21 (EXE)
 PAGE 60,132
 STSEG SEGMENT
 DB 32 DUP(?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 NUM DW 0000H
 COUNT DW ?
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 START PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV CX,16 ;loop through 16 bits (1 word)
 CLC
 SUB BX,BX ;BX will hold count of zeros
 MOV AX,NUM ;load number into AX
 BACK: SHR AX,1 ;shift rightmost bit to CF
 JC END_LOOP ;if CF=1, don't increment count
 INC BX ;if CF= 0, increment count
 END_LOOP: LOOP BACK ;loop through all 16 bits
 MOV COUNT,BX
 MOV AH,4CH
 INT 21H
 MAIN ENDP
 CDSEG ENDS
 END MAIN

22. RCL rotates through the Carry flag. ROL does not.

SECTION 3.6: BITWISE OPERATORS IN THE C LANGUAGE

23.
 /* Problem 23 */
 #include <stdio.h>
 #include <conio.h>
 main()
 {
 clrscr();
 unsigned char data_1 = 0x55;
 unsigned char data_2 = 0xAA;
 unsigned char temp;
 temp=data_1&0x0F; //masking upper four bits
 printf("\nMasking the upper four bits of %X (hex) we get %X (hex)\n",data_1,temp);
 temp=data_1&data_2; //ANDing
 printf("The result of %X hex ANDED with %X hex is %X hex\n",data_1,data_2,temp);
 temp=data_1|data_2; //ORing
 printf("The result of %X hex ORed with %X hex is %X hex\n",data_1,data_2,temp);
 temp= data_1^data_2; //EX-ORing
 printf("The results of %X hex EX-ORed with %X hex is %X hex\n",data_1,data_2,temp);
 temp=~data_1; //INVERTING
 printf("The result of %X hex inverted is %X hex\n",data_1,temp);
 temp=data_2>>2; //SHIFTING Right

 26
 printf("When %X hex is shifted right twice we get %X hex\n",data_2,temp);
 temp=data_1<<4; //SHIFTING Left
 printf("When %X hex is shifted left %d times we get %X hex\n",data_1,4,temp);
 }

24.
 /* Problem 24 */
 #include <stdio.h>
 #include <conio.h>
 main()
 {
 clrscr();
 unsigned char data_1;
 unsigned data_a;
 unsigned data_b;
 unsigned data_c;
 unsigned char data_2;
 unsigned char temp;
 fflush(stdin);
 printf("Enter a Hex data of 00-FF\n");
 scanf("%X",&data_1);
 data_b=data_1;
 printf("you typed in %X",data_1);
 printf("\nEnter another Hex data of 00-FF\n");
 fflush(stdin);
 scanf("%X",&data_2);
 fflush(stdin);
 printf("you typed in %X %X",data_1,data_2);
 temp=data_1&0x0F; //masking upper four bits
 printf("\n%x",temp);
 printf("\nMasking the upper four bits of %X (hex) we get %X (hex)\n",data_1,temp);
 temp=data_1&data_2; //ANDing
 printf("The result of %X hex ANDED with %X hex is %X hex\n",data_1,data_2,temp);
 temp=data_1|data_2; //ORing
 printf("The result of %X hex ORed with %X hex is %X hex\n",data_1,data_2,temp);
 temp= data_1^data_2 ; //EX-ORing
 printf("The results of %X hex EX-ORed with %X hex is %X hex\n",data_1,data_2,temp);
 temp=~data_1; //INVERTING
 printf("The result of %X hex inverted is %X hex\n",data_1,temp);
 temp=data_2>>2; //SHIFTING Right
 printf("When %X hex is shifted right twice we get %X hex\n",data_2,temp);
 temp=data_1<<4; //SHIFTING Left
 printf("When %X hex is shifted left %d times we get %X hex\n",data_1,4,temp);
 }

25.
 /* Problem 25 */
 /*Converts two ASCII bytes to a packed BCD data */
 #include <stdio.h>
 #include <conio.h>
 main()
 {
 clrscr();
 unsigned char asci_1= '4'; //ascii 34h
 unsigned char asci_2= '8'; //ascii 38h
 unsigned char bcd;
 unsigned char temp_1,temp_2;
 temp_1= asci_1&0x0f; //mask upper bits
 temp_2= asci_2&0x0f; //mask upper bits
 temp_2=temp_2<<4; //shift left
 bcd=temp_1|temp_2; //make it a bcd data
 printf("The ASCII %X and %X is packed BCD %Xh ",asci_1,asci_2,bcd);
 }

 27
26.
 /* Problem 26 */
 /* Get a byte of hex data from user and check D0 and D1 for high*/
 #include <stdio.h>
 #include <conio.h>
 main()
 {
 clrscr();
 unsigned char data_1;
 unsigned char temp;
 printf("Enter a Hex data of 00-FF to see if D0 and D1 are high\n");
 scanf("%X",&data_1);
 temp=data_1&0x03; //mask all but D0 and D1
 switch(temp)
 {
 case 0:
 printf("Neither D0 nor D1 is high");
 break;
 case 1:
 printf("D1 is not high");
 break;
 case 2:
 printf("D0 is not high");
 break;
 default:
 printf("D0 and D1 are both high");
 }
 }

27.
 /* Problem 27 */
 /* Get a byte of hex data from user and check D0 and D7 for high */
 #include <stdio.h>
 #include <conio.h>
 main()
 {
 clrscr();
 unsigned char data_1;
 unsigned char temp;
 printf("Enter a Hex data of 00-FF to see if D0 and D7 are high\n");
 scanf("%X",&data_1);
 temp=data_1&0x81; //mask all but D0 and D7
 switch(temp)
 {
 case 0:
 printf("Neither D0 nor D7 is high");
 break;
 case 1:
 printf("D7 is not high");
 break;
 case 0x80:
 printf("D0 is not high");
 break;
 default:
 printf("D0 and D7 are both high");
 }
 }

 28

CHAPTER 4: INT 21H AND INT 10H PROGRAMMING AND MACROS

SECTION 4.1: BIOS INT 10H PROGRAMMING

1. The program follows:
 TITLE PROB1 (EXE)
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 DTSEG SEGMENT
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL CLEAR ;CLEAR THE SCREEN
 CALL CURSOR ;SET CURSOR POSITION
 MOV AH,4CH
 INT 21H ;GO BACK TO DOS
 MAIN ENDP
 ;-----------------------------
 ;THIS SUBROUTINE CLEARS THE SCREEN
 CLEAR PROC
 MOV AX,0600H ;SCROLL SCREEN FUNCTION
 MOV BH,07 ;NORMAL ATTRIBUTE
 MOV CX,0000 ;SCROLL FROM ROW=00,COL=00
 MOV DX,184FH ;TO ROW=18H,COL=4FH
 INT 10H ;INVOKE INTERRUPT TO CLEAR SCREEN
 RET
 CLEAR ENDP
 ;-----------------------------
 ;THIS SUBROUTINE SETS THE CURSOR
 CURSOR PROC
 MOV AH,02 ;SET CURSOR FUNCTION
 MOV BH,00 ;PAGE 00
 MOV DH,5 ;ROW 5
 MOV DL,12 ;COLUMN 12
 INT 10H ;INVOKE INTERRUPT TO SET CURSOR POSITION
 RET
 CURSOR ENDP
 CDSEG ENDS
 END MAIN

2. The program sets the cursor position to row 10, column 20.

3. Program changes are highlighted below:

 MOV AH,02
 MOV BH,00
 MOV DH,14
 MOV DL,20
 INT 10H

 29
4. INT 10H Function 03 puts the current cursor position in register DX in hex. In this example DH = 0C
 (row = 12) and DL = 0F (column = 15). The program follows:

 TITLE PROB4 (EXE)
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT

 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL CURSOR ;set cursor position
 MOV AH,03 ;get cursor position
 MOV BH,00
 INT 10H
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 ;-----------------------------
 ;THIS SUBROUTINE SETS THE CURSOR
 CURSOR PROC
 MOV AH,02 ;set cursor function
 MOV BH,00 ;page 00
 MOV DH,12 ;row 12
 MOV DL,15 ;column 15
 INT 10H ;invoke interrupt to set cursor position
 RET
 CURSOR ENDP
 ;-----------------------------
 CDSEG ENDS
 END MAIN

 5. The sequence of instructions does not matter, they simply initialize the registers needed by the interrupt.
 The function of the interrupt is not performed until the INT instruction is executed.

6. The changes are highlighted below:

 MOV AX,0600H
 MOV BH,07
 MOV CX,0000
 MOV DX,184FH
 INT 10H

 30
7. The program follows:

 TITLE PROB7 (EXE)
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 MESSAGE DB 'IBM Personal Computer','$'
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL CLEAR ;clear the screen
 CALL CURSOR ;set cursor position
 CALL DISPLAY ;display message
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 ;-----------------------------
 ;THIS SUBROUTINE CLEARS THE SCREEN
 CLEAR PROC
 MOV AX,0600H ;scroll screen function
 MOV BH,07 ;normal attribute
 MOV CX,0000 ;scroll from row=00,col=00
 MOV DX,184FH ;to row=18h,col=4fh
 INT 10H ;invoke interrupt to clear screen
 RET
 CLEAR ENDP
 ;-----------------------------
 ;THIS SUBROUTINE SETS THE CURSOR
 CURSOR PROC
 MOV AH,02 ;set cursor function
 MOV BH,00 ;page 00
 MOV DH,8 ;row = 8
 MOV DL,14 ;column = 14
 INT 10H ;invoke interrupt to set cursor position
 RET
 CURSOR ENDP
 ;-----------------------------
 ;THIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
 DISPLAY PROC
 MOV AH,09 ;display function
 MOV DX,OFFSET MESSAGE ;dx points to output buffer
 INT 21H ;invoke interrupt to display string
 RET
 DISPLAY ENDP
 CDSEG ENDS
 END MAIN

 31

SECTION 4.2: DOS INTERRUPT 21H

8. The following shows the memory dump before and after the program was executed. Notice that carriage return

(0DH) occupies the 15th location and the string length is stored as 0EH (14). Since the expected string length
was given as 15, the system did not allow any input (except carriage return) after 14 characters were typed in.

 -d 12e0:220 23f
 12E0:0220 0F FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
 12E0:0230 FF 00 00 00 00 00 00 00 -00 00 00 00 00 00 00 00
 -g
 IBM PC with 80
 Program terminated normally
 -d 12e0:220 23f
 12E0:0220 0F 0E 49 42 4D 20 50 43-20 77 69 74 68 20 38 30 ..IBM PC with 80
 12E0:0230 0D 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

9.
 TITLE PROB9
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 PROMPT DB 'What is your name?','$'
 BUFFER DB 20,?,20 DUP (?) ;buffer for keyed-in data
 DTSEG ENDS
 CR EQU 0DH
 LF EQU 0AH
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL CLEAR ;clear the screen
 CALL CURSOR1 ;set cursor position
 CALL DISPLAY ;display prompt
 CALL CURSOR2 ;set cursor position
 CALL GETDATA ;input a string into buffer
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 ;-----------------------------
 ;THIS SUBROUTINE CLEARS THE SCREEN
 CLEAR PROC
 MOV AX,0600H ;scroll screen function
 MOV BH,07 ;normal attribute
 MOV CX,0000 ;scroll from row=00,col=00
 MOV DX,184FH ;to row=18h,4fh
 INT 10H ;invoke interrupt to clear screen
 RET
 CLEAR ENDP
 ;-----------------------------

 32
 ;THIS SUBROUTINE SETS THE CURSOR
 CURSOR1 PROC
 MOV AH,02 ;set cursor function
 MOV BH,00 ;page 0
 MOV DL,20 ;column 20
 MOV DH,15 ;row 15
 INT 10H ;Invoke interrupt to set cursor
 RET
 CURSOR1 ENDP
 ;-----------------------------
 ;THIS SUBROUTINE SETS THE CURSOR
 CURSOR2 PROC
 MOV AH,02 ;set cursor function
 MOV BH,00 ;page 0
 MOV DL,20 ;column 20
 MOV DH,17 ;row 17
 INT 10H ;Invoke interrupt to set cursor
 RET
 CURSOR2 ENDP
 ;-----------------------------
 ;THIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
 DISPLAY PROC
 MOV AH,09 ;display string function
 MOV DX,OFFSET PROMPT ;dx points to message
 INT 21H ;invoke interrupt to display string
 RET
 DISPLAY ENDP
 ;-----------------------------
 ;THIS SUBROUTINE PUTS DATA FROM THE KEYBOARD INTO A BUFFER
 GETDATA PROC
 MOV AH,0AH ;Input string function
 MOV DX,OFFSET BUFFER ;dx points to buffer
 INT 21H ;invoke interrupt to input string
 RET
 GETDATA ENDP
 ;-----------------------------
 CDSEG ENDS
 END MAIN

10. The program follows:

 TITLE PROB10
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV AH,00 ;set mode
 MOV AL,04 ;to medium resolution (320x200)
 INT 10H
 MOV CX,160 ;middle column = 160
 MOV DX,0 ;start at top row
 MOV AH,0CH ;draw pixel function
 MOV AL,01 ;pixel value
 LINE1: INT 10H
 INC DX ;increment to next row

 33
 CMP DX,200 ;draw line until row 200
 JNZ LINE1
 MOV CX,00 ;start at first column
 MOV DX,100 ;draw line on middle row
 LINE2: MOV AH,0CH ;draw pixel function
 MOV AL,01 ;pixel value
 INT 10H
 INC CX ;increment to next column
 CMP CX,320 ;draw unit column 320
 JNZ LINE2
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 CDSEG ENDS
 END MAIN

11. The program follows:

 TITLE PROB11
 PAGE 60,132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 SS_AREA LABEL BYTE
 SS_SIZE DB 12
 SS_ACTUAL DB ?
 SS_DASHED DB 12 DUP (?)
 SS_NUM DB 9 DUP (?)
 DTSEG ENDS
 DASH EQU 2DH
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL CLEAR ;clear the screen
 CALL GETDATA ;input a string into buffer
 CALL CONVERT ;remove the dash
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 ;-----------------------------
 ;THIS SUBROUTINE CLEARS THE SCREEN
 CLEAR PROC
 MOV AX,0600H ;scroll screen function
 MOV BH,07 ;normal attribute
 MOV CX,0000 ;scroll from row=00,col=00
 MOV DX,184FH ;to row=18H,4FH
 INT 10H ;invoke interrupt to clear screen
 RET
 CLEAR ENDP
 ;-----------------------------
 ;THIS SUBROUTINE PUTS DATA FROM THE KEYBOARD INTO A BUFFER
 GETDATA PROC
 MOV AH,0AH ;input string function
 MOV DX,OFFSET SS_AREA ;dx points to buffer
 INT 21H ;invoke interrupt to input string
 RET
 GETDATA ENDP
 ;-----------------------------
 ;THIS SUBROUTINE REMOVES THE '-' FROM SS NUMBERS

 34
 CONVERT PROC
 MOV BX,OFFSET SS_DASHED
 MOV SI,OFFSET SS_NUM
 MOV CX,11
 LOOP1: MOV AL,[BX]
 CMP AL,DASH
 JE INCR
 MOV [SI],AL
 INC SI
 INCR: INC BX
 LOOP LOOP1
 RET
 CONVERT ENDP
 CDSEG ENDS
 END MAIN

12. The program follows:

 TITLE PROB12
 PAGE 60,132
 .MODEL SMALL
 .STACK 64H
 .DATA
 NUM1 DB 8,?,8 DUP (?)
 NUM2 DB 8,?,8 DUP (?)
 PROMPT1 DB CR,LF,'Enter the first number','$'
 PROMPT2 DB CR,LF,'Enter the second number','$'
 PROMPT3 DB CR,LF,'The total sum is '
 SUM DB 7 DUP (?),'$'
 CR EQU 0DH
 LF EQU 0AH
 .CODE
 MAIN: MOV AX,@DATA
 MOV DS,AX
 CALL CLEAR ;clear screen
 MOV AH,09
 MOV DX,OFFSET PROMPT1
 INT 21H ;display first prompt
 MOV AH,0AH
 MOV DX,OFFSET NUM1
 INT 21H ;get first number
 MOV AH,09
 MOV DX,OFFSET PROMPT2
 INT 21H ;display second prompt
 MOV AH,0AH
 MOV DX,OFFSET NUM2
 INT 21H ;get second number
 MOV SI,OFFSET NUM1 + 8 ;point to LSD of number 1
 MOV DI,OFFSET NUM2 + 8 ;point to LSD of number 2
 MOV BX,OFFSET SUM + 6 ;point to LSD of sum
 MOV CX,7 ;add 7 bytes
 CLC ;clear carry
 ADD_LP: MOV AL,[SI] ;get byte from number 1
 ADC AL,[DI] ;add byte from number 2
 PUSHF ;save any carry
 AAA ;ASCII adjust
 OR AL,30H ;make it ASCII
 POPF ;restore flags
 MOV [BX],AL ;store sum (in BCD)
 DEC SI ;decrement pointers
 DEC DI ;to point to next byte
 DEC BX
 LOOP ADD_LP ;loop through 7 bytes
 MOV AH,09

 35
 MOV DX,OFFSET PROMPT3
 INT 21H ;display result
 MOV AH,4CH
 INT 21H ;go back to DOS
 ;--
 CLEAR PROC
 MOV AH,06 ;clear screen function
 MOV AL,00 ;page 0
 MOV BH,07 ;normal attribute
 MOV CX,0 ;entire screen
 MOV DX,184FH
 INT 10H
 RET
 CLEAR ENDP
 END MAIN

SECTION 4.3: WHAT IS A MACRO AND HOW IS IT USED?

13. MACRO, ENDM

14. name: WORK_HOUR

 body: MOV AL,40 ;WEEKLY HRS
 ADD AL,OVRTME_HR ;TOTAL HRS WORKED

 dummy argument: OVRTME_HR

15. .SALL suppresses listing of the macro body and comments in the list file

 .LALL lists the macro body and comments beginning with a single ';' comments beginning with double ';;' will
 list as a semicolon on a line by itself

 .XALL lists only the macro body with no comments; of course, comments appearing on the same line as an
 instruction will appear

16.
 TITLE PROB4
 PAGE 60,132
 ;----------------------------
 WAGES MACRO SALARY,OVERTIME,BONUSES
 ;FINDING THE TOTAL WAGES
 ;;ADDS SALARY + OVERTIME + BONUSES
 SUB AX,AX ;CLEAR
 MOV DX,AX ;AX AND DX
 ADD AX,SALARY
 ADD AX,OVERTIME
 ADC DX,0 ;TAKE CARE OF CARRY
 ADD AX,BONUSES
 ADC DX,0
 ENDM
 ;----------------------------
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT

 36
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 WAGES 60000,25000,3000
 MOV AH,4CH
 INT 21H ;GO BACK TO DOS
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 The trace shows the following:

 AX = 57C0
 DX = 0001

 37
17. The order of using the operands does not matter:
 ADD AX,OVERTIME
 ADD AX,SALARY

18. The comment beginning with a single colon listed:
 ;FINDING THE TOTAL WAGES

 The comment beginning with a double semicolon listed only as ';'. For example,
 ;;ADDS SALARY + OVERTIME + BONUSES

 will be listed as
 ;

19. The list file follows:

Microsoft (R) Macro Assembler Version 5.10 9/4/92 09:44:2
PROB6 Page 1-1

 TITLE PROB6
 PAGE 60,132
 ;----------------------------
 WAGES MACRO SALARY,OVERTIME,BONUSES
 ;FINDING THE TOTAL WAGES
 ;;ADDS SALARY + OVERTIME + BONUSES
 SUB AX,AX ;CLEAR
 MOV DX,AX ;AX AND DX
 ADD AX,SALARY
 ADD AX,OVERTIME
 ADC DX,0 ;TAKE CARE OF CARRY
 ADD AX,BONUSES
 ADC DX,0
 ENDM
 ;----------------------------
0000 STSEG SEGMENT
0000 0040[DB 64 DUP (?)
??
102B F255]

0040 STSEG ENDS
 ;----------------------------
0000 DTSEG SEGMENT
0000 DTSEG ENDS
 ;----------------------------
0000 CDSEG SEGMENT
0000 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
0000 B8 ---- R MOV AX,DTSEG
0003 8E D8 MOV DS,AX
0005 BB EA60 MOV BX,60000
0008 B9 61A8 MOV CX,25000
000B BE 0BB8 MOV SI,3000
 WAGES BX,CX,SI
000E 2B C0 1 SUB AX,AX ;CLEAR
0010 8B D0 1 MOV DX,AX ;AX AND DX
0012 03 C3 1 ADD AX,BX
0014 03 C1 1 ADD AX,CX
0016 83 D2 00 1 ADC DX,0 ;TAKE CARE OF CARRY
0019 03 C6 1 ADD AX,SI
001B 83 D2 00 1 ADC DX,0
001E B4 4C MOV AH,4CH
0020 CD 21 INT 21H ;GO BACK TO DOS
 MAIN ENDP
0022 CDSEG ENDS

 38
 END MAIN

 39
20. The blanks are filled in as follows:

 SUMMING MACRO COUNT,VALUES
 LOCAL AGAIN
 ;;THIS MACRO ADDS AN ARRAY OF BYTE SIZE ELEMENTS.
 ;;AX WILL HOLD THE TOTAL SUM
 MOV CX,COUNT ;SIZE OF ARRAY
 MOV SI,OFFSET VALUES ;LOAD OFFSET ADDRESS OF ARRAY
 SUB AX,AX ;CLEAR AX
 AGAIN: ADD AL,[SI]
 ADC AH,0 ;ADD BYTES AND TAKES CARE OF CARRIES
 INC SI ;POINT TO NEXT BYTE
 LOOP AGAIN ;CONTINUE UNTIL FINISHED
 ENDM

21. The result in AX for SUMMING is as follows:

 1st invocation: AX = 1A2H SUMMING 5,DATA1
 2nd invocation: AX = 299H SUMMING 8,DATA2
 3rd invocation: AX = 3DEH SUMMING 10,DATA3

22.
 .LALL
 SUMMING 5,DATA1
 MOV SUM1,AX

 The above lines of code list all lines of the macro. The comments beginning with ';;' are not listed but are
 replaced by ';' on a blank line.

 .XALL
 SUMMING 8,DATA2
 MOV SUM2,AX

 The above lines of code cause the comments to be suppressed in the listing, only code generating statements
 are listed.

 .SALL
 SUMMING 10,DATA3
 MOV SUM3,AX

 The above lines of code cause no lines to be listed in the list file.

23. The macro is changed as follows:

 SUMMING MACRO COUNT,VALUES, SUM
 LOCAL AGAIN
 ;;THIS MACRO ADDS AN ARRAY OF BYTE SIZE ELEMENTS.
 ;;AX WILL HOLD THE TOTAL SUM
 MOV CX,COUNT ;SIZE OF ARRAY
 MOV SI,OFFSET VALUES ;LOAD OFFSET ADDRESS OF ARRAY
 SUB AX,AX ;CLEAR AX
 AGAIN: ADD AL,[SI]
 ADC AH,0 ;ADD BYTES AND TAKES CARE OF CARRIES
 INC SI ;POINT TO NEXT BYTE
 LOOP AGAIN ;CONTINUE UNTIL FINISHED
 MOV SUM,AX
 ENDM

 40
The macro invocations are changed as follows:

 .LALL
 SUMMING 5,DATA1,SUM1
 .XALL
 SUMMING 8,DATA2,SUM2
 .SALL
 SUMMING 10,DATA3,SUM3

24. The macro is changed as follows:

 MULTIPLY MACRO VALUE1, VALUE2, RESULT
 LOCAL BACK
 ;THIS MACRO COMPUTES RESULT = VALUE1 X VALUE2
 ;;BY REPEATED ADDITION
 ;;VALUE1 AND VALUE2 ARE WORD OPERANDS; RESULT IS DWORD
 MOV BX,VALUE1 ;BX=MULTIPLIER
 MOV CX,VALUE2 ;CX=MULTIPLICAND
 SUB AX,AX ;CLEAR AX
 MOV DX,AX ;CLEAR DX
 BACK: ADD AX,BX ;ADD BX TO AX
 ADC DX,00 ;ADD CARRIES IF THERE IS ONE
 LOOP BACK ;CONTINUE UNTIL CX=0
 MOV SI,OFFSET RESULT
 MOV [SI],AX ;SAVE THE LOW WORD
 MOV [SI]+2,DX ;SAVE THE HIGH WORD
 ENDM

 The changes in the data segment are as follows:

 RESULT1 DD ?
 RESULT2 DD ?
 RESULT3 DD ?

 41

CHAPTER 5: KEYBOARD AND MOUSE PROGRAMMING
SECTION 5.1: INT 16H KEYBOARD PROGRAMMING

1. INT 16H function AH = 01
2. After return from INT 16H function AH = 01, if ZF = 1 there is no key press; if ZF = 0 then a key has been

pressed. If ZF = 0, then we use INT 16H function AH = 0 to get the ASCII character for the pressed key.

SECTION 5.2: MOUSE PROGRAMMING WITH INT 33H

3.
 TITLE PROBLEM 13:
 ;this program checks the presence of mouse and displays the
 ;number of buttons it supports
 PAGE 60,132
 DISPLAY MACRO STRING
 MOV AH,09H
 MOV DX,OFFSET STRING ;LOAD STRING ADDRESS
 INT 21H
 ENDM

 .MODEL SMALL
 .STACK

 .DATA
 MESSAGE_1 DB 'THERE IS A MOUSE INSTALLED IN THIS PC ','$'
 MESSAGE_2 DB 'AND IT HAS '
 BUTTON DB ?, ' BUTTONS $'
 MESSAGE_3 DB 'THIS PC HAS NO MOUSE','$'
 .CODE
 MAIN PROC
 MOV AX,@DATA
 MOV DS,AX
 MOV AX,0600H ;clear screen
 MOV BH,07
 MOV CX,0
 MOV DX,184FH
 INT 10H
 MOV AX,0 ;initialize mouse
 INT 33H
 CMP AX,0 ;see if there is mouse
 JZ OVER ;no mouse. get out
 DISPLAY MESSAGE_1 ;it got mouse, BX= mouse info
 OR BL,30H ;make it ASCII
 MOV BUTTON,BL ;save the button number
 DISPLAY MESSAGE_2 ;show mouse buttons
 JMP EXIT ;exit to DOS
 OVER: DISPLAY MESSAGE_3 ;
 EXIT: MOV AH,4CH ;go back to DOS
 INT 21H
 MAIN ENDP
 END MAIN

 42

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS

1. (a) 1110 1001 (b) 0000 1100 (c) 1101 1000 (d) 0110 1111
 (e) 1000 0000 (f) 0111 1111 (g) 0000 0001 0110 1101
 (h) 1000 0000 0000 0001

2. (a) OF = 0, result = 03 (b) OF = 1, result = 06
 (c) OF = 0, result = 47H (d) OF = 0, result = 00
 (e) OF = 0, result = 00

3. MOV AL,-122 ;AL = 86
 CBW ;AX = FF86
 MOV AX,-999H ;AX = F667
 CWD ;DX = FFFF
 MOV AL,17H ;AL = 17
 CBW ;AX = 0017
 MOV AL,127 ;AL = 7F
 CBW ;AX = 007F
 MOV AX,-129 ;AX = FF7F
 CWD ;DX = FFFF

4. The changes are highlighted below:
 (1) data name LOWEST was changed to HIGHEST
 (2) after the CMP, the conditional jump was changed to JGE

 TITLE PROB4 ;FIND THE HIGHEST TEMPERATURE
 PAGE 60,132
 ;----------------------------
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 SIGN_DAT DB +13,-10,+19,+14,-18,-9,+12,-9,+16
 ORG 0010H
 HIGHEST DB ?
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV CX,8 ;load counter (number items - 1)
 MOV SI,OFFSET SIGN_DAT ;set up pointer
 MOV AL,[SI] ;AL holds highest value found so far
 BACK: INC SI ;increment pointer

 CMP AL,[SI] ;compare next byte to highest
 JGE SEARCH ;IF AL is higher, continue search
 MOV AL,[SI] ;otherwise save new highest
 SEARCH: LOOP BACK ;loop if not finished
 MOV HIGHEST,AL ;save highest temperature
 MOV AH,4CH
 INT 21H ;go back to DOS

 43
 MAIN ENDP
 CDSEG ENDS
 END MAIN

SECTION 6.2: STRING AND TABLE OPERATIONS

5. STD is used to set the direction flag to one,
 CLD is used to reset the direction flag to zero
 the direction flag determines the direction of repeated string instructions, if DF = 0, the pointers (DI and SI) will
 be automatically incremented; if DF = 1, the pointers will be automatically decremented

6. (a) (b) (e)

7. (a) destination = DI, source = SI
 (b) destination = DI, source = SI
 (c) source = SI, destination = DI
 (d) operand = SI, destination = AL
 (e) operand = DI, source = AX
 (f) operand = AX, destination = DI

8.

 TITLE PROB4 ;FIND THE HIGHEST TEMPERATURE
 PAGE 60,132
 ;----------------------------
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 DATA1 DB 'I pledge allegiance to the flag '
 DB 'of the United States of America,'
 DB 'and to the Republic for which it'
 DB ' stands, one nation under God, indivisible,
 DB 'with liberty and justice for all. '
 DB '***********************!'
 ORG 300H
 DATA2 DW 200 DUP (?)
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG,ES:DTSEG
 MOV AX,DTSEG
 MOV DS,AX ;INITIALIZE THE DATA SEGMENT
 MOV ES,AX ;INITIALIZE THE EXTRA SEGMENT
 CLD ;CLEAR DIRECTION FLAG FOR AUTOINCREMENT
 MOV SI,OFFSET DATA1 ;LOAD THE SOURCE POINTER
 MOV DI,OFFSET DATA2 ;LOAD THE DESTINATION POINTER
 MOV CX,200 ;LOAD THE COUNTER
 REP MOVSW ;REPEAT UNTIL CX BECOMES ZERO
 MOV AH,4CH
 INT 21H ;GO BACK TO DOS
 MAIN ENDP
 CDSEG ENDS

 44
 END MAIN

 45
9.

 TITLE PROB9
 PAGE 60,132
 ;----------------------------
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 ASC_DATA DB '0123456789'
 DB '0123456789'
 DB '0123456789'
 DB '0123456789'
 DB '0123456789'
 ORG 100H
 COPY_DATA DW 50 DUP (?)
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,ES:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV ES,AX
 CLD ;set up DF autoincrement
 MOV SI,OFFSET ASC_DATA ;SI points to ASCII data
 MOV DI,OFFSET COPY_DATA ;DI points to BCD data
 MOV CX,50 ;50 bytes will be processed
 LD_LOOP: LODSB ;load an ASCII byte
 AND AL,0FH ;convert to unpacked BCD
 STOSB ;store unpacked BCD
 LOOP LD_LOOP ;continue looping
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 CDSEG ENDS
 END MAIN

10. REPNE

11.

 TITLE PROB11
 PAGE 60,132
 ;----------------------------
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 DATA_1 DB 'IbM'
 DTSEG ENDS
 ;----------------------------

 46
CDSEG SEGMENT

 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,ES:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV ES,AX ;set up extra segment
 CLD ;set DF = 0 to autoincrement
 MOV DI,OFFSET DATA_1 ;DI points to data to be scanned
 MOV CX,03 ;string length = 3
 MOV AL,'b' ;search for 'b'
 REPNE SCASB ;scan until 'b' is found
 JNE EXIT ;exit if not found
 DEC DI ;if found, point to it
 MOV BYTE PTR [DI],'B' ;replace it with 'B'
 EXIT: MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 12. For the 8086, the total clock count for XLAT is 11, and for the instructions equivalent to XLAT, the total
 clock count is 15.

 XLAT ;clock count = 11
 SUB AH,AH ;clock count = 3
 MOV SI,AX ;clock count = 2
 MOV AL,[BX+SI] ;clock count = 10

13.

 TITLE PROB13
 PAGE 60,132
 ;----------------------------
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 Y_TABLE DB 5,8,13,20,29,40,53,68,85,104
 X_VAL DB 3
 Y_VAL DB ?
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,ES:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV BX,OFFSET Y_TABLE ;point to table
 MOV AL,X_VAL ;retrieve item
 XLAT ;place item in AL
 MOV Y_VAL,AL ;get Y value
 MOV AH,4CH
 INT 21H ;go back to dos
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 47

CHAPTER 7: MODULES AND MODULAR PROGRAMMING

SECTION 7.1: WRITING AND LINKING MODULES

1. The underlined portions below show how the blanks were filled.

 .MODEL SMALL
 .STACK 100H
 .DATA
 PUBLIC DATA1, RESULT
 DATA1 DB 25, 12,34,56,98
 RESULT DW ?
 .CODE
 EXTRN SUM:FAR
 HERE: MOV AX,@DATA
 MOV DS,AX
 CALL SUM
 MOV AH,4CH
 INT 21H
 END HERE

 .MODEL SMALL
 EXTRN DATA1:BYTE
 EXTRN RESULT:WORD
 COUNT EQU 5
 .CODE
 PUBLIC SUM
 SUM PROC FAR
 MOV BX,OFFSET DATA1
 SUB AX,AX
 MOV CX,COUNT
 AGAIN: ADD AL, BYTE PTR [BX]
 ADC AH,0
 INC BX
 LOOP AGAIN
 MOV RESULT,AX
 RET
 SUM ENDP
 END SUM

2. EXTRN

3. PUBLIC

4. NEAR, FAR, PROC

5. BYTE, WORD, DWORD, FWORD, QWORD, TBYTE

6. no options are needed for the PUBLIC directive

7. no options are needed for the PUBLIC directive

 48
8. The changes are underlined below. All procedures are declared EXTRN with type NEAR. MESSAGE is
 declared PUBLIC because module 3 refers to it. The procedures are moved to separate files.

 TITLE PROB8 SIMPLE DISPLAY PROGRAM
 PAGE 60,132
 EXTRN CLEAR:NEAR
 EXTRN CURSOR:NEAR
 EXTRN DISPLAY:NEAR
 PUBLIC MESSAGE
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 MESSAGE DB 'This is a test of the display routine','$'
 DTSEG ENDS
 ;----------------------------
 CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 CALL CLEAR ;CLEAR THE SCREEN
 CALL CURSOR ;SET CURSOR POSITION
 CALL DISPLAY ;DISPLAY MESSAGE
 MOV AH,4CH
 INT 21H ;GO BACK TO DOS
 MAIN ENDP
 CDSEG ENDS
 END MAIN

Each subroutine is placed in a separate file. The procedure name is made PUBLIC and is placed inside a code
segment. The PROC is given type FAR and the ASSUME statement refers CS to the code segment. The END
directive marks the end of the module.

 ;THIS SUBROUTINE CLEARS THE SCREEN
 PUBLIC CLEAR
 CDSEG SEGMENT
 CLEAR PROC
 ASSUME CS:CDSEG
 MOV AX,0600H ;SCROLL SCREEN FUNCTION
 MOV BH,07 ;NORMAL ATTRIBUTE
 MOV CX,0000 ;SCROLL FROM ROW=00,COL=00
 MOV DX,184FH ;TO ROW=18H,COL=4FH
 INT 10H ;INVOKE INTERRUPT TO CLEAR SCREEN
 RET
 CLEAR ENDP
 CDSEG ENDS
 END

 The changes for modules 2 and 3 are similar to those for module 1. Modules 2 and 3 are shown next

 49
;THIS SUBROUTINE SETS THE CURSOR AT THE CENTER OF THE SCREEN

 PUBLIC CURSOR
 CDSEG SEGMENT
 CURSOR PROC
 ASSUME CS:CDSEG
 MOV AH,02 ;SET CURSOR FUNCTION
 MOV BH,00 ;PAGE 00
 MOV DH,12 ;CENTER ROW
 MOV DL,39 ;CENTER COLUMN
 INT 10H ;INVOKE INTERRUPT TO SET CURSOR POSITION
 RET
 CURSOR ENDP
 CDSEG ENDS
 END

 ;THIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
 EXTRN MESSAGE:BYTE
 PUBLIC DISPLAY
 CDSEG SEGMENT
 DISPLAY PROC
 ASSUME CS:CDSEG

 MOV AH,09 ;DISPLAY FUNCTION
 MOV DX,OFFSET MESSAGE ;DX POINTS TO OUTPUT BUFFER
 INT 21H ;INVOKE INTERRUPT TO DISPLAY STRING
 RET
 DISPLAY ENDP
 CDSEG ENDS
 END

SECTION 7.2: SOME VERY USEFUL MODULES

9.

 TITLE PROB9
 PAGE 60,132
 EXTRN ASC2B_CON:FAR
 EXTRN B2ASC_CON:FAR
 PUBLIC TEN
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS
 ;----------------------------
 DTSEG SEGMENT
 TEN DW 10
 MESSAGE1 DB CR,LF,'Enter a three digit number','$'
 ORG 20H
 NUMBER1 DB 4,?,4 DUP (0)
 NUMBER2 DB 4,?,4 DUP (0)
 ORG 30H
 MESSAGE2 DB CR,LF,'The average is '
 ASC_AVG DB 5 DUP (20H),'$'
 DTSEG ENDS
 CR EQU 0DH ;EQUATE CR WITH ASCII CODE FOR CARRIAGE RETURN
 LF EQU 0AH ;EQUATE LF WITH ASCII CODE FOR LINE FEED

 50
 ;----------------------------

CDSEG SEGMENT
 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV AX,0600H ;clear the screen
 MOV BH,07
 MOV CX,0000
 MOV DX,184FH
 INT 10H
 MOV AH,09 ;prompt for the first number
 MOV DX,OFFSET MESSAGE1
 INT 21H
 MOV AH,0AH ;get the first number
 MOV DX,OFFSET NUMBER1
 INT 21H
 MOV AH,09 ;prompt for the second number
 MOV DX,OFFSET MESSAGE1
 INT 21H
 MOV AH,0AH ;get the second number
 MOV DX,OFFSET NUMBER2
 INT 21H
 ;SI and BX must be set up for ASC2B_CON
 MOV SI,OFFSET NUMBER1 + 2 ;SI points to beginning of ASCII string
 SUB BH,BH ;BX = string length - 1
 MOV BL,BYTE PTR [SI-1]
 DEC BX
 CALL ASC2B_CON ;convert number 1 to hex
 MOV CX,AX ;save number1 in CX
 MOV SI,OFFSET NUMBER2 + 2 ;SI points to beginning of ASCII string
 SUB BH,BH ;BX = string length - 1
 MOV BL,BYTE PTR [SI-1]
 DEC BX
 CALL ASC2B_CON ;convert number 2 to hex
 ADD AX,CX ;add the numbers
 SHR AX,1 ;divide by 2
 MOV SI,OFFSET ASC_AVG ;SI points to
 CALL B2ASC_CON ;convert AX to ASCII
 MOV AH,09 ;display average
 MOV DX,OFFSET MESSAGE2
 INT 21H
 MOV AH,4CH
 INT 21H ;go back to DOS
 MAIN ENDP
 CDSEG ENDS
 END MAIN

 TITLE B2ASC BINARY TO DECIMAL CONVERSION MODULE
 PAGE 60,132
 ;this module converts a binary (hex) number up to FFFFH to decimal
 ; then makes it displayable (ASCII)
 ;CALLING PROGRAM SETS
 ; AX = BINARY VALUE TO BE CONVERTED TO ASCII
 ; SI = OFFSET ADDRESS WHERE ASCII VALUE TO BE STORED
 PUBLIC B2ASC_CON

 51

 52
CDSEG SEGMENT PARA PUBLIC 'CODE'

 B2ASC_CON PROC FAR
 ASSUME CS:CDSEG
 PUSHF ;STORE REGS CHANGED BY THIS MODULE
 PUSH BX
 PUSH DX
 MOV BX,10 ;BX=10 THE DIVISOR
 ADD SI,4 ;SI POINTS TO LAST ASCII DIGIT
 B2A_LOOP: SUB DX,DX ;DX MUST BE 0 IN WORD DIVISION
 DIV BX ;DIVIDE HEX NUMBER BY 10 (BX=10)
 OR DL,30H ;TAG '3' TO REMAINDER TO MAKE IT ASCII
 MOV [SI],DL ;MOVE THE ASCII DIGIT
 DEC SI ;DECREMENT POINTER
 CMP AX,0 ;CONTINUE LOOPING WHILE AX 0
 JA B2A_LOOP
 POP DX ;RESTORE REGISTERS
 POP BX
 POPF
 RET
 B2ASC_CON ENDP
 CDSEG ENDS
 END

 TITLE ASC2B ASCII TO BINARY CONVERSION MODULE
 PAGE 60,132
 ;this module converts any ASCII number between 0 to 65535 to binary
 ;CALLING PROGRAM SETS SI = OFFSET OF ASCII STRING
 ; BX = STRING LENGTH - 1 (USED AS INDEX INTO ASCII NUMBER)
 ;THIS MODULE SETS AX = BINARY NUMBER
 ;-------------------------
 EXTRN TEN:WORD
 PUBLIC ASC2B_CON
 CDSEG SEGMENT PARA PUBLIC 'CODE'
 ASC2B_CON PROC FAR
 ASSUME CS:CDSEG
 PUSHF ;STORE REGS CHANGED IN THIS MODULE
 PUSH DI
 PUSH CX
 SUB DI,DI ;CLEAR DI FOR THE BINARY(HEX) RESULT
 MOV CX,1 ;CX = WEIGHT FACTOR
 A2B_LOOP: MOV AL,[SI+BX] ;GET THE ASCII DIGIT
 AND AL,0FH ;STRIP OFF '3'
 SUB AH,AH ;CLEAR AH FOR WORD MULTIPLICATION
 MUL CX ;MULTIPLY BY THE WEIGHT
 ADD DI,AX ;ADD IT TO BINARY (HEX) RESULT
 MOV AX,CX ;MULTIPLY THE WEIGHT FACTOR
 MUL TEN ; BY TEN
 MOV CX,AX ; FOR NEXT ITERATION
 DEC BX ;DECREMENT DIGIT POINTER
 JNS A2B_LOOP ;JUMP IF OFFSET 0
 MOV AX,DI ;STORE BINARY NUMBER IN AX
 POP CX ;RESTORE FLAGS
 POP DI
 POPF
 RET
 ASC2B_CON ENDP
 CDSEG ENDS
 END

 53

10. The program follows:

 TITLE PROB10
 PAGE 60,132
 EXTRN SUBPROG1:FAR
 EXTRN SUBPROG2:FAR
 PUBLIC PRODUCT
 PUBLIC QUOTIENT
 ;----------------------------
 STSEG SEGMENT PARA STACK 'STACK'
 DB 100 DUP(?)
 STSEG ENDS
 DTSEG SEGMENT PARA 'DATA'
 VALUE1 DW 1228
 VALUE2 DW 52400
 PRODUCT DW 2 DUP (?)
 QUOTIENT DW (?)
 REMAINDER DW (?)
 DTSEG ENDS
 CODSG_A SEGMENT PARA 'CODE'
 MAIN PROC FAR
 ASSUME CS:CODSG_A,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 PUSH VALUE1
 PUSH VALUE2
 CALL SUBPROG1 ;CALL SUBPROG TO MUL VALUE1 * VALUE2
 PUSH VALUE1
 PUSH VALUE2
 CALL SUBPROG2 ;CALL SUBPROG TO DIV VALUE2 / VALUE1
 MOV AH,4CH
 INT 21H ;GO BACK TO DOS
 MAIN ENDP
 CODSG_A ENDS
 END MAIN

 ;THIS PROGRAM MULTIPLIES TWO EXTERNALLY DEFINED WORDS
 ;AND STORES THE PRODUCT IN AN EXTERNALLY DEFINED DWORD

 TITLE SUBPROG1 PROGRAM TO MULTIPLY TWO WORDS
 PAGE 60,132
 EXTRN PRODUCT:WORD
 PUBLIC SUBPROG1
 CODSG_C SEGMENT PARA 'CODE'
 SUBPROG1 PROC FAR
 ASSUME CS:CODSG_C
 PUSH BP ;save SP
 MOV BP,SP ;set up BP to access stack
 MOV AX,[BP]+8 ;get VALUE1
 MOV CX,[BP]+6 ;get VALUE2
 SUB BX,BX ;initialize carry count
 MUL CX ;mul value1 * value2
 MOV PRODUCT,AX ;store product
 MOV PRODUCT+2,DX ;store upper word or product
 POP BP ;restore BP
 RET 4
 SUBPROG1 ENDP

 54
 CODSG_C ENDS
 END

 ;THIS PROGRAM DIVIDES TWO EXTERNALLY DEFINED WORDS
 ;AND STORES THE QUOTIENT IN AN EXTERNALLY DEFINED WORD
 TITLE SUBPROG2 PROGRAM TO ADD TWO WORDS
 PAGE 60,132
 EXTRN QUOTIENT:WORD
 EXTRN REMAINDER:WORD
 PUBLIC SUBPROG2
 CODSG_B SEGMENT PARA 'CODE'
 SUBPROG2 PROC FAR
 ASSUME CS:CODSG_B
 PUSH BP ;save BP
 MOV BP,SP ;set up BP to access stack
 MOV AX,[BP]+6 ;move VALUE2 to AX
 MOV BX,[BP]+8 ;move VALUE1 to BX
 SUB DX,DX ;INITIALIZE REM
 DIV BX ;divide VALUE2/VALUE1
 MOV QUOTIENT,AX ;store quotient
 MOV REMAINDER,DX ;store remainder
 POP BP ;restore BP
 RET 4
 SUBPROG2 ENDP
 CODSG_B ENDS
 END

 55

CHAPTER 8: 32-BIT PROGRAMMING FOR x86

SECTION 8.1: 32-BIT PROGRAMMING IN x86

1. (a) AL = B6 AH = F4 AX = F4B6 EAX = 9823F4B6
 (b) BL = C2 BH = 85 BX = 85C2 EBX =000985C2
 (c) DL = 80 DH = 84 DX = 8480 EDX =001E8480
 (d) SI = 0000 ESI = 00120000

2. (a) EAX = 02CEFF93
 (b) EBX = 00124F80
 (c) EDX = 024B76A0
 (d) EAX = 09090804
 (e) EBX = 0F90EC52

3. (a) (b)
 DS:2000 = 56 DS:348C = 91
 DS:2001 = F4 DS:348D = 34
 DS:2002 = 23 DS:348E = F2
 DS:2003 = 98 DS:348F = 01

 (c) register EBX = 4CA26D92H

 56

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

SECTION 9.1: 8088 MICROPROCESSOR

1. The 8088 has only pins AD0 - AD7, whereas the 8086 has AD0 - AD15. Furthermore, only the 8086 has the BHE

pin. They are not interchangeable.
2. output
3. 220 = 1,048,576 bytes, since the 8088 has only 20 bits for address pins
4. input
5. output for address, and both input and output for data
6 maximum
7. true
8. all of them
9. It uses less pins and consequently has a smaller package.
10. one extra clock for every data byte access
11. in the first T state
12. Due to the fact that it has a 16-bit external data bus, it requires more wire strips on the printed circuit board.
13. to low (ground)
14. IP=0000 and CS=FFFFH
15. b
16. c
17. a

SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS

18. 8288
19. all except RESET and NMI
20. b
21. c
22. a

SECTION 9.3: 8-BIT SECTION OF ISA BUS

23. 8088
24. 3
25. the 8088; When AEN=1, DMA is in control of all the buses on the system board.
26. (a) 74LS245 (b) 74LS244
27. d

 57
28. The following is the diagram.

29. low
30. DIR = 1 and G = 0
31. DIR = 0 and G = 0
32. the Hi-Z (impedance) bus state, since the 74LS245 is not activated and therefore no transfer of data happens for

either direction
33. data
34. G = 1 and OE = 0; The data is latched when G goes from high to low.

SECTION 9.4: 80286 MICROPROCESSOR

35. true
36. No, this person is wrong. The 80286 is a byte-addressable processor, meaning that each address location holds

one byte of data and not two bytes. Therefore, we have 224 × 1 = 16,777,216 = 16 megabytes.
37. both high and low bytes: D0 - D7 and D8 - D15
38. even
39. true
40. False, only the 1M.
41. real
42. CS = F000H, IP = FFF0H and all the rest are 0000.
43. FFFFF0H
44. Since CS = F000H and IP = FFF0, we have A19 - A0=FFFF0H; A23 -A20 = 1111. That makes the physical

address FFFFF0H for the first memory location upon activation of the RESET pin in the 80286.

 58

 59

SECTION 9.5: 16-BIT ISA BUS 246

45. 62-pin and 36-pin parts. The A side and the B side each have 31 pins (for a total of 62 pins). The C and D side

each have 18 pins (for a total of 36 pins). The A side of the 62-pin and C side of the 36-pin are the component
side on the expansion card.

46. the 36-pin part
47. the 36-pin part
48. to make it PC/XT compatible
49. 36-pin since it is part of the 80286 CPU
50. The physical address is FC480H + 7652H = 103AD2H. In the case of the 8088 and 8086, the wrap-around makes

A19 - A0 = 03AD2H, meaning that the 1 is dropped, but for the 286 and later processors A20 =1.
51. 80286
52. MEMW and MEMR on the 36-pin part
53. true
54. true

 60

CHAPTER 10: MEMORY AND MEMORY INTERFACING

SECTION 10.1: SEMICONDUCTOR MEMORIES
1. For memory it is 4 megabits, and for the computer it is 4 megabytes.
2. true
3. true
4. false, not necessarily
5. true
6. access time
7. true
8. It need not be removed from the system board to be erased and reprogrammed.
9. true
10. DRAM
11. SRAM
12. all of them, except UV-EPROM and NV-RAM
13. c
14. c
15. (a) 32Kx8, 256K (b) 8Kx8, 64K
 (c) 4Kx8, 32K (d) 8Kx8, 64K
 (e) 4Mx1, 4M (f) 8Kx8, 64K
 (g) 4Kx8, 32K (h) 2Kx8, 16K
 (i) 256Kx4, 1M (j) 64Kx8, 512K

16. (a) 128K, A0 - A13, D0 - D7 (b) 256K, A0 - A14, D0 - D7
 (c) 512K, A0 - A15, D0- D7 (d) 1M, A0 - A8, D0 - D3 plus RAS and CAS
 (e) 512K, A0-A15, D0-D7 (f) 256K, A0 - A7, D0 - D3 plus RAS and CAS
 (g) 4M, A0-A9, D0 - D3 plus RAS and CAS
 (h) 16M, A0 - A10, D0 - D3 plus RAS and CAS
 (i) 512K, A0 - A7, D0 - D7 plus RAS and CAS

SECTION 10.2: MEMORY ADDRESS DECODING

17. 98000H - 9FFFFH
18. The diagram follows.

19. for Y0 = F0000H - F1FFFH, Y3 = F6000H - F7FFFH, Y6 = FC000H - FDFFFH
20. The diagram follows. Each Y controls a 16K block.

 61

 62
21. Y3 = 0C000 - 0FFFF, Y6 = 18000 - 1BFFF, Y7 = 1C000 - 1FFFF.
22. The diagram follows. Each Y controls a 2K block.

23. Y1 = 80800 - 80FFF, Y4 = 82000 - 827FF, Y5 = 82800 - 82FFF.
24. low RD is also active low.
25. CPLD

SECTION 10.3: IBM PC MEMORY MAP

26. 00000 - 9FFFFH, a total of 640K bytes for RAM; A0000H - BFFFFH, a total of 128K bytes for video RAM;

C0000H - FFFFFH, a total of 256K bytes for ROM
27. from 00000 - 9FFFFH, a total of 640K bytes
28. No, DOS uses only the lowest 640K bytes. Furthermore, the addresses beyond 9FFFFH belong to video RAM;

therefore, if we use them there will be a conflict with video.
29. CS = FFFFH IP = 0000
30. No. The address range 00000 - 9FFFFH is strictly managed by DOS. DOS uses whatever K bytes it needs and

uses the rest for applications software. To use that area results in fragmentation of the 640K memory space and
can result in a system crash.

31. From F000:FFF5 to F000:FFFD is the logical address and FFFF5 to FFFFD is the physical address.
32. Subtracting C0000 from C7FFF gives 7FFFH, but since the 0 is the first address location it will be 8000H bytes.

Converting that to decimal and dividing by 1024 gives 32K bytes in ROM allocated space.
33. B0FFFH
34. BBFFFH
35. When the 8088 is powered up, the FFFF0H is the first physical location that the CPU fetches the op code from.

Therefore the ROM (non-volatile) memory must be mapped at those addresses and not 00000. Furthermore, the
00000 belongs to the interrupt vector table.

36. FFFF0H; the opcode is EAH, the opcode for FAR JMP

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM

37. 34H+54H+7FH+11H+E6H+99H=297H. The 2 is dropped and then the 2's complement of 97H=69H. Therefore

the checksum byte is 69H.
38. (a) 29H + 1CH + 16H + 38H + 6DH =00, dropping the carries from the upper nibble. Therefore, the data is not

corrupted.
 (b) 29H +1CH + 16H + 30H + 6DH = F8H, which is not zero. Therefore, some bytes are corrupted.
39. ROM, RAM
40. true
41. 320K bytes is broken down to 256K and 64K bytes blocks. It means that we need 9 of the 64Kx1 and 9 of the

256Kx1 memory chips, a total of 18 chips.
42. That gives two 256Kx4 and one 256Kx1 chip for the 256KB block, and two 64Kx4 and one 64kx1 chip for the

64KB block, for a total of 6 memory chips.

 63
43. A higher density chip means a lower parts count, which leads to a smaller printed circuit board. Also, a lower
 number of parts leads to a lower number of system defects.
44. true
45. true
46. even = 1 and odd = 0
47. even = 0 and odd = 1
48. even = 1 and odd = 0

SECTION 10.5: 16-BIT MEMORY INTERFACING

49. 80286
50. 2 of each, a total of 8 chips
51. A0=1 and BHE=0
52. A0=0 and BHE=0
53. A0=0 and BHE=1
54. A0=1 and BHE=0
55. increases driving capability of the data pins
56. megabytes per second
57. the data bus width and bus cycle time
58. true
59. false
60. (a) 200 ns (2 × 100 ns) memory cycle gives (1/200 ns) × 2 bytes =10 megabytes/s
 (b) 125 ns (2 × 62.5 ns) memory cycle gives (1/125 ns) × 2 bytes = 16 megabytes/s

 64

CHAPTER 11: 8255 I/O PROGRAMMING

SECTION 11.1: 8088 INPUT/OUTPUT INSTRUCTIONS

1. true
2. a
3. c, since it can go as high as 16 bits
4. true
5. The contents of port address 5FH are fetched into the CPU's AL register.
6. The contents of register AL are transferred to port addresses pointed at by DX, meaning that AL = 3BH goes to
 port address 300H.

SECTION 11.2: I/O ADDRESS DECODING AND DESIGN

7. IOW

8. IOR
9. false
10. true

11. false, by the use of IOW or IOR
12. true
13. tri-state buffer
14. latch

15. IOR

16. IOW
17. The diagram follows.

 65
18. The diagram follows.

19. The diagram follows.

 66
20. The diagram follows.

21. true
22. true
23. The physical address is B8000H + 0100H = B8100H; therefore, we have the following circuit.

 67

 68
24. because decoding the entire 20-bit address requires many more inputs for the decoding circuitry and therefore

is more expensive.

SECTION 11.3: I/O ADDRESS MAP OF x86 PCs

25. The diagram for (a) follows.

 The diagram for (b) follows.

 69
26. The diagram follows.

27. The diagram follows.

 70

 71
28. The diagram follows.

29. The port address space 300H - 31FH is set aside for prototype. It provides space for a total of 32 ports.
30. the linear select
31. Most often each port (or even memory) can be accessed by a single unique address. However, in address

decoding, multiple addresses are assigned to a single port if some address lines are not used in the decoding
circuitry. In this case, all the aliases refer to the same device just like a person with several names (aliases).

32. the linear select
33. true
34. The ports are programmed by the CPU. Therefore, we must use AEN = 0 to access them.
35. 61H
36. D4, 61H, 15.085 us
37. 0.25 sec/15.085 us = 16,572
38. 38,000 x 15.085 us = 573,230 us

SECTION 11.4: PROGRAMMING AND INTERFACING THE 8255

39. a total of 24 pins, 8 pins for each of PA0 - PA7, PB0 - PB7, and PC0 - PC7.
40. To transfer the control word to 8255 and data between the CPU and various ports of A, B, and C.
41. While 74LS373 and 74LS244 are fixed and static, the 8255 is programmable and therefore dynamic.
42. true
43. false, either all as input or all as output

 72
44. The diagram follows.

45. None can be assigned since we must have A0 = 0 and A1 = 0 to access port A.
46. PA = IN, PB = OUT, PC0 - PC3 = IN and PC4 - PC7 = OUT
47. 92H
48. simple I/O mode
49. This means that the ports must be set as PA = in, PB = out, and PC = out. Therefore, we have
 BA8255 EQU 68H ;THE BASE ADDRESS OF 8255
 MOV AL,10010000B ;PA=in,PB=out, AND PC=out
 OUT BA8255+3,AL ;TO CONTROL REG
 BACK: IN AL,BA8255 ;GET DATA FROM PORT A
 CMP AL,100 ;IS IT 100?
 JNE BACK ;KEEP MONITORING
 MOV BL,AL ;IF 100 THEN SAVE IT
 MOV AL,0AAH ;AND SEND AAH
 OUT BA8255+1,AL ;TO PB
 NOT AL ;MAKE AL=55H
 OUT BA8255+2,AL ;AND SEND IT TO PC

50.
 MOV AL,90H ;PA=IN
 MOV DX,CRPORT
 OUT DX,AL
 MOV DX,PORTA
 IN AL,DX
 MOV BL,10
 SUB AH,AH
 DIV BL
 MOV CL,AH
 SUB AH,AH
 DIV BL
 OR AX,3030H
 OR CL,30H

 73

CHAPTER 12: INTERFACING TO LCD, MOTOR, ADC, AND SENSOR

SECTION 12.1: INTERFACING TO AN LCD

1. 8
2. RS allows us to make a distinction between the data to be displayed and command codes. R/W allows us to read

from internal registers of an LCD or write to an LCD. E is used to latch data (or command code) into an LCD.
3. VCC powers the LCD while VEE provides power for the contrast.
4. command code and it value is 01
5. 0E hex
6. RS=0, R/W=0 and a High-to-Low pulse for E
7. We put ASCII code for Z (59H) on the D0 - D7 data bus, then we make RS=1, R/W=0 and a High-to-Low pulse

for E
8. (a)
9. True
10. (1) In the checking the busy flag method, we send in information (command code or data) only when the LCD is

ready to accept it. In this way, no data gets lost. However, extra software is needed to monitor the busy flag. In
addition, the data port must be a bidirectional port since the busy flag (BF) is D7 of the data pin.
(2) In the second method, we put a sufficient delay in between each sending of code (or data) to the LCD. This
delay makes sure that the LCD is not overwhelmed with a string of data. However, we must make sure that the
delay is long enough before the next character is sent in. Otherwise, data is lost. In some cases the LCD will go
blank if the delay is too short. The main advantage of this method is that it does not require a bidirectional data
port; therefore, it is ideal for the unidirectional printer ports. It also requires less software. Now since the busy
flag is D7 of the data bus of the LCD, to read the busy flag we must have RS=1, R/W=1, E=1. That means that
we must change the direction of our port connected to D0 - D7 of the LCD to input. Then we read D0 - D7 and
mask D0 -D6 of it. Now if D7 = 1, LCD is not ready. If D7 = 0, it is ready to accept new information.

11. In the 16x2 LCD, we have 16 (0 to 15) characters for each line with an address range of 0000 to 1111 (1111 in

binary, 15 in decimal). Therefore, from Table 12-3 we have 1000000 (80H) for line 1's first character and
10001111 (8FH) as the last character of line 1.

12. In the 16x2 LCD, we have 16 (0 to 15) characters for each line with an address range of 0000 to 1111 (15 in

decimal). Therefore, from Table 12-3 we have 1100000 (C0H) for line 2's first character and 11001111 (CFH)
as the last character of line 2.

13. In the 20x2 LCD, we have 20 (0 to 19) characters for each line with an address range of 00000 to 10011 in

binary (19 in decimal). Therefore, from Table 12-3 we have 1000000 (80H) for line 1's first character and
10010011 (93H) as the last character of line 1.

14. In the 20x2 LCD, we have 20 (0 to 19) characters for each line with an address range of 00000 to 10011 (19 in

decimal). Therefore, from Table 12-3 we have 1100000 (C0H) for line 2's first character and 11010011 (D3H)
as the last character of line 2. Therefore, the third character has an address of C2 since C0, C1 are for the first
and the second characters, respectively.

15. In the 40x2 LCD, we have 40 (0 to 39) characters for each line with an address range of 000000 to 100111 in

binary (39 in decimal). Therefore, from Table 12-3 we have 1000000 (80H) for line 1's first character and
10100111 (A7H) as the last character of line 1.

16. In the 40x2 LCD, we have 40 (0 to 39) characters for each line with an address range of 0000 to 100111 in

binary (39 in decimal). Therefore from Table 12-3 we have 1100000 (C0H) for line 2's first character and
11100111 (E7H) as the last character of line 2.

17. It is 10001001 (89H) because if the first character's address is 10000000 (80H), the tenth (1001) one is

10001001 (89H).

 74
18. If we have 1100000 (C0H) for line 2's first character, the twentieth character (10011 in binary or 19 in

decimal) is 11010011 (D3H).

19. The following is the comparison of the old version
 and the new version:

 OLD NEW
 PUSH DX PUSH DX
 MOV DX,PORTA MOV DX,PORTA
 OUT DX,AL OUT DX,AL
 MOV DX,PORTB MOV DX,PORTC
 MOV AL,00000100B MOV AL,01000000B
 OUT DX,AL OUT DX,AL
 NOP NOP
 NOP NOP
 NOP NOP
 NOP NOP
 MOV AL,00000000B MOV AL,00000000B
 OUT DX,AL MOV DX,AL
 POP DX POP DX
 RET RET

20.
 OLD NEW
 PUSH DX PUSH DX
 MOV DX,PORTA MOV DX,PORTA
 OUT DX,AL OUT DX,AL
 MOV DX,PORTB MOV DX,PORTC
 MOV AL,00000101B MOV AL,01010000B
 OUT DX,AL OUT DX,AL
 NOP NOP
 NOP NOP
 NOP NOP
 NOP NOP
 MOV AL,00000001B MOV AL,00010000B
 OUT DX,AL MOV DX,AL
 POP DX POP DX
 RET RET

 .DATA
MYDATA DB "HELLO"
 .CODE
 ...
 ...
 MOV CX,05 ;display this number of bytes
 MOV SI,OFFSET MYDATA ;load data address
 CALL LCD_DISPLAY
 ...
 ...
LCD_DISPLAY:
NEXT: MOV AL,[SI] ;get the char
 CALL NDATWRIT ;issue it to LCD
 INC SI ;point to next char
 CALL DELAY ;wait
 LOOP NEXT ;now the next one until all is finished
 RET
NDATWRIT:

 75
 PUSH DX
 MOV DX,PORTA
 OUT DX,AL
 MOV DX,PORTC
 MOV AL,01010000B
 OUT DX,AL
 NOP
 NOP
 NOP
 NOP
 MOV AL,00010000B
 MOV DX,AL
 POP DX
 RET

SECTION 12.2: INTERFACING TO A STEPPER MOTOR

21. 4, since 360/90=4
22. 360/7.5=48
23. 0011,1001,1100,0110
24. 1100,0110,0011,1001
25. 1001,0011,0110,1100
26. 0110,1100,1001,0011
27. Since the 8255's Port A does not provide sufficient current to drive the stepper motor, we need a driver. The

ULN2003 Darlington pair is one such driver, providing a maximum of 600 mA. Therefore,it cannot be used for
a 3 amp motor.

28. (b)
29. First, it allows the EM field to collapse before it is activated again. This is the absolute minimum delay needed

before the next sequence is issued. Second, we can control the speed of rotation with the time delay.
30. The shorter the time delay in between the sequence, the faster the motor speed. However, there is a need for a

minimum delay to allow the EM field to collapse before it is activated again by the next sequence.

SECTION 12.3: INTERFACING TO A DAC

31. True, yes
32. It is 2n
 (a) 256 (b) 1024 (c) 4096
33. If all the inputs are high, we have:
 2 mA (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256) = 2mA x 255/256 = 1.99 mA
34. (a) 10011001 = 2 mA (1/2 + 1/16 + 1/32 + 1/256) = 2 mA x 153/256 = 1.195 mA
 (b) 11001100 = 2 mA (1/2 + 1/4 + 1/32 + 1/64) = 2mA x 204/256 = 1.593 mA
 (c) 11101110 = 2 mA x 238/256 = 1.859 mA
 (d) 00100010 = 2 mA x 34/256 = 0.265 mA
 (e) 00001001 = 2 mA x 9/256 = 0.07 mA
 (f) 10001000 = 2 mA x 136/256 = 1.062 mA
35. more
36. all inputs must be high

SECTION 12.4: INTERFACING TO ADC CHIPS AND SENSORS

37. CS=0 and a Low-to-High pulse for WR
38. CS=0 and WR=1 and H-to-L pulse for RD to read the data out of ADC

 76
39. The converted data is kept inside ADC848 momentarily. In other words, after the input analog data is

converted, it is kept inside and it activates the INTR (makes it low) to let us know that the data is converted and
ready to be picked up.

40. it is lost
41. output. Through the INTR signal, the ADC848 lets us know analog data is converted and is ready to be picked

up.
42. (a) 5 mV
 (b) 3.9 mV
 (c) 7.42 mV
43. Vin = 20 mV x 256 = 5.12 V; therefore, Vref = 5.12 V
 (you cannot do this since it is more than Vcc)
44. Vin = 5 mV x 256 = 1.28 V; therefore, Vref = 1.28 V
45. Provide the channel address to the D0 - D7 pins, set CS = 0, and apply an L-to-H pulse to the WR pin.
46. 255 x 19.53 mV = 4.999 V
47. Since the step size is 1.28 V / 256 = 5 mV, we have
 (a) 11111111 = 255 and 255 x 5 mV = 1.27 V
 (b) 10011001 = 153 and 153 x 5 mV = 765 mV
 (c) 11001100 = 204 and 204 x 5 mV = 1.02 V

48. The output changes proportionally with the input in a straight line fashion (in contrast with non-linear, in which

the change follows a curve).
49. 10 mV
50. Physical quantities such as temperature, pressure, light, and moisture need to be represented in voltage in order

to be sampled by an analog-to-digital converter (ADC). It is the job of transducers to sense the physical
quantity; however, their output could be in the form of current, resistor, or capacitance. Even if the output is in
the form of voltage, it often needs amplification, which is the job of signal conditioning. Therefore, signal
conditioning is the process of converting the output of transducers to voltage forms of sufficient magnitude in
order to be sampled by A-to-D converters. There exists the following stages between physical quantities and the
PC:

 Physical QuantitiesTransducerSignal ConditioningADCPC

 77

CHAPTER 13: 8253/54 TIMER

SECTION 13.1: 8253/54 TIMER

1. true
2. input, square wave
3. The base port address is 2CH. The port addresses are 2CH: counter 0;2DH: counter 1; 2EH:counter 2; and 2FH:

control register. The design is as follows:

4. 23H, 97H, 51H, and 59H since counter 0 must have A0 = 0 and A1 = 0
5. In binary mode, the highest value is 65,536 and programmed as 0000. In BCD mode, it is 10,000 and

programmed as 0000.
6. true
7. 76H
8.
 MOV AL,76H ;countr1,mode 3,binary,lo byte,and hi byte
 OUT 2FH,AL
 MOV AX,1333 ;divisor=1.6M/1200=1333
 OUT 2DH,AL ;the low byte first
 MOV AL,AH
 OUT 2DH,AL ;then the high byte
9.
 MOV AL,76H ;countr1,mode 3,binary,lo byte,and hi byte
 OUT 2FH,AL
 MOV AX,6400 ;divisor=1.6M/250=6400
 OUT 2DH,AL ;the low byte first
 MOV AL,AH
 OUT 2DH,AL ;then the high byte
10. In the binary option, the maximum divisor is 65,536; therefore, we have 1.6 MHz /65536 = 24 Hz. For the BCD,

option we have 160 Hz since 1.6 MHz /10000 =160 Hz.

SECTION 13.2: x86 PC 8253/54 TIMER CONNECTION AND PROGRAMMING

11. CLK0, CLK1, and CLK2 are connected to a fixed frequency of 1.19 MHz.
12. The source of the square wave is the 8284's PCK which is 2.38 MHz. After it is divided by 2 using a simple
 D-FF, 1.19 MHz is fed to all CLKs inputs.
13. 40H - 43H. No, they cannot be changed. If a given clone does not use these port addresses, it is not compatible

with the IBM PC.

 78
14. Counter0 is used by IRQ0 to cause the interrupt 18.2 times per second. Counter1 is used for the DRAM

memory refreshing circuitry. Counter2 is connected to the PC speaker.
15. true
16. GATE0 and GATE1 are connected to VCC permanently. GATE2 is controlled by D0 of port address 61H.
17. This is due to the fact that such a time delay is not fixed and can vary depending on the speed of the 80x86

processor in different PCs, plus the fact that the clock count of a given instruction varies among the 80x86
family.

18.
 MOV BL,20 ;20 X 0.5SEC=10SEC
 AGAIN: MOV CX,33144 ;0.5SEC DELAY
 CALL WAITF
 DEC BL
 JNZ AGAIN
 ;for the WAITF subroutine see the text.

SECTION 13.3: GENERATING MUSIC ON THE x86 PC

19. A3 frequency is 220 Hz; therefore, 5423 is the divisor since 1.1931 MHz/5423 = 220 Hz. By the same token, we

have a divisor of 1522 for G5 and 604 for B6.
20.
 PAGE 60,132
 ;THIS PROGRAM USES THE BUILT-IN TIMER CLOCK #2 TO PLAY A SONG
 ;OVER THE INTERNAL SPEAKER
 ;**
 MYSTAK SEGMENT
 DB 32 DUP(?)
 MYSTAK ENDS
 ;**
 MYDATA SEGMENT
 FREQS DW 330,1,294,1,262,1,294,1,330,1,330,1
 DW 330,2,294,1,294,1,294,2,330,1,392,1
 DW 392,2,330,1,294,1,262,1,294,1,330,1
 DW 330,1,330,1,330,1,294,1,294,1,330,1
 DW 294,1,262,4
 MYDATA ENDS
 ;**
 MYCODE SEGMENT
 MAIN PROC FAR
 ASSUME CS:MYCODE, DS:MYDATA, SS:MYSTAK
 MOV AX,MYDATA
 MOV DS,AX
 MOV AL,0B6H ;program timer clock 2
 OUT 43H,AL
 LEA DI,FREQS ;pointer to notes & counts
 HERE: MOV AX,34DEH ;1.193182 MHz = 001234DEH
 MOV DX,0012H ;clock freq is loaded in numerator
 MOV BX,[DI] ;denominator
 CMP BX,0000H ;check for end of song
 JE THU ;if end of song, back to DOS
 DIV BX ;calculate divide #
 OUT 42H,AL
 MOV AL,AH ;high byte divider
 OUT 42H,AL
 IN AL,61H ;save speaker status
 MOV AH,AL
 OR AL,03 ;turn speaker on

 79
 OUT 61H,AL
 INC DI
 INC DI
 MOV BX,[DI] ;set note delay
 CALL DELAY ;note delay
 INC DI
 INC DI
 MOV AL,AH ;restore speaker status
 OUT 61H,AL ;and turn speaker off
 CALL DELAY2
 JMP HERE ;get next note
 THU: MOV AH,4CH ;end of song return to DOS
 INT 21H
 MAIN ENDP ;end main procedure
 ;***
 DELAY PROC
 PUSH AX ;save AX
 AGAIN1: MOV CX,16578 ;16578 * 15.08us = 250ms
 AGAIN: IN AL,61H ;run 15.08 us delay
 AND AL,10H
 CMP AL,AH
 JE AGAIN
 MOV AH,AL
 LOOP AGAIN ;end of 250 ms
 DEC BL ;decrement note count
 JNZ AGAIN1 ;more time if note is longer
 POP AX ;restore AX
 RET
 DELAY ENDP
 ;***
 DELAY2 PROC
 MOV CX,1328 ;1328 * 15.08 us = 20 ms
 REPEAT: IN AL,61H
 AND AL,10H
 CMP AL,AH
 JE REPEAT
 MOV AH,AL
 LOOP REPEAT ;end of 20ms
 RET
 DELAY2 ENDP
;***
 MYCODE ENDS
 END MAIN

 80

CHAPTER 14: INTERRUPTS IN x86 PC

SECTION 14.1: 8088/86 INTERRUPTS

1. Yes. It finishes the current instruction and saves the address of the next instruction on the stack before it gets the

CS:IP of the interrupt service routine. The stack provides the returning address.
2. (a) For INT 05 we have logical address = 0000:0014H and physical address = 00014H.
 (b) For INT 21H, we have LA = 0000:0084H and PA = 00084H.
3. ISR stands for interrupt service routine, and is the program associated with the INT type. When an interrupt is

invoked, it is asked to run the ISR. Another name for ISR is interrupt handler.
4. the interrupt vector table
5. (a) In the CALL FAR, only 4 bytes of the stack is used, 2 for the IP and 2 for the CS of the next instruction.
 (b) In the interrupt, 6 bytes are used, 2 for the flag register, 2 for IP and 2 for the CS of the next instruction.
6. INT FEH or INT 254
7. The logical address is 0000:0000 to 0000:03FFH and physical address is 00000 to 003FFH.
8. 1024 bytes, since there are 256 interrupts and each interrupt takes 4 bytes.
9. because it is set aside for the interrupt vector table
10. INT 00 for the divide error or quotient oversize
11. (a) INT 00 (b) INT 01 (c) INT 02
12. true
13. false, only the INTR
14.
 PUSHF
 MOV BP,SP
 OR BP+0,0000 0001 0000 0000B ;binary position of TF
 POPF
15. (a) The IF is set to low by instruction CLI.
 (b) It is set to high by instruction STI.
16. true
17. IRET, RETF
18. In RETF, only the 4 bytes are popped from the stack, while IRET pops off 6 bytes FR,CS, and IP.

19. for Interrupt for CALL FAR
 SS:FFDA IP (low)
 SS:FFDB IP (high)
 SS:FFDC CS (low) IP (low)
 SS:FFDD CS (high) IP (high)
 SS:FFDE FR (low) CS (low)
 SS:FFDF FR (high) CS (high)
 SS:FFE0
20. none; the sequence is IP, CS and FR

SECTION 14.2: x86 PC AND INTERRUPT ASSIGNMENT

21. (a) This belongs to INT 07
 (b) F000:FF47H is the logical address and FFF47H is the physical address.
22. BIOS
23. c
24. CS = F000H and IP = FE6EH
25. 0000:0070 = 6EH, 0000:0071 = FEH,0000:0072 = 00H, 0000:0073 =F0H
26. locations 0000:0413H and 0000:0414H

 81

SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER

27. false, A0 = 0
28. All are input, except INT.
29. The port address for ICW1 is 94H while ICW2, ICW3, and ICW4 all have the port address of 95H.
30. 00010110 = 16H for ICW1. The ICW2 is always the INT # assigned to IR0; therefore, the ICW2=88H.

31.
 MOV AL,16H ;no ICW4,SNGL,x86,EDGE TRIG
 OUT 94H,AL
 MOV AL,88H ;INT 88h is assigned to IR0
 OUT 95H,AL ;output the ICW2
32. a, c, d, since the lower nibble must be 8 or 0. The 8259 provides the 3 bit combinations for IR0 - IR7.
33. IR0 will have the INT 18H, and IR7 the INT 1FH.
34. IR0 has 30H, IR4 has INT 34H, and IR6 has INT 36H
35. OCW1
36. OCW2
37. IR0 has the highest priority, and IR7 the lowest priority.
38. OCW1 has the port address of 95H, and OCW2 and OCW3 both have the same port address of 94H.

39.
 MOV AL,11101011 ;OCW1: MASK ALL EXCEPT IR2&IR4
 OUT 95H,AL ;SEND THE OCW1
40. Notice that D4 = 1 in ICW1, while in OCW2 and OCW3, D4 = 0. In OCW2 we have D3 = 0, while in OCW3,

D3 = 1

SECTION 14.4: USE OF THE 8259 CHIP IN x86 PCs

41. because the 8259 must be programmed by the main CPU the 80x86, and not the DMA; this means that AEN = 0

and must be used in the address decoding circuitry to access the 8259 chip.
42. single
43. edge
44. INT 08 to INT 0FH
45. port addresses 20H and 21H
46. true
47. IRQ2 to IRQ7
48. side B
49. 0010 0000 = 20H and is sent to port address 20H for OCW2
50. IRQ0 since BIOS programs the 8259 in the default fully nested mode
51. true
52. true
53. Yes, through D7 of the port address A0H.
54. true

SECTION 14.5: MORE ON INTERRUPTS IN x86 PCs

55. true
56. true
57. The primary (master) has 20H and 21H for the port address. the secondary (slave) has A0H and A1H as port

addresses.
58. INT 70H to 77H
59. IRQ3 to IRQ7; IRQ9, IRQ10, IRQ11, IRQ12, IRQ14, IRQ15

 82
60. The IRQ2 is used for the cascade connection of the 2nd 8259; therefore, it is not available at the expansion

slot. IRQ9 is provided at the pin where IRQ2 used to be in the PC/XT. Internally, BIOS redirects IRQ9 to
IRQ2.

61. (a) The port address where the EOI is issued for the primary 8259 is 20H, and for the secondary 8259 is A0H.
(b) If any of the IRQ0, IRQ1, IRQ3 - IRQ7 is activated, the EOI is issued only to the primary 8259. However, if
any of IRQ8 - IRQ15 from the secondary 8259 are activated not only must the EOI be issued to the secondary,
but also to the primary 8259 since these IRQs come in through IRQ2 of the primary (master) 8259.

62. true
63. false; they have higher priority.
64. true
65. IRQ10 and IRQ6 both come to the CPU through the INTR; therefore, they have lower priority than NMI. It

means that the CPU takes care of the NMI first. Then IRQ10 is serviced, and finally IRQ6 is serviced.
66. IRQ15 is serviced first, then IRQ3, and finally IRQ7. At the end of the interrupt service routine for the IRQ15,

the issuing of the EOI will allow the lower priority IRQs to be responded to; therefore, the IRQ3 is serviced
next. Again, at the end of the ISR for IRQ3, the issuing of the EOI allows the system to service IRQ7.

 83

CHAPTER 15: DIRECT MEMORY ACCESS AND DMA CHANNELS IN x86 PC

SECTION 15.1: CONCEPT OF DMA

1. For the 8088 it takes 39 clocks, while for DMA it takes 4 clocks to transfer a byte. The DMA is 9 times faster.
2. 512 × 39 × 200 ns = 3.9936ms for the 8088; 512 × 4 × 200 ns = 0.4096 ms for DMA.
3. In response to INTR, the CPU finishes the current instruction, saves the address of the next instruction, and then

responds by activating INTA. However, in response to HOLDR, the CPU finishes the current bus cycle and
freezes the action (retains everything), then responds with HOLDA. The bus cycle could be in the middle of the
execution of an instruction.

4. input, output
5. b
6. HOLDA
7. The DMA does not require an opcode interpreter and executor since it simply transfers information (code and

data) and has no idea what the data is. This results in using substantially fewer transistors and shorter design
time.

8. when HOLDR is pulled down (deactivated) by the DMA

SECTION 15.2: 8237 DMA CHIP PROGRAMMING

9. 16
10. (a) 88H and (c) 92H, since for the base address the lower nibble address (A3 - A0) must be 0
11. The memory address of the first location and count value. There is a single port for each.
12. Each channel must have a port for the memory address register and the count register. Since there are 4

channels,
 we need 8 port addresses for the channels.
13. 50H - 57H. 50H and 51H for channel 0, 52H and 53H for channel 1, and so on.
14. 58H - 5FH
15. command register; port address 58H
16. Channel 0 has the highest priority and channel 3 the lowest. In this mode, channel 0 always has the highest

priority, but in rotating mode, after channel 0 is served once it will not get a chance until all other channels have
had a chance to be served.

17. DREQ2
18. 8237 DMA
19. When the entire block of data has been transferred by a channel, the count register reaches 0. This is indicated

by the EOP pin (hardware) of the 8237. It also sets the status register terminal count (TC) bit to high, allowing
software monitoring of the terminal count. No, this is a read-only register.

20. The control byte is D7 - D0 = 1011 0110 = B6H.

 MOV AL,0B6H ;block mode, addr decr, autoinc, write
 OUT 5BH,AL ;transfer, chan 2 to mode register
21.
 MOV AL,03H ;clear mask bit for chan 3
 OUT 5AH,AL ;send to single mask register

22. Assuming that 50H is the base address of the 8237, we have:
 MOV AX,1500H ;starting address
 OUT 56H,AL ;low byte to chan 3 memory address reg
 MOV AL,AH
 OUT 56H,AL ;hi byte to chan 3 memory address reg
 MOV AX,8192 ;8K-byte block
 OUT 57H,AL ;low byte to chan 3 count reg
 MOV AL,AH
 OUT 57H,AL ;hi byte to chan 3 count reg

 84

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PC

23. The 8237 provides only 16 bits for the address. It provides the 8 bits of the higher part of the address through the

data bus along the ADDSTB signal for the address to be latched. The lower 8 bits of the address are provided by
pins A7 - A0.

24. There must be a file register to provide the most significant 4 bits of the address. The IBM PC/XT uses a 4x4
file register. That is 4 bits for each channel.

25. True
26. False, there is only one HOLD in the 8237.
27. (a) HOLD, (d) DACKs, and (f) ADDSTB are all out; (b)HOLDA and (c) DREQs are all in; the rest are

bidirectional.

SECTION 15.4: DMA IN x86 PCs

28. True
29. a total of 7; DREQ1 - DREQ3 on the 62-pin part, and DRQ0 and DRQ5 - DREQ7 are available on the 36-pin

part.
30. because their cycle times are not the same; The memory is on the motherboard but the disk is connected to the

expansion slot through a cable and cables cannot handle such a fast data transfer rate.
31. This is because they will not be ISA compatible. The ISA bus has only A0 - A23 address bus which means it can

access only 16M of memory space. In addition, to access the 4G address range by the DMA requires expanding
the DMA page register from 24 bits to 32 bits.

 85

CHAPTER 16: VIDEO AND VIDEO ADAPTERS

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO MODES

1. (a) 909 and 262 (b) 744 and 364 (c) 799 and 525
2. (a) 269 and 62 (b) 104 and 14 (c) 159 and 45
3. For an example of the calculation, see the solution for Problem 4.

 640x480 800x600 1024x768 1280x1024

14" 10.92" 10.92" 10.98" 11.50"
15" 11.85" 11.7" 11.98" 12.14"
17" 13.41" 13.26" 13.47" 14.06"
20' 15.6" 15.6" 15.47" 15.98"

4. [(640 x 0.5 mm)2 + (480 0.5 mm)2]1/2 = 400 mm. 400 mm x 0.039 = 15.6",
 which is much larger than the diagonal size of the monitor.
5. distance in between pixels; in a color monitor, the distance between two pixels of the same color
6. False, each pixel consists of red, green, and blue dots.
7. 8x8
8. 40 × 25 = 1000 characters per screen

SECTION 16.2: TEXT MODE PROGRAMMING AND VIDEO RAM

9. True
10. B0000H
11. This is similar to Example 16-7 (8-7) in the text with some modification.
 MOV AH,0
 MOV AL,03
 INT 10H
 MOV AH,09
 MOV BH,0
 MOV AL,42H
 MOV CX,4

 MOV BL,41H
 INT 10H
12. This is similar to Example 16-8 (8-8) in the text with some modification.
 MOV AH,0
 MOV AL,07
 INT 10H
 MOV AH,09
 MOV BH,0
 MOV AL,42H
 MOV CX,50H
 MOV BL,0F0H
 INT 10H

 86
13. See the drawings below.

SECTION 16.3: GRAPHICS AND GRAPHICS PROGRAMMING

14. True
15. True
16. 216 = 65,536
17. since 620 x 200 = 124,000 bits = 15.13Kbytes and CGA can have a maximum of 16K bytes of video memory

 87
18. It is divided into four planes of 64K bytes, where each plane is fit into the A0000 - AFFFF address space.

When a bit in the address range is accessed one bit from each plane is provided.
19. 24 bits
20. (a) 640 x 480 x 4 = 150K, but due to the bit plane it uses 256K
 640 x 480 x 8 = 300K, but due to the bit plane it uses 512K
 640 x 480 x 16 = 600K, but due to the bit plane it uses 1M
 640 x 480 x 24 = 900K, but due to the bit plane it uses 1.5M
 (b) 1024 x 768 x 4 = 384K, but due to the bit plane it uses 512K
 1024 x 768 x 8 = 768K, but due to the bit plane it uses 1M
 1024 x 768 x 16 = 1536K = 1.5M
 1024 x 768 x 24 = 2304K, but due to the bit plane it uses 2.5M
 (c) 1600 x 1200 x 8 = 1.83M, but due to the bit plane it uses 2M
 1600 x 1200 x 16 = 3.66M, but due to the bit plane it uses 4M

21. MOV AX,0600H ;clear the screen
 MOV BH,07
 MOV CX,0
 MOV DX,184F
 INT 10H
 MOV AH,00 ;set the mode to 06 (CGA high resolution)
 MOV AL,06
 INT 10H
 ;draw line 1
 MOV CX,213 ;col pixel=213
 MOV DX,0 ;row pixel=0
 LINE1: MOV AH,0C ;0CH option to write a pixel
 MOV AL,01 ;turn on the pixel
 INT 10H
 INC DX ;increment vertical position
 CMP DX,200 ;check for the last position
 JNZ LINE1 ;if not, continue
 ;draw line 2
 MOV CX,426 ;col pixel=426
 MOV DX,0 ;row pixel=0
 LINE2: MOV AH,0C ;0CH option to write a pixel
 MOV AL,01 ;turn on the pixel
 INT 10H
 INC DX ;increment vertical position
 CMP DX,200 ;check for the last position
 JNZ LINE2 ;if not, continue

 88

CHAPTER 17: SERIAL PORT PROGRAMMING WITH ASSEMBLY AND C#

SECTION 17.1: BASICS OF SERIAL COMMUNICATION

1. parallel data transfer
2. false
3. The even parity bit for ASCII 'Z' (01011010) is 0. Therefore, we have the following framing: 1 0 01011010 0

from left to right: 1 stop bit, even parity, 8 data bits, start bit
4. mark
5. When there is no data transfer and the line is low, it is called space.
6. With 2 stop bits,1 parity bit, and the stop bit, this makes a total of 4 bits for the overhead. Therefore, it has
 4/6 = 66% overhead.
7. false
8. to convert from non-TTL voltage levels of RS232 to TTL level voltage used by UART chips
9. true
10. Since only 9 pins are of critical importance and it is much more economical in terms of space usage on the back

plane of the motherboard. In addition, it will not be confused with 25-DB pins of the parallel port.
11. false
12. DTE
13. DTE, DTE
14. TxD, RxD, DSR, DTR, CTS, RTS, CDC, RI, and GND
15. Since each character takes a total of 10 bits (8 bits, 1 stop bit, 1 start bit) and each page has 25 × 80 characters,

then we have the total bits for 200 pages = 200 x 25 x 80 x 10 =4,000,000

SECTION 17.2: PROGRAMMING x86 PC COM PORTS USING ASSEMBLY AND C#

16. a maximum of 4
17. 115,200
18.
 MOV AH,0 ;option 0 of INT 14H
 MOV DX,1 ;COM2
 MOV AL,11100011 ;9600,no parity,1 stop bit,8-bit data
 INT 14H
19.

 TITLE PROBLEM 19 SERIAL DATA COMMUNICATION BETWEEN TWO PCs
 .MODEL SMALL
 .STACK
 .DATA
 MESSAGE DB 'SENDING DATA VIA COM2, 4800,No P,1 Stop.',0AH,0DH
 DB ' ANY KEY PRESS IS SENT TO THE OTHER PC.',0AH,0DH
 DB ' PRESS ESC TO EXIT','$'

 .CODE
 MAIN PROC
 MOV AX,@DATA
 MOV DS,AX
 MOV AH,09
 MOV DX,OFFSET MESSAGE
 INT 21H

;initializing COM 2

 MOV AH,0 ;initialize COM port
 MOV DX,1 ;COM 2
 MOV AL,0C3H ;4800 ,NO P,1 STOP,8 BIT DATA
 INT 14H

 89

 ;checking key press and sending key to COM2 to be transferred
 AGAIN: MOV AH,01 ;check key press
 INT 16H
 JZ NEXT ;if no key go check COM port
 MOV AH,0 ;yes, there is a key press, get it
 INT 16H
 CMP AL,1BH ;is it ESC?
 JE EXIT ;yes, exit
 MOV AH,1 ;no. send the char to COM 2 port
 MOV DX,01
 INT 14H
 ;check COM2 port to see there is char. if so get it and display it
 NEXT: MOV AH,03 ;get COM 2 status
 MOV DX,01
 INT 14H
 AND AH,01 ;AH has COM port status, mask all bits except D0
 CMP AH,01 ;check D0 to see if there is a char
 JNE AGAIN ;no data, go to monitor keyboard
 MOV AH,02 ;yes, COM2 has data get it
 MOV DX,01
 INT 14H ;get it
 MOV DL,AL ;and display it using INT 21H
 MOV AH,02 ;output char in DL reg
 INT 21H
 JMP AGAIN ;keep monitoring keyboard
 EXIT: MOV AH,4CH ;exit to DOS
 INT 21H ;
 MAIN ENDP
 END

 90

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU

1. 1s
2. (a)
3. (b)
4. (a) it can be any of keys in row 3 (3, 7, B, or F)
 (b) it can by any of keys in row 0 (0, 4, 8, or C)
5. (a) all rows are grounded at the same time
 (b) the columns are read

(c) the columns data is checked to see if there is a zero in it; if there is a zero then it goes to the next step of key
 identification, otherwise it repeats step b and c

6. (a) ground one row at a time
 (b) read the columns
 (c) check for a zero in column data
 (d) if zero found, it goes to find out which column it belongs to and gets the scan code, otherwise it goes back to
 step a

7.
 ;the following look-up scan codes are in the data segment
 KCOD_0 DB 0,1,2,3,4 ;key codes for row zero
 KCOD_1 DB 5,6,7,8,9 ;key codes for row one
 KCOD_2 DB 0AH,0BH,0CH,0DH,0EH ;key codes for row two
 KCOD_3 DB 0FH,10H,11H,12H,13H ;key codes for row three

 ;the following is from the code segment
 PUSH BX ;save BX
 SUB AL,AL ;AL=0 to ground all rows rows at once
 OUT PORT_A,AL ;to ensure all keys are open (no contact)
 K1: IN AL,PORT_B ;read the columns
 AND AL,00011111B ;mask the unused bits (D7-D5)
 CMP AL,00011111B ;are all keys released
 JNE K1 ;keep checking for all keys released
 CALL DELAY ;wait for 20 ms
 K2: IN AL,PORT_B ;read columns
 AND AL,00011111B ;mask D7-D5
 CMP AL,00011111B ;see if any key pressed?
 JE K2 ;if none keep checking
 CALL DELAY ;wait 20 ms for debounce
 ;after the debounce see if still pressed
 IN AL,PORT_B ;read columns
 AND AL,00011111B ;mask D7-D5
 CMP AL,00011111B ;see if any key closed?
 JE K2 ;if none keep polling
 ;now ground one row at a time and read columns to find the key
 MOV AL,11111110B ;ground row 0 (D0=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00011111B ;mask unused bits (D7-D5)
 CMP AL,00011111B ;see which column
 JE RO_1 ;if none go to grounding row 1
 MOV BX,OFFSET KCOD_0 ;set BX=start of table for column 0 keys
 JMP FIND_IT ;identify the key
 RO_1: MOV AL,11111101B ;ground row 1 (D1=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00011111B ;mask unused bits (D7-D5)
 CMP AL,00011111B ;see which column
 JE RO_2 ;if none go to grounding row 2
 MOV BX,OFFSET KCOD_1 ;set BX=Start of table for column 1 keys
 JMP FIND_IT ;identify the key
 RO_2: MOV AL,11111011B ;ground row 2 (D2=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00011111B ;mask unused bits (D7-D5)
 CMP AL,00011111B ;see which column

 91
 JE RO_3 ;if none go to grounding row 3

 92
 MOV BX,OFFSET KCOD_2 ;set BX=start of table for column 2 keys
 JMP FIND_IT ;identify the key
 RO_3: MOV AL, 11110111B ;ground row 3 (D3=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00011111B ;mask unused bits (D7-D5)
 CMP AL,00011111B ;see which column
 JE K2 ;if none then false input repeat the process
 MOV BX,OFFSET KCOD_3 ;set BX=start of table for column 3 keys
 ;A key press has been detected and the row identified. Now find which key.
 FIND_IT: RCR AL,1 ;rotate the column input to search for 0
 JNC MATCH ;if zero, go get the code
 INC BX ;if not point at the next code
 JMP FIND_IT ;and keep searching
 ;GET THE CODE FOR THE KEY PRESSED AND RETURN
 MATCH: MOV AL,[BX] ;get the code pointed by BX
 POP BX ;return with AL=code for pressed key
 RET
8.
 ;the following look-up scan codes are in the data segment
 KCOD_0 DB 0,1,2,3,4,5 ;key codes for row zero
 KCOD_1 DB 6,7,8,9,0AH,0BH ;key codes for row one
 KCOD_2 DB 0CH,0DH,0EH,0FH,10H,11H ;key codes for row two
 KCOD_3 DB 12H,13H,14H,15H,16H,17H ;key codes for row three
 KCOD_4 DB 18H,19H,1AH,1BH,1CH,1DH ;key codes for row four
 KCOD_5 DB 1EH,1FH,20H,21H,22H,23H ;key codes for row five

 ;the following is from the code segment
 PUSH BX ;save BX
 SUB AL,AL ;AL=0 to ground all rows at once
 OUT PORT_A,AL ;to ensure all keys are open (no contact)
 K1: IN AL,PORT_B ;read the columns
 AND AL,00111111B ;mask the unused bits (D7-D6)
 CMP AL,00111111B ;are all keys released
 JNE K1 ;keep checking for all keys released
 CALL DELAY ;wait for 20 ms
 K2: IN AL,PORT_B ;read columns
 AND AL,00111111B ;mask D7-D6
 CMP AL,00111111B ;see if any key pressed?
 JE K2 ;if none keep checking
 CALL DELAY ;wait 20 ms for debounce
 ;after the debounce see if still pressed
 IN AL,PORT_B ;read columns
 AND AL,00111111B ;mask D7-D6
 CMP AL,00111111B ;see if any key closed?
 JE K2 ;if none keep polling
 ;now ground one row at a time and read columns to find the key
 MOV AL,11111110B ;ground row 0 (D0=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00111111B ;mask unused bits (D7-D6)
 CMP AL,00111111B ;see which column
 JE RO_1 ;if none go to grounding row 1
 MOV BX,OFFSET KCOD_0 ;set BX=start of table for column 0 keys
 JMP FIND_IT ;identify the key
 RO_1: MOV AL,11111101B ;ground row 1 (D1=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00111111B ;mask unused bits (D7-D6)
 CMP AL,00111111B ;see which column
 JE RO_2 ;if none go to grounding row 2
 MOV BX,OFFSET KCOD_1 ;set BX=Start of table for column 1 keys
 JMP FIND_IT ;identify the key
 RO_2: MOV AL,11111011B ;ground row 2 (D2=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00111111B ;mask unused bits (D7-D6)
 CMP AL,00111111B ;see which column
 JE RO_3 ;if none go to grounding row 3
 MOV BX,OFFSET KCOD_2 ;set BX=start of table for column 2 keys
 JMP FIND_IT ;identify the key

 93
 RO_3: MOV AL,11110111B ;ground row 3 (D3=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00111111B ;mask unused bits (D7-D6)
 CMP AL,00111111B ;see which column
 JE RO_4 ;if none then go to grounding row 4
 MOV BX,OFFSET KCOD_3 ;set BX=start of table for column 3 keys
 JMP FIND_IT
 RO_4: MOV AL,11101111B ;ground row 4 (D4=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00111111B ;mask unused bits (D7-D6)
 CMP AL,00111111B ;see which column
 JE RO_5 ;if none then go to grounding row 5
 MOV BX,OFFSET KCOD_4 ;set BX=start of table for column 5 keys
 JMP FIND_IT
 RO_5: MOV AL,11011111B ;ground row 5 (D5=0)
 OUT PORT_A,AL
 IN AL,PORT_B ;read all columns
 AND AL,00111111B ;mask unused bits (D7-D6)
 CMP AL,00111111B ;see which column
 JE K2 ;if none then false input repeat the process
 MOV BX,OFFSET KCOD_5 ;set BX=start of table for column 3 keys
 ;A key press has been detected and the row identified. Now find which key.
 FIND_IT: RCR AL,1 ;rotate the column input to search for 0
 JNC MATCH ;if zero, go get the code
 INC BX ;if not point at the next code
 JMP FIND_IT ;and keep searching
 ;GET THE CODE FOR THE KEY PRESSED AND RETURN
 MATCH: MOV AL,[BX] ;get the code pointed by BX
 POP BX ;return with AL=code for pressed key
 RET
9. The main advantage is that it does not tie down the microprocessor. The disadvantage is that it is not versatile.
10. To use a separate microprocessor (microcontroller) from the main CPU to scan the keys (polling) and use

interrupts to inform the main CPU. This allows programming the keyboard itself which is much more versatile.

SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING

11. 11 bits, 8 bits for scan code, 1 stop bit, 1 start bit, and odd parity bit
12. (a) B4H (b) 9AH (c) DFH
13. c and e are make, and the rest are break
14. The keyboard's shift status byte allows the distinction. f the shift bit is 0, it is "5". If the shift bit is 1, it is "%".
15. (a) 69H (b) 57H (c) 08H (d) 2FH (e) 49H (f) 40H
16. AH = 12H
17.
 EXTRN MUSIC: NEAR
 DTSEG SEGMENT
 MESS1 DB CR,LF,'I will play a song for you if '
 DB 'you guess the key I am thinking of. '
 DB 'The key is one of the ALT Fs','$'
 MESS2 DB CR,LF,'Try again','$'
 CR EQU 0DH
 LF EQU 0AH
 DTSEG ENDS
;--

 94
CDSEG SEGMENT

 MAIN PROC FAR
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG
 MOV DS,AX
 MOV AH,09 ;prompt user
 MOV DX,OFFSET MESS1
 INT 21H
 AGAIN: MOV AH,0 ;get scan code of
 INT 16H ;key pressed
 CMP AX,7000H ;is it Alt-F9 ?
 JZ PLAY ;if yes, play music
 CMP AX,011BH ;is it the Esc key?
 JZ EXIT ;if yes, exit to DOS
 MOV AH,09 ;otherwise, display message
 MOV DX,OFFSET MESS2
 INT 21H
 JMP AGAIN ;try again
 PLAY: CALL MUSIC
 EXIT: MOV AH,4CH
 INT 21H
 MAIN ENDP
 CDSEG ENDS
 END MAIN

18. IRQ1
19. true
20. false
21. 00
22. the motherboard circuitry
23. Alt, Ctrl, Shift, NumLock, and CapsLock
24. (a) Home and (c) arrow
25. 0110 0000 or 60H
26. Right Shift is pressed and Insert is toggled.
27. (a) 00417H (b) 0041EH to 0043DH
 (c) 0041CH and 0041DH (d) 0041AH and 41BH
28. The keyboard buffer is empty.
29. full
30. the capacitive

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC

31. data lines, status signals, control signals, and ground signals
32. (a) BUSY (in) (b) STROBE (out) (c) ACKNLDG (in) (d) SLCT (in)
 (e) INIT (out) (f) PE (in)
 a, c, d, and f are all status signals while b and e are control signals.
33. PE
34. true
35. to indicate to the PC that the printer cannot accept new data
36. low
37. After the rising edge of ACKNLDG, it indicates that the printer is ready to accept another byte.
38. true, depending on the decoding circuitry

 95

CHAPTER 19: HARD DISKS

SECTION 19.1: HARD DISK ORGANIZATION AND PERFORMANCE

1. because the microprocessor looks for code first from RAM and ROM before it looks for it in the disk
2. boot record
3. FAT
4. For MS DOS, they are IO.SYS, MSDOS.SYS, and COMMAND.COM. For IBM PC DOS, they are

IBMBIO.COM, IBMDOS.COM, and COMMAND.COM.
5. They are hidden files
6. True
7. The tracks of the same radius on all the platters is called a cylinder. In the hard disk, when the heads move they

are all moving at the same time on the same cylinder, allowing access to all the sectors under each head.
8. the number of heads times the number of cylinders
9. Using Example 19-1, calculate for your hard drive.
10. true
11. The amount of time that it takes to find the desired cylinder (track) is called seek time. The amount of time that

it takes for the head to settle (stop vibrating) when the desired track is found is called settling time. With the
advent of the voice coil it is almost zero. When the desired track is found, the amount of time it takes to locate
the desired sector is called rotational latency. It is the average of 0 and the time for one rotation. The access
time

 is the total sum of all these factors.
12. (c) and (a)
13. False, it is used for any kind of peripheral device such as printer and CD-ROM.
14. 7 (or 8 if we include the SCSI adapter itself)
15. (a) 1 (b) 3 (c) 5
16. Mean time between failure is the measure of how long the disk will last without a malfunction. It is a measure

of reliability.

 96

CHAPTER 20: THE IEEE FLOATING POINT AND x87 MATH PROCESSORS

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-POINT STANDARDS

1. It takes too long to execute; in addition, writing software for math functions using integer instruction is very

tedious.
2. 4
3. 8
4. Bit 31 is for the sign, bits 30 - 23 are for biased exponents, and bits 22 - 0 are for the significand.
5. (a) 15.575 = 41793400H (b) 89.125 = 42B24000H
 (c) -1022.543 = C47FAB00H (d) -0.00075 = BA449000H
6. 98.23 = 42C475C3H
7. The IEEE single precision and IEEE double precision standards are called short real and long real, respectively,

in Intel literature.
8. Bit 63 is for the sign, bits 62 - 52 are for biased exponents, and bits 51 - 0 are for the significand.
9. 7FH, exponent portion
10. 3FF, exponent portion
11. (a) 12.9823 = 4029F6F000000000H (b) 98.76123 = 4058B0B700000000H
12. 63 bits
13. bit 79
14. 73 bits (bits 0 to 72)
15. 10 bytes

SECTION 20.2: x87 INSTRUCTIONS AND PROGRAMMING

16. (a) DD (b) DQ (c) DT
17.

 0000 DTSEG SEGMENT PARA 'Data'
 0000 41793333 Q5A DD 15.575
 0004 42B24000 Q5B DD 89.125
 0008 C47FA2C1 Q5C DD -1022.543
 000C BA449BA6 Q5D DD -0.00075
 0010 BBB88D06F0F62940 Q11A DQ 12.9823
 0018 FBAE08FEB7B05840 Q11B DQ 98.76123
 0020 DTSEG ENDS

18.

.8087
; in the data seg
X DD 3.12 ;stored as 4047AE14H
Y DD 5.43 ;stored as 40ADC28FH
Z DD ?
;in code segment

 FINIT
 FLD X ;load X
 FMUL ST(0),ST(0) ;X squared
 FLD Y ;load Y
 FMUL ST(0),ST(0) ;Y squared
 FLD Y ;load Y again
 FMUL ST(0),ST(1) ;Y cubed
 FADD ST(0),ST(2) ;sum X squared and Y cubed
 FSQRT ;calculate square root
 FST Z ;and store it

 97
;z = 415083C2H = 13.032168

 98
19. .8087
 ;in the data segment
 X DD 1.25 ;stored as 3FA00000H
 Y DD ?
 C1 DD 12.34 ;stored as 414570A4H
 C2 DD 5.0 ;stored as 40A00000H
 ;in the code segment
 FINIT
 FLD X ;load X
 FMUL ST(0),ST(0) ;square X (1.5625)
 FADD ST(0),ST(0) ;double the square, now ST(0)=2X**2 (3.125)
 FLD X ;load X again
 FLD C2 ;load the constant 5
 FMUL ST(0),ST(1) ;now ST(0)=5X and ST(2)=2X**2
 FADD ST(0),ST(2) ;ST(0) =2X**2+5X (3.125 + 6.25 = 9.375)
 FLD C1 ;load the constant 12.34
 FADD ST(0),ST(1) ;make the sum Y (12.34 + 9.375 = 21.715)
 FST Y ;and store it
 ;y = 41ADB852H = 21.715

20.
 .8087
 ;in the data segment
 R DD 25.5 ;stored as 41CC0000H
 AREA DD ?
 ;in the code segment
 FINIT
 FLD R
 FMUL ST(0),ST(0) ;R squared = 650.25
 FLDPI
 FMUL ST(0),ST(1)
 FST AREA

 ;AREA = 44FF5A43H =2042.8206787109375

21.
 .8087

;in the data segment
R DD 25.5
Z DD ?
C1 DD 3.0
C2 DD 4.0
;in the code segment
 FINIT
 FLD R
 FMUL ST(0),ST(0) ;R**2
 FLD R
 FMUL ST(0),ST(1) ;ST(0)=R**3
 FLD C1 ;load 3
 FMUL ST(0),ST(1) ;now ST(0)=3 times R**3
 FLDPI
 FMUL ST(0),ST(1) ;now ST(0)=3 * pi * R**3
 FLD C2 ;load 4
 FXCH
 FDIV ST(0),ST(1) ;divide by 4
 FST Z ;and save it
;Z = 47189CF2H = 39068.94441481

 99
22.

.8087
PAGE 60,132
;program to calculate SIN of a 45-degree angle
STACKSG SEGMENT
 DW 32 DUP (?)
STACKSG ENDS
;----------------------------
DATASG SEGMENT
 ORG 00H
ANGLE DD 0.785 ;angle in radian for 45 degrees (3F48F5C3)
 ORG 10H
X DD 0
 ORG 20H
Y DD 0
 ORG 30H
R DD 0
 ORG 40H
SIN DD 0
 ORG 50H
DATASG ENDS
;----------------------------
CODESG SEGMENT
START PROC FAR
 ASSUME CS:CODESG,DS:DATASG,SS:STACKSG
 MOV AX,DATASG
 MOV DS,AX
 CALL CALC_X_Y
 CALL CALC_R
 CALL CALC_SIN
 MOV AH,4CH
 INT 21H
START ENDP
;-----------------------------
;procedure to calculate X and Y given an angle
CALC_X_Y PROC NEAR
 FINIT ;initialize 8087
 FLD ANGLE ;load ANGLE onto stack
 FPTAN ;calculate X and Y
 FSTP X ;store X and POP
 FSTP Y ;store Y and POP
 RET
CALC_X_Y ENDP
;------------------------------
;procedure to calculate hypotenuse given X and Y
CALC_R PROC NEAR
 FINIT ;initialize 8087
 FLD X ;load X onto stack
 FMUL ST(0),ST(0) ;square X
 FLD Y ;load Y onto stack
 FMUL ST(0),ST(0) ;square Y
 FADD ST(0),ST(1) ;calculate X**2 + Y**2
 FSQRT ;take square root
 FST R ;store R
 RET
 CALC_R ENDP
;------------------------------
;procedure to calculate SIN, given R and X
CALC_SIN PROC NEAR
 FINIT ;initialize 8087
 FLD R ;load R onto stack
 FLD Y ;load Y onto stack
 FDIV ST(0),ST(1) ;SIN = Y/R
 FST SIN ;store SIN
 RET
CALC_SIN ENDP
;------------------------------
CODESG ENDS
 END START

 100
SECTION 20.3: x87 INSTRUCTIONS

23. c, d, and e
24. radians
25.
 .387
 ;in the data segment
 ANG DD 0.523598776 ;angle in radians for 30 degrees
 SINEVAL DD ?
 COSVAL DD ?
 ;in the code segment
 FLD ANG
 FSINCOS ;now ST(0)= sine and ST(1) =cosine
 FSTP SINEVAL ;store the sine and pop
 FSTP COSVAL ;store the cosine and pop.

 101

CHAPTER 21: 386 MICROPROCESSOR: REAL vs. PROTECTED MODE

SECTION 21.1: 80386 IN REAL MODE

1. the 80188/186 and higher
2. The PUSHA instruction pushes onto the stack the registers AX, CX, DX, BX, SP, BP, SI, and DI. It performs

the actions of the following instructions: PUSH AX, PUSH CX, PUSH DX, PUSH BX, PUSH SP, PUSH BP,
PUSH SI, and PUSH DI.

3. The POPA instruction pops the contents of the top 8 bytes of the stack into registers DI, SI, BP, SP, BX, DX,
CX, and AX. Although it pop off the stack the word belonging to SP, it does not store it into the SP register.
This to ensure the integrity of stack frame. The POPA is equivalent to the following group of instructions: POP
DI, POP SI, POP BP, POP SP, POP BX, POP DX, POP CX, and POP AX.

4. all 80188/186 and higher microprocessors of the 80x86 family
5. (a) AX=430H (b) BX=0 (c) CX= AA0AH (d) CX= A0AAH
6. true
7. 80286
8. 80286
9. a, b, d, and e
10. DS:3500=(43) DS:3501=(F5) DS:3502=(34) DS:3503=(98) All values are in hex.
11. ES:1000=(24) ES:1001=(B3) ES:1002=(07) ES:1003=(00) All values are in hex.
12. DS:EAX DS:EBX DS:ECX DS:EDX
 DS:ESI DS:EDI SS:EBP SS:ESP
13.
 .MODEL SMALL
 .386

 .STACK 300H
 .DATA

 MYDATA DD 10 DUP(9999H) ;DATA ARRAY
 .CODE
 MOV AX,@DATA
 MOV DS,AX
 SUB EBX,EBX
 MOV CX,10 ;COUNTER
 MOV EAX,100 ;THE FACTOR

BACK: ADD [MYDATA+EBX*4],EAX
 INC EBX
 DEC CX
 JNZ BACK
 MOV AH,4CH
 INT 21H
 END

 102
14.
 .MODEL SMALL
 .386
 .STACK 300H
 .DATA
 DATA1 DQ 548FB9963CE7H ;FIRST OPERAND
 DATA2 DQ 3FCD4FA23B8DH ;SECOND OPERAND
 SUM DQ ?
 .CODE
 MAIN: MOV AX,@DATA
 MOV DS,AX
 CLC
 SUB EBX,EBX
 MOV CX,2 ;COUNTER
 MOV EDX,OFFSET DATA1 ;LOAD ADDRESS
 MOV ESI,OFFSET DATA2 ;LOAD ADDRESS
 MOV EDI,OFFSET SUM ;LOAD ADDRESS
 BACK: MOV EAX,[EDX+EBX*4] ;LOAD THE OPERAND
 ADC EAX,[ESI+EBX*4] ;ADD THE OPERAND
 MOV [EDI+EBX*4],EAX ;SAVE IT
 INC EBX ;INCREMENT THE INDEX POINTER
 DEC CX ;CONTINUE UNTIL COUNTER=0
 JNZ BACK
 MOV AH,4CH ;EXIT
 INT 21H ;TO DOS
 END MAIN

15. CS:IP and CS:EIP for code, all the following for data
 DS:BX DS:SI DS:DI DS:EAX
 DS:EBX DS:ECX DS:EDX DS:ESI DS:EDI
 all the following for stack
 SS:BP SS:SP SS:EBP SS:ESP
16. (a) EBX= FFFFFFF4H (b) EDX= FFFFFFF8H
 (c) ECX= 7 (d) EBX= 99H
17. EAX= 0
 EBX= 19H (since scanning from left, D25 is the first high, 19H = 25 decimal)
18. AX= 03 DX= 7
19. In the case of MOVSX, the microprocessor sign extends (copies the sign bit to upper bits of the destination

register) to prepare it for signed number arithmetic operations. MOVZX is used for unsigned arithmetic and
logic instructions.

20. false

SECTION 21.2: 80386: A HARDWARE VIEW

21. low
22. false
23. D0 - D7 and D8 - D15
24. D16 - D23 and D24 - D31
25. D0 - D7 and D24 - D31
26. D8 - D15 and D16 - D23
27. 50 MHz
28. EIP = 0000FFF0H, CS = F000, A2 - A31 = all 1s, and BE0 - BE3 =all 0s.
29. The first opcode is fetched from physical address FFFFFFF0H. Therefore, ROM must be mapped into that

address for the boot-up.
30. The address ranges of E0000 - FFFFF and E0000000 - FFFFFFFF have the same BIOS ROM. This allows

BIOS to be accessed both in real mode and protected mode.

 103
31.

32. Since the ECX source is 32-bit data and the destination address 2002 is not double word (32-bit) aligned, we
 need a total of 2 memory cycles to access them. Therefore, a total of 4 clocks (2 cycles × 2 clocks) is needed.
33. 0, 4, 8 or, C, as the least significant digits of the address (in hex)
34. 1/33 MHz = 30 ns; Since each memory cycle takes two clocks, we need a total of 60 ns for the memory cycle

time.

SECTION 21.3: 80386 PROTECTED MODE

35. Virtual memory refers to memory of the hard disk. It is a way of fooling the CPU to think that it has access to an
 unlimited amount of RAM (main memory).
36. False. It asks from the main memory first. If it is not there, then the operating system will bring it from hard disk
 (virtual memory) into main memory. This is often done without any noticeable delay as far as the user is
 concerned.
37. DRAM and hard disk
38. In real mode, the maximum memory space is 1M but in protected mode the memory space is 4 gigabytes.
39. protected mode
40. false, segmentation only
41. true
42. false, a maximum of 64K bytes
43. true
44. 4K bytes
45. 8 bytes
46. In real mode the physical address must not exceed FFFFFH (if the operating system supports HMA, the

maximum is 10FFEFH), but in protected mode the maximum address can be as high as FFFFFFFFH.
47. a total of 32 bits, the lower 24 bits (A0 - A23) are bytes 2, 3, 4, and the 8 bits of A24 - A31 are assigned to
 byte 7 (the last byte)
48. all 0s
49. 20 bits, bytes 0 and 1, in addition to lower nibble of byte 6
50. true
51. highest, lowest
52. To indicate if a given data or code is accessed (read). This allows the operating system to monitor if data has
 been used any time recently in order to make a decision to discard the unused data to make space for new data.
53. P lets the CPU know that the information it is requesting is present in main (DRAM) memory and so it can go
 ahead and fetch it. If P = 0 the CPU must wait until the operating system brings the information from the hard
 disk to main memory.

 104
54. When D3 = 0 it is the data segment; if D1 = 0 it is read-only and D1 = 1 it is read/write data segment. When

D3 = 1 it is the code segment (executable), then if D1 = 0 the code segment may not be read, but if D1 = 1 the
code segment may be read.

 (a) this is an access byte for the data segment, present, accessed, privilege level = 00 (highest), and read only
 (b) this is an access byte for the data segment, present, accessed, privilege level = 11 (lowest), and read only

(c) this is an access byte for the data segment, present, accessed, privilege level = 00 (highest), and read/write
segment

 (d) this is an access byte for the code segment, present, accessed, privilege level = 11 (lowest), and can be read
 (e) this is an access byte for the code segment, present, accessed, privilege level = 00 (highest), and can be read

(f) this is an access byte for the code segment, present, accessed, privilege level = 11 (lowest), and cannot be
read

55. The translation look aside buffer is a buffer inside the CPU that keeps the top 32 most recently used page frame
physical addresses. This helps the CPU to save time in translating from a linear address to physical address.

56. The physical address is an address in the range of 000000000 - FFFFFFFFH of the maximum 4 gigabytes
address of the CPU and each location can be assigned to a physically existent memory such as ROM and RAM.
In contrast, the linear address is an address used by the operating system to map the information for virtual
memory.

57. linear to physical address
58. TLB
59. 32
60. False
61. In segmentation the memory is viewed in chunks of 1 byte to 4 gigabytes in size, but in paging it is viewed as a

multiple of 4K bytes.
62. 2 levels, user and supervisor

 105

CHAPTER 22: HIGH-SPEED MEMORY DESIGN AND CACHE

SECTION 22.1: MEMORY CYCLE TIME OF THE x86

1. (a) (1 WS + 2) x 30 ns = 90 ns (b)(1WS + 2) x 20 ns = 60 ns
 (c) (2 WS + 2) x 40 ns = 120 ns (d) (1 WS + 2) x 16.66 ns = 50 ns
 (e) (0 WS + 2) x 15 ns = 30 ns
2. 1/33 MHz =30 ns for each clock period, 90 ns/30 ns = 3 clocks, therefore we have 1 WS
3. 1/50 MHz =20 ns for each clock period, 80 ns/20 ns = 4 clocks, therefore we have 2 WS
4. 1/66 MHz =15 ns for each clock period, 45 ns/15 ns = 3 clocks, therefore we have 1 WS
5. 1/20 MHz =50 ns for each clock period, 200 ns/50 ns = 4 clocks, therefore we have 2 WS
6. 1/50 MHz =20 ns and memory cycle time with 2 WS is (2WS + 2) x 20 =80 ns. This is the same as a 40 ns

clock period system, or the same bus performance of a 25 MHz of 0 WS system. The bus performance
degradation is 50%.

7. 1/33 MHz =30 ns and memory cycle time with 1 WS is (1WS + 2) × 30 =90 ns. Now this is the same as a 45 ns
clock period system or the same bus performance of 22.2 MHz of 0 WS system. The bus performance
degradation is 67%.

8. 1/60 MHz = 16.6 ns and memory cycle time with 1 WS is (1WS + 2) × 16.6 = 50 ns. This is the same as a 25
ns clock period system, or the same bus performance of a 40 MHz of 0 WS system. The bus performance
degradation is 66%.

9. 60ns/(1 WS + 2) =20 ns is the period for the system clock. Therefore, the CPU frequency is 50 MHz.
10. 1/33 MHz = 30 ns is the clock period and memory cycle time is 2 × 30 = 60 ns. Out of 60 ns, 20 ns is used for

path delay; therefore, the memory must have no more than 40 ns cycle time.

SECTION 22.2: PAGE AND STATIC COLUMN DRAMS

11. ROM and SRAM
12. tAA is the time interval between the moment the addresses are provided to the memory chip address pins to the

moment the data is available at the data pins. tCA is the time interval between the moment the CS (chip select) is
activated to the moment the data is available at the data pins.

13. The minimum time interval between two consecutive accesses to the memory chip.
14. From the moment the CPU provides the address to the address pins to the moment it expects the data to be at its

data pins. Or, one might say the minimum time interval between two consecutive memory access requests.

15. tRC (read cycle time) is the memory cycle time while tRAC (access time from RAS activation) is the memory

access time from the moment the RAS is activated. tRC is always much larger than tRAC (almost twice).
16. tRC = tRAC + tRP
17. 120 ns
18. 170 ns
19. 55 ns
20. 45 ns
21. It is 2048 × tRC; therefore, 2048 × 110 ns = 225280 ns.
22. It is 2048 × tRC; therefore, 2048 × 130 ns = 266240 ns.

 106
23. The diagram follows.

24. Each 8-bit data bus has 1Mx8 or 1M; therefore, we have 4M bytes for each set and since in interleaved memory

two sets are used, the minimum memory addition is 8M or 2[4(1Mx8 bits)] = 8M bytes, or one might say, 2
sets of 1M double words (each double word = 32 bits).

25. Since 8M bytes is 8Mx8, (8Mx8)/(1Mx4) = 16 chips.
26. 2[4(4Mx8 bits)] = 32M bytes, or one might say, 2 sets of 4M double words
27. Since 32M is 32Mx8, (32Mx8)/(4Mx4) = 16 chips.
28.

29. time to access one page = tRAC + 2047 tPC = 70 ns + 2047 x 45 ns = 70 ns + 92115 = 92185 ns

30. time to access one page = tRAC + 2047 tPC = 60 ns + 2047 x 40 ns = 60 ns + 81880 ns = 81940 ns
31. time to access all 2048 bits of one page = tRAC + 2047 × tSC = 70 ns + 2047 × 40 ns = 70 ns + 81880 ns =

81950ns
32. time to access one page = tRAC + 2047 x tPC = 60 ns + 2047 x 35 ns = 60 ns + 71645 ns = 71705 ns
33. false
34. true

 107

SECTION 22.3: CACHE MEMORY

35. fully associative, direct mapped, and set associative
36. When the CPU starts to access memory locations, it is likely that subsequent memory accesses will be in the

same vicinity, at least for a while.
37. Least recently used refers to those contents of cache that have not been accessed for a period of time and

therefore they are the first candidates to be replaced in order to make room in cache for new data and code.

38. It refers to the method of updating main memory. When the CPU writes to memory, if it writes to cache and

main memory both at the same time, it is called write through. If it writes to cache memory only and lets the
cache controller write to the main memory at some convenient time later, it is called write back. Write through
increases the main memory bus usage (traffic) but main memory is always updated. Since write-back has 30 -
40% better performance all recent CPUs use write-back instead of write-through.

39. It means that when there is a cache miss, a minimum of 16 bytes of data is brought into cache (and into CPU)

from the main memory.
40. (a) See the following diagram.

 (b) See the following diagram.

 108

 (c) See the following diagram.

 (d) See the following diagram.

 109
 (e) See the following diagram.

 110
41. The data cache is the same for all of them but the tag cache goes from 32K in direct-mapped to 56K in 8-

way set associative. This increase of 24K bytes (56 - 32 = 24) increases the hit rate substantially.

42. (a) See the following diagram.

 (b) See the following diagram.

 (c) See the following diagram.

 111

(d) See the following diagram.

 (e) See the following diagram.

 112

43. The data cache is the same for all of them but the tag cache goes from 512K bytes in direct-mapped to 896K
bytes in 8-way set associative. This increase of 384K bytes (896 - 512 = 384) increases the hit rate substantially.

44. cache organization (associativity), cache size, cache fill block size
45. by increasing the cache size, the effect on the cache hit is small
46. L1 works at the same speed as the CPU. L2 works at a fraction (1/3) of the frequency of the CPU.
47. true

SECTION 22.4: SDRAM, DDR RAM, AND RAMBUS MEMORIES

48. multiple
49. Since each clock has period of 1/300 MHz = 3.3 ns we have 2 x 3.3 ns = 6.6 ns for the read cycle time.
50. A memory cycle time of 6.6 ns means that the microprocessor expects data every 6.6 ns. Memory cycle time is

measured from the time the CPU provides the address to the time it expects the requested data at its data pins.
To design a motherboard in which the memory access time plus the data and address pathway delay is only 6.6
ns is not only technically challenging but also very expensive. It requires memory chips with an access time of 4
ns and logic gates (74XX244, 74XX138, 74XX245) of pico second speed. Furthermore, such high-speed
signals going around the motherboard cause massive radiation and act like an antenna. As result, such a high-
speed motherboard is not yet possible at an affordable price.

51. (b) a fraction of. This is the case now. However, Intel is planning to introduce 100 - 150 MHz bus speed in the
next few years.

52. Extended Data Out, Fast Page Mode
53. True
54. It means that the row is selected and the data in consecutive columns of that row are fetched. In opening the

page, we provide the row address and RAS is activated; then the column address is provided and CAS is
activated. From then on subsequent data is fetched by simply toggling CAS and the access time is called tPC, the
page cycle time. tPC is the minimum time for reading consecutive columns of a given row.

55. FPM
56. The internal sense amplifiers of DRAM shut down data flow to DRAM's data bus. This in turn will deprive the

CPU of data being fetched from DRAM.
57. tPC (page cycle time)
58. To allow the start of the next cycle. The faster it is done, the sooner it can start the next cycle.
59. From Table 22-11 (14-11) we have tPC = 20 ns.

From Table 22-10 (14-10) and 22-11 (14-11) we see that tRAC and tRC are the same for both EDO and FPM
DRAMs. However, the tPC is different which shows the superiority of EDO over FPM DRAM.

61. less
62. tCAS, tCP (tPC = tCAS + tCP). The tCP is same across FPM and EDO DRAMs since it is the absolute minimum time

that CAS has to stay high before it
 is pulled down. However tCAS is shorter in EDO, hence its superiority.
63. Synchronous DRAM
64. The presence of a common clock between the CPU and SDRAM memory by which bus activities are

synchronized. There is no such common clock connecting EDO or FPM DRAMs to the CPU.
65. 13.3 ns since 1/75 MHz = 13.3 ns
66. 8.3 ns since 1/120 MHz = 8.3 ns
67. 125 MHz
68. Since there is burst mode read in the CPU bus cycle time there are also burst mode RAMs. See Chapter 23 (15)

for burst mode READ of 486 and Pentium processors. In burst mode RAMs, the first addressed data is accessed
in the normal access time; however, each subsequent data is fetched much faster. The burst length is the number
of locations inside RAM that can be accessed with the shorter access time after the first location has been
accessed. In many RAMs this length can be programmed. It can be 2, 4, 8, and so on.

69. It can be 2, 4, 8, up to 256, or in some cases up to an entire page. Some pages go as high as 1024.
70. True
71. In the motherboard design with interleaved memory, we lay the DRAM banks side by side in order to hide the

access time of one bank behind the precharge time of the other one. However, in SDRAM of the interleaved
type, this is done inside the DRAM chip on the die itself.

 113
72. False
73. Rambus DRAM. It is mainly a proprietary bus connection for the CPU- to-memory communication. This means

that DRAM makers must license the RDRAM technology from RAMBUS Inc. for a fee. However EDO and
SDRAM DRAMs are industry standards with no royalties to be paid to anyone.

74. (1) Rambus interface (2) Rambus channel, and (3) Rambus DRAM
75. True
76. 9
77. slave
78. True
79. True
80. (1) request, (2) acknowledge, and (3) data
81. part of the acknowledge packet
82. When data is requested by the master, the slave sends an acknowledgment. In the acknowledgment response

there are three possibilities: (a) the data does not exist, (b) the data exists but the slave is too busy to send it
(nack) and finally , (c) the data exists and the slave is ready to transfer (okay).

83. 500 MHz, that is theoretically.
84. Such a CPU must be connected to the Rambus controller in order to communicate with the RDRAM type

memory. In other words, we must place a Rambus controller in between this CPU and RDRAM.
85. False

 114

CHAPTER 23: PENTIUM AND RISC PROCESSORS

SECTION 23.1: THE 80486 MICROPROCESSOR

1. 168
2. 32
3. 8K bytes
4. L2 (level 2) or secondary cache
5. true
6. The 486 has both the microprocessor and the math coprocessor all on one chip. The 486SX does not have a

math coprocessor. The math coprocessor is a separate chip called the 487SX.
7. 32
8. 4
9. 4 gigabytes using its 32-bit address bus (2^32 = 4G)
10. 4: BE0 - BE3
11. 2
12. It means that in reading 4 consecutive words (32-bit size) it will take 2 clocks for each word.
13. It means that in reading 4 consecutive words (32-bit size) the first one will take 2 clocks, and each of three

subsequent ones will take only one clock.
14. 4 x 4 = 16 bytes; a total of 5 clocks since we have 2-1-1-1
15. (a) With the clock period of 1/25 MHz = 40 ns, we have 2 x 40 = 80 ns for the memory cycle time; therefore, the

bus bandwidth is (1/(80 ns)) × 4 bytes = 50 Mbytes/sec.
(b) In the burst cycle, 5 clocks are used to transfer 4 consecutively located words of 32-bit size. Each 32-bit
word takes a 1.25 clock period (5/4 = 1.25); therefore, the bus bandwidth is [1/(1.25 x 40 ns)] x 4 bytes =
80Mbytes/sec.

16. (a) With the clock period of 1/33 MHz = 30 ns, we have 2 x 30 = 60 ns for the memory cycle time; therefore, the
bus bandwidth is (1/(60 ns)) × 4 bytes = 66.6 Mbytes/sec.
(b) In the burst cycle, 5 clocks are used to transfer 4 consecutively located words of 32-bit size for each 32-bit
1.25 clock period (5/4 = 1.25); therefore, the bus bandwidth is [1/(1.25 x 30 nsec)] x 4 bytes = 106 Mbytes/sec.

17. BSWAP (byte swap)
18. DS:4000=(12) DS:4001=(65) DS:4002=(F4) DS:4003=(23) DS:6000=(23)

DS:6001=(F4) DS:6002=(65) DS:6003=(12)
 all values are in hex
19. 25 MHz
20. to mask or unmask the A20 address bit; This will eliminate the need for external circuitry called the A20 gate

used for 386/286 CPUs.
21. (a) When input A20M=0, the CPU's A20 address bit is masked and forced to 0. Since FFFF0H + 76A0H =

10769H; dropping the 1 we have 07690H as the physical address.
(b) When input A20M=1, the CPU's A20 address pin provides the A20 address bit. Since FFFF0H + 76A0H =
10769H where A20=1, we have 107690H as the physical address.

22. It is 65,520 bytes of memory located above the 1M address space of FFFFFH and accessible by DOS using
286/386/486/Pentium processors in real mode. The A20M input pin of the 486 allows masking or unmasking
the A20 address bus, thereby making the 486 compatible with 8088/86 or 286/386 CPUs.

23. 5
24. 1. prefetch 2. decode1 3. decode2 4. execute 5. write back

SECTION 23.2: INTEL'S PENTIUM
25. more
26. superscalar
27. 3.1 million, 273 pins
28. 64, D0 - D63
29. 32

 115
30. It has 8 of them, BE0 - BE7, where BE0 is used for D0 - D7, BE1 for D8 - D15, and so on. Their purpose is

to allow the selection of individual byte buses.
31. low
32. D0 - D31
33. D0 - D63
34. 8, one for each byte of the data bus
35. The clock period is 1/60 MHz = 16.6 ns, therefore
 (a) [1/(2 x 16.6 ns)] x 8 bytes = 240 megabytes/second
 (b) [1/(1.25 x 16.6 ns)] x 8 bytes = 385 megabytes/second

36. 16K bytes
37. 8K bytes for data and 8K bytes for code: a total of 32K bytes
38. code
39. true
40. To issue two instructions simultaneously, one to each execution unit; therefore, executing two instructions in one

clock.
41. superscalar
42. when two instructions are issued, one to each execution unit at the same time; these paired instructions must not

have any dependency
43. when one instruction needs the data result of another instruction in order to proceed with its own completion. It

is avoided most of the time by rearranging the sequence of instruction flow (scheduling).
44.
 .MODEL SMALL
 .386
 .STACK 300H
 .DATA
 DATA1 DD 10 DUP(9999999H) ;ARRAY OF 10 DWORD
 SUM DQ ?
 COUNT EQU 10
 .CODE
 MAIN: MOV AX,@DATA
 MOV DS,AX
 SUB EBX,EBX ;clear EBX

 MOV EAX,EBX ;clear EAX
 MOV EDX,EAX ;clear EDX
 MOV CX,COUNT ;counter
 MOV ESI,OFFSET DATA1 ;load address
BACK: ADD EAX,[ESI+EDX*4] ;add the operand

 ADC EBX,0 ;save the carry
 INC EDX ;increment the pointer
 DEC CX ;continue until counter=0
 JNZ BACK
 MOV DWORD PTR SUM,EAX ;save the sum
 MOV DWORD PTR SUM+4,EBX
 MOV AH,4CH ;exit
 INT 21H ;to DOS
 END MAIN

 116
45. (a) and (b) 386 486
 BACK: ADD EAX,[ESI+EDX*4] 6 2
 ADC EBX,0 2 1
 INC EDX 2 1
 DEC CX 2 1
 JNZ BACK 7/3 3/1
 Total clock count for one iteration 19 8

(c) Since there are no detail information about the calculation of the effective address of [ESI+EDX*4] from
Intel plus the fact that it is followed by the ADC we assume the first instruction will take 2 clocks (This is a
speculation). Therefore with the branch prediction and instruction pairing we have:

 Pentium
 BACK: ADD EAX,[ESI+EDX*4]
 ADC EBX,0 2
 INC EDX
 DEC CX 1
 JNZ BACK 1

 Total clock count for one iteration 4

 (d) by swapping the "ADC EBX,0" and "INC EDX" the dependency of the ADC is removed. Now we have:

 BACK: ADD EAX,[ESI+EDX*4]
 INC EDX 1
 ADC EBX,0
 DEC CX 1
 JNZ BACK 1
 Total clock count for one iteration 3

46. The clock period is 1/25 MHz =40 ns; bus bandwidth =1[(2 x 40 ns)] x 4 bytes =50 megabytes/second, 6

MB/second.
47.

48. true

 117

SECTION 23.3: RISC ARCHITECTURE

49. because all arithmetic and logic operations must use registers for the source and destination operands; therefore

to perform any operation on operands, both must be loaded from memory into register first and then after the
operation it is stored back into memory

50. 4 bytes
51. OR reg,mem; In instruction "MOV reg,immediate", the immediate operand size is limited to 16 bits since the

size of the instruction must not exceed 32 bits in RISC processors
52.
 MOV REG2,MEM ;load the operand from memory to reg
 ADD REG2,REG1 ;add the other operand
 MOV MEM,REG2 ;now store the result back into memory

53. It makes the task of instruction decoding by the CPU much easier and uses less transistors.
54. because RISC uses a series of simple instructions to perform a single CISC instruction
55. 1
56. The idea of using separate buses to access the code and data sections of a program is called Harvard architecture.

Since all programs, including those written for 80x86 CISC processors, use separate regions (segments) of
memory for data and code, one can use the Harvard architecture for CISC as well.

57.
 ;r8 = pointer to location for SUM
 ;r3 = pointer to data block
 or 10,r0,r2 ;load the counter value (10) into r2
 or r0,r0,r1 ;clear r1 (r1 contains SUM)
 again ld 0(r3),r7 ;load operand pointed to by r3 into r7
 nop ;r7 cannot be used right away
 add r7,r1,r1 ;add the operand to r1
 add 4,r3,r3 ;point to next doubleword operand
 add -1,r2,r2 ;decrement counter
 or r0,r2,r2 ;set condition code to high if r2=0
 bnc.t again ;loop back
 nop
 st.1 r1,(r4) ;store SUM

58. The code scheduling and clock counts for the loop section are follows.

 clock count

again ld 0(r3),r7 1
 add 4,r3,r3 1
 add r7,r1,r1 1
 add -1,r2,r2 1
 or r0,r2,r2 1
 bnc.t again 1 (with branch prediction)

 6 clocks

59. the idea of executing the instruction below the jump instruction even though the program may branch to new

address after the execution of the jump
60. b
61. 32
62. R0
63. Native code is written using the instructions specific to that processor. For example, DOS runs native on the x86.

Emulation is where one computer mimics the hardware and instruction set of another system. For example,
Macintosh 68000 emulates DOS. Porting requires rewriting or modifying the code from one platform in order
for it to operate on another system.

 118

SECTION 23.4: PENTIUM PRO PROCESSOR

64. 32, 64
65. 36
66. 236 = 64 gigabytes
67. 64
68. It is the internal frequency.
69. In the Pentium, the L2 cache is a separate set of SRAM chips; however, in the Pentium Pro the CPU and L2

cache are on the same package (but different die). Intel also has a Pentium Pro without the L2 cache on the same
package. In this case it is like the Pentium chip that needs SRAM to be connected to it externally.

70. No. It is only for the processor itself without the L2 cache.
71. Pentium Pro
72. No. It is used internally.
73. True
74. False
75. True
76. Retire unit
77. True
78. Both Pentium and Pentium Pro

SECTION 23.5: MMX TECHNOLOGY

79. False. It has a whole new set of instructions for that purpose.
80. In such a system, the x86 is responsible for communicating with memory and peripherals; the DSP chip is for

performing digital signal processing and multimedia functions.
81. No
82. It is the idea of the same register set being used by two different sections of the CPU. Each section can use the

register but not at the same time. It is like one person having two different names.
83. R0 - R7 ((ST(0) - ST(7)) of the x87 math processor
84. ST(0) - ST(7) of the x87 are accessed in the stack format meaning that the last one is the first one out (LIFO). In

MMX, the registers are accessed by their names MR0 - MR7 in the same way as AX, BX, and so on.
85. (a), (b)
86. It should clear all the MMX registers and point to the top of stack.
87. It should pop all the FP registers (setting the stack at the top) to leave them cleared.
88. 64
89. 64
90. Since in the x86, a word is defined as 16 bits, 64-bit data can be used as two doublewords, four words, or 8

bytes.
91. False
92. We check for D18 of the flag bit. If it is low it is 386.
93. We try to change bit D21 of the flag register. If it cannot be changed then it is a 486.
94 & 95. First we try to see if bit D21 of the flag register can be changed. In the x86, the CPUID instruction is

supported if D21 can be altered (set or reset). It is only after this determination that we use the CPUID
instruction with EAX=01. Upon return from CPUID, bits D8 - D11 indicate the family number where 101
(binary) is for the Pentium and 110 (binary) is for the Pentium Pro.

96. Upon return from CPUID, we must check D23 of EDX. If it is high, it has MMX capability.
97. We can use a simple macro such as:
 CPUID MACRO
 DB 0FH
 DB 0A2H
 ENDM

 119

CHAPTER 24: THE EVOLUTION OF x86: FROM 32-BIT TO 64-BIT

SECTION 24.1: x86 PENTIUM EVOLUTION

1. True
2. True
3. 16KB
4. 512KB
5. 12KB
6. 1MB
7. 32KB
8. 2 MB
9. L1 cache works at the same speed as the CPU (or close to it) while L2 works at a fraction (around 1/3) of the

CPU speed.
10. L3 cache is outside the CPU and sitting on the motherboard. It works at the speed of 1/6 to 1/10 of CPU.
11. There is no L3 cache.
12. L1 cache works at the same speed as the CPU (or close to it) while L2 works at a fraction (around 1/3) of the

CPU speed. L3 cache is outside the CPU and sitting on the motherboard. It works at the speed of 1/6 to 1/10
of CPU.

13. False. Only Pentium 4 and on
14. False. Only Pentium 4 and on.
15. In the multithreading the CPU takes advantage of parallelism in a program while in the multitasking the CPU

swaps in and out different programs(That is it takes turn to executes different programs.)
16. Multicore CPU have multiple processing cores inside the a single CPU, while the in multiprocessors we have

multiple CPUs on motherboard.
17. The MMX did not support floating point operations while XMM does
18. True
19. True
20. True

SECTION 24.2: 64-BIT PROCESSORS AND VISTA FOR x86

21. False. Yes it can.
22. RAX, RBX, RCX, RDX, RSI, RDI,RBP, RSP, R9, R10, …and R15.
23. EAX, EBX,ECX, EDX, ESI, EDI, EBP, and ESP, R0…..and R15
24. AX, BX, CX, DX, SI,DI, BP, and SP, R0…and R15
25. AH, AL, BH, BL, CH, CL, DH, and DL, R0, ….and R0
26. The compatibility mode and 64-bit mode
27. 2**32
28. 2**64
29. 4GB
30. 2**44 = 8 Terabyte, but only 128 GB is implemented
31. No. Only in 64-bit
32. 128GB

 120
CHAPTER 25: SYSTEM DESIGN ISSUES AND FAILURE ANALYSIS

SECTION 25.1: OVERVIEW OF IC TECHNOLOGY

1. When electrons move from emitter to collector, they must overcome two pin junctions, and the second one,

especially, consumes energy since it is reverse bias.
2. gate input capacitance; the charge-up time adds to the delay
3. because NMOS uses electrons as carriers and electrons travel much faster than the hole which is the carrier for

the PMOS
4. (a) Q2 and Q4 are "on" while Q3 is "off"
 (b) Q2 and Q4 are "off" while Q3 is "on"
5. (a) PMOS is "off" and NMOS is "on"
 (b) PMOS is "on" and NMOS is "off"
6. because the amount of time where the path from VDD to VSS is conducting is also increased as the frequency

rises, therefore drawing more current
7. to prevent the transistors from going into deep saturation where it takes longer to recover to the "off" state
8. NM for "0" is =VIL - VOL = 0.8 V - 0.5 V = 0.3 V.
 NM for "1" is =VOH -VIH = 2.7 V - 2.0 V = 0.7 V.
9. NM for "0" is =VIL - VOL = 1.1 V - 0.4 V = 0.7 V.
 NM for "1" is =VOH -VIH = 3.7 V - 3.15V = 0.55 V.
10. LS
11. ALS
12. ALS
13. FCT; ACT is more power efficient
14. The FCT logic family is a CMOS version of TTL based FAST logic family.
15. For designers who are familiar with the FAST logic family, the migration to FAST is easy since FASTr has

much higher IOH and IOL and is less noisy.
16. It combines speed of bipolar and power efficiency of CMOS technology.
17. true
18. False, it is used for systems with speeds in the range of 30 MHz - 66 MHz.
19. 0.8 micron
20. It is the only way one can put millions of transistors together to make a powerful CPU. Bipolar dissipates too

much heat, thereby limiting the number of transistors that can be put on a single chip.

SECTION 25.2: IC INTERFACING AND SYSTEM DESIGN ISSUES

21.

 20
20

400


A

A

I

I

IH

OH




 , 40
2.0

8


mA

mA

I

I

IL

OL

 Therefore, the fan-out is 20.
22.

 10
40

400


A

A

I

I

IH

OH




 , 5
6.1

8


mA

mA

I

I

IL

OL

 Therefore, the fan-out is 5.
23.

 10
40

400


A

A

I

I

IH

OH




 , 5.2
6.1

4


mA

mA

I

I

IL

OL

 Therefore, the fan-out is 2.
24.

 150
20

3


A

mA

I

I

IH

OH


 , 33

36.0

12


mA

mA

I

I

IL

OL

 Therefore, the fan-out is 33.

 121
25.

 IOL= ILI =10 × 0.36 mA + 20 × 10 µA=3.8mA

 IOH= IHI =10 × 20 µA + 20 × 10 µA=400 µA

26. true
27. high
28. A single output of the 244 goes to 64 inputs, since it goes to two banks, each with 32 inputs. Therefore, the total

Cin = 64 x 7 pF = 448 pF.
For the derating, [448 pF - 50 pF = 398 pF since the 244 handles only 50 pF] (398/100) x 3 ns = 11.94 ns.
Address path delay = 8 ns + 11.94 ns + 15 ns = 34.94 ns.

29. A single output of the 244 goes to 32 inputs, since it goes to one bank with 32 inputs. Therefore, the total Cin =
32 x 7 pF = 224 pF.
For the derating, [224 pF - 50 pF = 174 pF since the 244 handles only 50 pF] (174/100) x 3 ns = 5.22 ns.
Address path delay = 8 ns + 5.22 ns + 15 ns = 28.22 ns.

30. Since a single output of the 244 drives only 16 inputs, the Cin = 16 x 7 pF = 112 pF. Therefore, the delay due to
capacitance derating is small (2 ns) and address path delay = 8 ns + 2 ns + 15 ns = 25 ns.

31. dynamics
32. (1) it dissipates less power, (2) It allows further reduction in the line size. For example in the Pentium of VCC =

5V, the line size is 0.8 micron while Pentium II of VCC = 3.3V, the line size is 0.6 micron, (3) smaller line size
allows higher speed chip, (4) a smaller line size also increases the number of transistors per square inch in the
chip design, thereby resulting in a higher chip density.

33. 52 - 3.72 =25 - 13.69 = 11.31 W less or 45.24% power savings
34. (a) Using 256Kx1, we need 8 chips of 256Kx1; in order to access a byte, all 8 chips are active and there is no

inactive (standby) chip; therefore we have P = (N × IACT + M × ISB × 5V =(8 × 230 mA + 0) 5V = 9.2 watts.
 (b) Using 32Kx8, we need 8 banks of 32Kx8 but to access
 a byte only one of the chips is active and the other 7 chips are inactive.
 Therefore, we have P = (N × IACT + M ×ISB) ×5V = (1×230 mA + 7 × 50mA) × 5V =2.9 watts.

35. (a) P = (N × IACT + M ×ISB) ×3.3 V = (8 × 230 mA + 0) × 3.3V = 6.072 watts.

 (b) P = (N × IACT + M × ISB) × 3.3 V = (1 × 230 mA + 7 × 50 mA) × 3.3 V = 1.914 watts.

36. Moving VCC and GND to the middle of the package reduces the length of the wire, which in turn decreases the

inductance (L) and results in lower ground bounce and VCC bounce.
37. Ground bounce happens when a large number of outputs change state from high to low, causing a massive

amount of current to flow through the ground pin, which raises the VOL voltage level beyond the permitted noise
margin. The cures are

 (1) If possible one must use memories with 4 or 8 data buses instead of 16 or 32, (2) Make the length of the
ground pin as small as possible, (3) Use chips which have many ground pins instead of one, (4) Use IC chips
where the ground pin is located in the middle instead of the corners.

38. because the noise margin for VOH is normally much higher than the VOL noise margin
38. In TTL, pins 7 and 14 are used for ground and VCC, respectively. The location of VCC and ground pins at the

corners increases the length of the wire causing a bigger VCC and ground bounce. In ACT chips, the VCC and
ground pins are located in the middle which means a much shorter wire length and as result, less inductance and
consequently, less voltage swing since V = L di/dt.

39. In totem pole TTL, there are times, however short, that both output transistors are on. This results in drawing a
large amount of current, and consequently a spike on the output current. Placing a 0.01 uF (or 0.1uF) ceramic
disk capacitor between VCC and ground plane for each chip will reduce the transient current substantially.

40. for the following reasons, (1) All these devices must be isolated (buffered) from the main data bus the same way
that the CPU must be buffered (isolated) from the main data bus, (2) each device has a different current driving
capability, (3) To reduce the load on the main data bus driver.

 122
41. The mutual inductance as a result of the two conducting lines running in parallel is called crosstalk. To

reduce crosstalk, we need to (1) if possible place the parallel conducting lines at some distance from each other,
(2) use dedicated ground lines for each signal line.

42. When a signal travels on a line not all the harmonics, which the square line is made of, respond the same way.
In many cases the square wave looks distorted. The main reason behind the ringing is because some signals
bounce back and run into the incoming signal causing distortion.

43. FCT, LS.
44. It is serial termination in order to reduce the ringing.
45. A hard error is permanent while a soft error is not.
46. A hard error, permanent damage to a storage cell, is due to wear and tear of the device and nothing can be done

about it. A soft error, the inadvertent change in the contents of cell, is due to alpha particle radiation in the air
and the chip's encapsulating plastic package, and power surge.

47. To implement the 16M of system memory using the 1M×1 DRAM chips, we need (16M × 8) / 1Mx1 = 128
chips. The MTBF for 16M of system memory =453 years / 128 chips = 3.53 years. (1,000,000,000 hours / 252 =
453 years MTBF for one chip)

48. 16M of memory using 32-bit words has 4 banks each with 32 1Mx1 memory chip since 128/32 = 4 banks. This
means that we have 4M words of 32-bit size. Since each 32-bit word requires an extra 7 chips for EDC, a total of
(16Mx8/32Mx1) x 7 =4 x 7 = 28 DRAM chips are used by EDC. This results in a total chip count of 156 (128 +
28) of 1Mx1 chips. Since MTBF for a single chip is 453, we have:

 MTBF of 156 DRAM = years
years

9.2
156

453


 MTBF with EDC = years
M

years 7.7441
2

4
9.2 






 123

CHAPTER 26: ISA, PC104, AND PCI BUSES

SECTION 26.1: ISA BUS MEMORY SIGNALS

1. MEMW and MEMR on the 36-pin section of the ISA bus
2. 24 megabytes since we have A0 - A23
3. low, yes
4. The 8-bit D0 - D7 is the default mode in ISA. Therefore, to use the entire D0 - D15 data bus we must assert the

MEMCS16 pin low.
5. low, yes
6. The ZEROWS pin is used to tell the system board to perform the read and write cycle time with zero wait states.

For 16-bit ISA, memory read and write has 1 WS, unless the ZEROWS pin is aserted low. For 8-bit ISA, if
ZEROWS is asserted low, the read/write cycle has 1 WS instead of 4 WS.

7. D0 - D7 portion
8. the entire D0 - D15
9. 6 × 125 ns = 750 ns (4WS + 2)
10. 3 × 125 ns = 375 ns (1WS + 2)
11. 2 × 125 ns = 250 ns (0WS + 2)
12. 3 × 125 ns = 375 ns (1WS + 2)
13. Both need to be asserted low.
14. MEMCS16 ZEROWS Data bus used Read Cycle Time Bus Bandwidth
 0 0 D0 - D15 250 ns 8MB/sec
 0 1 D0 - D15 375 ns 5.33MB/sec
 1 0 D0 - D7 375 ns 2.66 MB/sec
 1 1 D0 - D7 750 ns 1.33MB/sec

15. More memory on smaller cards and much shorter access time than the ISA bus.

SECTION 26.2: I/O BUS TIMING IN ISA BUS

16. The ISA bus signals on the expansion slot have certain number of WS inserted as default. The ZEROWS pin is

used to inform the motherboard that we want to eliminate these WS. This allows to shorten the I/O bus cycle.
17. The ISA bus on the expansion slot is an 8-bit bus as default. The IOCS16pin is used to inform the motherboard

that we want to override the default and use the 16-bit buses This allows to use D0-D15 buses instead of D0-D7.
18. 8-bit
19. 8 MHz which gives 1/8Mhz=125 nsec.
20. 4 WS
21. 4WS + 2 clocks =6 clocks and 6x 125 ns= 750 nsec is the time it takes to finish one I/O cycle.
22. 1 WS
23. 1WS + 2 clocks =3 clocks and 3x 125 ns= 375 nsec is the time it takes to finish one I/O cycle when ZEROWS pin

is asserted.
24. 1 WS
25. 1WS + 2 clocks =3 clocks and 3x 125 ns= 375 nsec is the time it takes to finish one I/O cycle of 16-bit default.
26. input, low
27. input, low
28. Since the I/O cycle time is 750 nsec(6x125 ns=750 ns) we have 1/750 ns x1byte=1.33 mega bytes/sec
29. Since the I/O cycle time for 16-bit standard is 375 nsec(3x125 ns=375 ns) we have 1/375 ns x2byte=5.33 mega

bytes/sec
30. While ZEROWS is used to shorten the I/O bus cycle we increase its duration by using the CHANRDY pin. By

asserting the CHANRDY we can insert up to 10 WS into I/O cycle time.
31. By asserting the CHANRDY pin we can insert up to 10 WS into I/O cycle time.

 124

SECTION 26.3: PCI BUS

32. 33 MHz
33. true
34. true
35. False, it is allowed.
36. In PCI ,the bus frequency is 33 MHz, and the memory cycle is 2 clocks 2 x 30 ns = 60 ns; therefore, the bus

bandwidth is [1/(60 ns)] x 4 = 66 Mbyte/sec.
37. (a) Much of the PCI documentation states that the maximum bus bandwidth of a 32-bit PCI bus at 33 MHz is

133M bytes. The reason is that in their calculations, they assume one clock per memory (or I/O) cycle using
burst mode. In that case, the first clock is used for the addresses and in each of the subsequent clocks the data is
transferred for hundreds of consecutive cycles. Therefore, the bandwidth is [1/(30 ns)] × 4 = 133
megabytes/second.

 (b) [1/(30 ns)] x 8 = 266 megabytes/second

 125

CHAPTER 27: USB PORT PROGRAMMING

SECTION 27.1: USB PORTS: AN OVERVIEW

1. 127 for USB, 4 for COM and 4 for LPT
2. 25 W for ISA, 10 W for PCI, and 500 mW for USB
3. 1. Mb/sec, 12Mb/s, and 480Mb/s.
4. It means we can plug and unplug the device into the system while the system power is on
5. USB

SECTION 27.2: USB PORT EXPANSION AND POWER MANAGEMENT

6. True
7. True
8. True
9. False
10. True
11. The data going toward host is called upstream and data going from host toward peripherals is called

downstream
12. Host is the master which controls the slave or peripheral devices. If a host has limited number of connecting

ports for peripheral connection, then we need a hub to expand the number of connection
13. maximum 500mA
14. maximum 500mA
15. 7
16. In the self-powered power comes from external power supply, while in the bus powered the power comes

from the USB host.
17. The cable with both ends of A-type is used to extend cable.
18. It is used for connecting a hub to a device.
19. 4
20. The D+ and D- are differential lines carrying data, GND and VCC provide power to the device.
21. 5 meters (15 feet)
22. NRZI (none return to zero inverted) encoding
23. True
24. The process of recognizing a device and assigning an address to it is called enumeration
25. the USB host
26. 500mA
27. The A-type is used for connecting to a hub (upstream) while the B-side is used for connecting it to a device.
28. total of 127
29. 1 - 127
30. False
31. True
32. 100mA

SECTION 27.3: USB PORT PROGRAMMING

33. See MicroDigitalEd.com for solution.

	CHAPTER 0: INTRODUCTION TO COMPUTING
	SECTION 0.1: NUMBERING AND CODING SYSTEMS
	SECTION 0.2: DIGITAL PRIMER
	A
	B
	C
	Y
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	1
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1
	1
	A
	B
	C
	Y
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	A
	B
	C
	Y
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	1
	1
	0
	0
	0
	1
	0
	1
	0
	1
	0
	0
	1
	1
	1
	A
	B
	C
	Y
	0
	0
	0
	1
	0
	0
	1
	1
	0
	1
	0
	1
	1
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1
	0
	A
	B
	C
	Y
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	0
	CLK
	D
	Q
	No
	X
	NC
	Yes
	0
	0
	Yes
	1
	1
	SECTION 0.3: INSIDE THE COMPUTER
	SECTION 1.2: INSIDE THE 8088/86
	SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING
	SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS
	SECTION 1.5: THE STACK
	SECTION 1.6: FLAG REGISTER
	SECTION 1.7: x86 ADDRESSING MODES
	CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING
	SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAMSECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAMSECTION 2.3: MORE SAMPLE PROGRAMS
	SECTION 2.5: DATA TYPES AND DATA DEFINITION
	CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMSSECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION
	SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION
	SECTION 3.3: LOGIC INSTRUCTIONS
	SECTION 3.4: BCD AND ASCII CONVERSION
	SECTION 3.5: ROTATE INSTRUCTIONS
	SECTION 3.6: BITWISE OPERATORS IN THE C LANGUAGE
	CHAPTER 4: INT 21H AND INT 10H PROGRAMMING AND MACROSSECTION 4.1: BIOS INT 10H PROGRAMMING
	SECTION 4.2: DOS INTERRUPT 21H
	SECTION 4.3: WHAT IS A MACRO AND HOW IS IT USED?
	CHAPTER 5: KEYBOARD AND MOUSE PROGRAMMINGSECTION 5.1: INT 16H KEYBOARD PROGRAMMING
	SECTION 5.2: MOUSE PROGRAMMING WITH INT 33H
	CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLESSECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS
	SECTION 6.2: STRING AND TABLE OPERATIONS
	CHAPTER 7: MODULES AND MODULAR PROGRAMMINGSECTION 7.1: WRITING AND LINKING MODULES
	SECTION 7.2: SOME VERY USEFUL MODULES
	CHAPTER 8: 32-BIT PROGRAMMING FOR x86SECTION 8.1: 32-BIT PROGRAMMING IN x86
	CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUSSECTION 9.1: 8088 MICROPROCESSOR
	SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS
	SECTION 9.3: 8-BIT SECTION OF ISA BUS
	SECTION 9.4: 80286 MICROPROCESSOR
	SECTION 9.5: 16-BIT ISA BUS 246
	CHAPTER 10: MEMORY AND MEMORY INTERFACINGSECTION 10.1: SEMICONDUCTOR MEMORIES
	SECTION 10.2: MEMORY ADDRESS DECODING
	SECTION 10.3: IBM PC MEMORY MAP
	SECTION 10.4: DATA INTEGRITY IN RAM AND ROM
	SECTION 10.5: 16-BIT MEMORY INTERFACING
	CHAPTER 11: 8255 I/O PROGRAMMINGSECTION 11.1: 8088 INPUT/OUTPUT INSTRUCTIONS
	SECTION 11.2: I/O ADDRESS DECODING AND DESIGN
	SECTION 11.3: I/O ADDRESS MAP OF x86 PCs
	SECTION 11.4: PROGRAMMING AND INTERFACING THE 8255
	CHAPTER 12: INTERFACING TO LCD, MOTOR, ADC, AND SENSORSECTION 12.1: INTERFACING TO AN LCD
	SECTION 12.2: INTERFACING TO A STEPPER MOTOR
	SECTION 12.3: INTERFACING TO A DAC
	SECTION 12.4: INTERFACING TO ADC CHIPS AND SENSORS
	CHAPTER 13: 8253/54 TIMERSECTION 13.1: 8253/54 TIMER
	SECTION 13.2: x86 PC 8253/54 TIMER CONNECTION AND PROGRAMMING
	SECTION 13.3: GENERATING MUSIC ON THE x86 PC
	CHAPTER 14: INTERRUPTS IN x86 PCSECTION 14.1: 8088/86 INTERRUPTS
	SECTION 14.2: x86 PC AND INTERRUPT ASSIGNMENT
	SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER
	SECTION 14.4: USE OF THE 8259 CHIP IN x86 PCs
	SECTION 14.5: MORE ON INTERRUPTS IN x86 PCs
	CHAPTER 15: DIRECT MEMORY ACCESS AND DMA CHANNELS IN x86 PCSECTION 15.1: CONCEPT OF DMA
	SECTION 15.2: 8237 DMA CHIP PROGRAMMING
	SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PC
	SECTION 15.4: DMA IN x86 PCs
	CHAPTER 16: VIDEO AND VIDEO ADAPTERSSECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO MODES
	SECTION 16.2: TEXT MODE PROGRAMMING AND VIDEO RAM
	SECTION 16.3: GRAPHICS AND GRAPHICS PROGRAMMING
	CHAPTER 17: SERIAL PORT PROGRAMMING WITH ASSEMBLY AND C#SECTION 17.1: BASICS OF SERIAL COMMUNICATION
	CHAPTER 18: KEYBOARD AND PRINTER INTERFACINGSECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU
	SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING
	SECTION 18.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC
	CHAPTER 19: HARD DISKSSECTION 19.1: HARD DISK ORGANIZATION AND PERFORMANCE
	CHAPTER 20: THE IEEE FLOATING POINT AND x87 MATH PROCESSORSSECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-POINT STANDARDS
	SECTION 20.2: x87 INSTRUCTIONS AND PROGRAMMING
	CHAPTER 21: 386 MICROPROCESSOR: REAL vs. PROTECTED MODESECTION 21.1: 80386 IN REAL MODE
	SECTION 21.2: 80386: A HARDWARE VIEW
	SECTION 21.3: 80386 PROTECTED MODE
	CHAPTER 22: HIGH-SPEED MEMORY DESIGN AND CACHESECTION 22.1: MEMORY CYCLE TIME OF THE x86
	SECTION 22.2: PAGE AND STATIC COLUMN DRAMS
	SECTION 22.3: CACHE MEMORY
	SECTION 22.4: SDRAM, DDR RAM, AND RAMBUS MEMORIES
	CHAPTER 23: PENTIUM AND RISC PROCESSORSSECTION 23.1: THE 80486 MICROPROCESSOR
	SECTION 23.2: INTEL'S PENTIUM
	SECTION 23.3: RISC ARCHITECTURE
	SECTION 23.4: PENTIUM PRO PROCESSOR
	SECTION 23.5: MMX TECHNOLOGY
	CHAPTER 24: THE EVOLUTION OF x86: FROM 32-BIT TO 64-BITSECTION 24.1: x86 PENTIUM EVOLUTION
	CHAPTER 26: ISA, PC104, AND PCI BUSES SECTION 26.1: ISA BUS MEMORY SIGNALS
	SECTION 26.2: I/O BUS TIMING IN ISA BUS
	SECTION 26.3: PCI BUS
	CHAPTER 27: USB PORT PROGRAMMINGSECTION 27.1: USB PORTS: AN OVERVIEW
	SECTION 27.2: USB PORT EXPANSION AND POWER MANAGEMENT
	SECTION 27.3: USB PORT PROGRAMMING

	IMOnlinetitle.pdf
	Online Instructor’s Manual

	IMOnlinetitle.pdf
	Online Instructor’s Manual

	x86_PC_Solu_Manu_5th_ed.pdf
	CHAPTER 0: INTRODUCTION TO COMPUTING
	SECTION 0.1: NUMBERING AND CODING SYSTEMS
	SECTION 0.2: DIGITAL PRIMER
	A
	B
	C
	Y
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	1
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1
	1
	A
	B
	C
	Y
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	A
	B
	C
	Y
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	1
	1
	0
	0
	0
	1
	0
	1
	0
	1
	0
	0
	1
	1
	1
	A
	B
	C
	Y
	0
	0
	0
	1
	0
	0
	1
	1
	0
	1
	0
	1
	1
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1
	0
	A
	B
	C
	Y
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	0
	CLK
	D
	Q
	No
	X
	NC
	Yes
	0
	0
	Yes
	1
	1
	SECTION 0.3: INSIDE THE COMPUTER
	SECTION 1.2: INSIDE THE 8088/86
	SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING
	SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS
	SECTION 1.5: THE STACK
	SECTION 1.6: FLAG REGISTER
	SECTION 1.7: x86 ADDRESSING MODES
	CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING
	SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAMSECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAMSECTION 2.3: MORE SAMPLE PROGRAMS
	SECTION 2.5: DATA TYPES AND DATA DEFINITION
	CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMSSECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION
	SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION
	SECTION 3.3: LOGIC INSTRUCTIONS
	SECTION 3.4: BCD AND ASCII CONVERSION
	SECTION 3.5: ROTATE INSTRUCTIONS
	SECTION 3.6: BITWISE OPERATORS IN THE C LANGUAGE
	CHAPTER 4: INT 21H AND INT 10H PROGRAMMING AND MACROSSECTION 4.1: BIOS INT 10H PROGRAMMING
	SECTION 4.2: DOS INTERRUPT 21H
	SECTION 4.3: WHAT IS A MACRO AND HOW IS IT USED?
	CHAPTER 5: KEYBOARD AND MOUSE PROGRAMMINGSECTION 5.1: INT 16H KEYBOARD PROGRAMMING
	SECTION 5.2: MOUSE PROGRAMMING WITH INT 33H
	CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLESSECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS
	SECTION 6.2: STRING AND TABLE OPERATIONS
	CHAPTER 7: MODULES AND MODULAR PROGRAMMINGSECTION 7.1: WRITING AND LINKING MODULES
	SECTION 7.2: SOME VERY USEFUL MODULES
	CHAPTER 8: 32-BIT PROGRAMMING FOR x86SECTION 8.1: 32-BIT PROGRAMMING IN x86
	CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUSSECTION 9.1: 8088 MICROPROCESSOR
	SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS
	SECTION 9.3: 8-BIT SECTION OF ISA BUS
	SECTION 9.4: 80286 MICROPROCESSOR
	SECTION 9.5: 16-BIT ISA BUS 246
	CHAPTER 10: MEMORY AND MEMORY INTERFACINGSECTION 10.1: SEMICONDUCTOR MEMORIES
	SECTION 10.2: MEMORY ADDRESS DECODING
	SECTION 10.3: IBM PC MEMORY MAP
	SECTION 10.4: DATA INTEGRITY IN RAM AND ROM
	SECTION 10.5: 16-BIT MEMORY INTERFACING
	CHAPTER 11: 8255 I/O PROGRAMMINGSECTION 11.1: 8088 INPUT/OUTPUT INSTRUCTIONS
	SECTION 11.2: I/O ADDRESS DECODING AND DESIGN
	SECTION 11.3: I/O ADDRESS MAP OF x86 PCs
	SECTION 11.4: PROGRAMMING AND INTERFACING THE 8255
	CHAPTER 12: INTERFACING TO LCD, MOTOR, ADC, AND SENSORSECTION 12.1: INTERFACING TO AN LCD
	SECTION 12.2: INTERFACING TO A STEPPER MOTOR
	SECTION 12.3: INTERFACING TO A DAC
	SECTION 12.4: INTERFACING TO ADC CHIPS AND SENSORS
	CHAPTER 13: 8253/54 TIMERSECTION 13.1: 8253/54 TIMER
	SECTION 13.2: x86 PC 8253/54 TIMER CONNECTION AND PROGRAMMING
	SECTION 13.3: GENERATING MUSIC ON THE x86 PC
	CHAPTER 14: INTERRUPTS IN x86 PCSECTION 14.1: 8088/86 INTERRUPTS
	SECTION 14.2: x86 PC AND INTERRUPT ASSIGNMENT
	SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER
	SECTION 14.4: USE OF THE 8259 CHIP IN x86 PCs
	SECTION 14.5: MORE ON INTERRUPTS IN x86 PCs
	CHAPTER 15: DIRECT MEMORY ACCESS AND DMA CHANNELS IN x86 PCSECTION 15.1: CONCEPT OF DMA
	SECTION 15.2: 8237 DMA CHIP PROGRAMMING
	SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PC
	SECTION 15.4: DMA IN x86 PCs
	CHAPTER 16: VIDEO AND VIDEO ADAPTERSSECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO MODES
	SECTION 16.2: TEXT MODE PROGRAMMING AND VIDEO RAM
	SECTION 16.3: GRAPHICS AND GRAPHICS PROGRAMMING
	CHAPTER 17: SERIAL PORT PROGRAMMING WITH ASSEMBLY AND C#SECTION 17.1: BASICS OF SERIAL COMMUNICATION
	CHAPTER 18: KEYBOARD AND PRINTER INTERFACINGSECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU
	SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING
	SECTION 18.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC
	CHAPTER 19: HARD DISKSSECTION 19.1: HARD DISK ORGANIZATION AND PERFORMANCE
	CHAPTER 20: THE IEEE FLOATING POINT AND x87 MATH PROCESSORSSECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-POINT STANDARDS
	SECTION 20.2: x87 INSTRUCTIONS AND PROGRAMMING
	CHAPTER 21: 386 MICROPROCESSOR: REAL vs. PROTECTED MODESECTION 21.1: 80386 IN REAL MODE
	SECTION 21.2: 80386: A HARDWARE VIEW
	SECTION 21.3: 80386 PROTECTED MODE
	CHAPTER 22: HIGH-SPEED MEMORY DESIGN AND CACHESECTION 22.1: MEMORY CYCLE TIME OF THE x86
	SECTION 22.2: PAGE AND STATIC COLUMN DRAMS
	SECTION 22.3: CACHE MEMORY
	SECTION 22.4: SDRAM, DDR RAM, AND RAMBUS MEMORIES
	CHAPTER 23: PENTIUM AND RISC PROCESSORSSECTION 23.1: THE 80486 MICROPROCESSOR
	SECTION 23.2: INTEL'S PENTIUM
	SECTION 23.3: RISC ARCHITECTURE
	SECTION 23.4: PENTIUM PRO PROCESSOR
	SECTION 23.5: MMX TECHNOLOGY
	CHAPTER 24: THE EVOLUTION OF x86: FROM 32-BIT TO 64-BITSECTION 24.1: x86 PENTIUM EVOLUTION
	CHAPTER 26: ISA, PC104, AND PCI BUSES SECTION 26.1: ISA BUS MEMORY SIGNALS
	SECTION 26.2: I/O BUS TIMING IN ISA BUS
	SECTION 26.3: PCI BUS
	CHAPTER 27: USB PORT PROGRAMMINGSECTION 27.1: USB PORTS: AN OVERVIEW
	SECTION 27.2: USB PORT EXPANSION AND POWER MANAGEMENT
	SECTION 27.3: USB PORT PROGRAMMING

