
MICROPROCESSORS AND
MICROCONTROLLERS

Mahesh Prasanna K.
Dept. of CSE, VCET.

1

15CS – 44

MP, CSE, VCET

THE x86
MICROPROCESSOR

MODULE 1

BRIEF HISTORY OF THE x86 FAMILY

2

» A study of history is not essential to understand the

microprocessor, but it provides a historical perspective of the fast-

paced evolution of the computer

Evolution from 8080/8085 to 8086:

» In 1978 – Intel Corporation – a 16-bit microprocessor – 8086

» In 1979 – Intel Corporation – a 16-bit microprocessor – 8088

MP, CSE, VCET

3MP, CSE, VCET

» The Intel 8086/8088

» 16-bit pipelined microprocessors

» Addressed 1M bytes (1M byte = 1024K

bytes = 1024 * 1024 bytes = 1,048,576

bytes) of memory

» Executed 2.5 MIPs (millions of instructions

per second)

» Its instruction set contained over 20,000

instructions

» A small 6- or 4-byte instruction cache or

queue that pre-fetched a few instructions

before they were executed

» The Intel 8085

» 8-bit non pipelined

microprocessor

» Addressed 64K bytes of

memory

» Can execute 769,230

instructions per second

» Its instruction set contained

246 instructions

4

Evolution of Intel’s Microprocessors (from 8008 to 8088)

MP, CSE, VCET

Product 8008 8080 8085 8086 8088

Year introduced 1972 1974 1976 1978 1979

Technology PMOS NMOS NMOS NMOS NMOS

Number of pins 18 40 40 40 40

Number of transistors 3000 4500 6500 29,000 29,000

Number of instructions 66 111 113 133 133

Physical memory 16KB 64KB 64KB 1MB 1MB

Virtual memory None None None None None

Internal data bus 8 8 8 16 16

External data bus 8 8 8 16 8

Address bus 8 16 16 20 20

Data types 8 8 8 8/16 8/16

5MP, CSE, VCET

» The Intel 80286

» 16-bit internal and external data buses

» 24 address lines; which give 16M bytes of memory (224 = 16M

bytes)

» The clock speed of 80286 was increased; hence, it executed 4

MIPs

» Virtual memory –swapping data between disk storage and

RAM

» The 80286 can operate in one of two modes: real mode and

protected mode

6

» The Intel 80386

» Internally and externally a 32-bit microprocessor

» 32-bit address bus; capable of hand ling physical memory of up

to 4 gigabytes (232 = 4G bytes)

» Virtual memory was increased to 64 terabytes (246 = 64T bytes)

MP, CSE, VCET

» The Intel 80386SX

» Internally identical to 80386 ,icroprocessor

» 24-bit address bus, which gives a capacity of 16M bytes (224 =

16M bytes) of memory

» 16-bit external data bus – This makes the 386SX system much cheaper

7

» The Intel 80486

» The 80486 is available as an 80486DX (contains the numeric coprocessor),

or an 80486SX (does not contain numeric coprocessor)

» Executes many of 80386 instructions in one clock period

» 80486 microprocessor improved 80386 numeric coprocessor

» 80486 microprocessor also contains an 8K byte cache memory

» The 80486DX contains a 16K byte cache memory

» When the 80486 is operated at the same clock frequency as an 80386, it

performs with about a 50% speed improvement

» The 80486 is available as a 25 MHz, 33 MHz, 50 MHz, 66 MHz, or 100

MHz device

» Note that, all programs written for the 8088/86 will run on 286, 386, and 486

computers MP, CSE, VCET

8

» The Intel Pentium

» Submicron fabrication technology – more than 3 million transistors

» The Pentium had speeds of 60 and 66 MHz (twice that of 80486 and over

300 times faster than that of the original 8088)

» Separate 8K cache memory for code and data

» 64-bit external data bus with 32-bit register and 32-bit address bus capable

of addressing 4G bytes of memory

» Improved floating-point processor

» Pentium is packaged in a 273-pin PGA chip

» A dual-integer processor, can execute 2 instructions at a time

» It uses BICMOS technology, which combines the speed of bipolar

transistors with the power efficiency of CMOS technology.

MP, CSE, VCET

9

» The Intel Pentium Pro

» Sixth generation of the x86 family

» Pentium Pro is an enhanced version of Pentium that uses 5.5

million transistors

» It was designed to be used for 32-bit servers and workstations

MP, CSE, VCET

10

Evolution of Intel’s Microprocessors (from 8086 to the Pentium Pro)

MP, CSE, VCET

Product 8086 80286 80386 80486 Pentium Pentium Pro

Year introduced 1978 1982 1985 1989 1993 1995

Technology NMOS NMOS CMOS CMOS BICMOS BICMOS

Clock rate (MHz) 3 – 10 10 – 16 16 – 33 25 – 33 60, 66 150

Number of pins 40 68 132 168 273 387

Number of transistors 29,000 134,000 275,000 1.2 million 3.1 million 5.5 million

Physical memory 1MB 16MB 4GB 4GB 4GB 64GB

Virtual memory None 1GB 64TB 64TB 64TB 64TB

Internal data bus 16 16 32 32 32 32

External data bus 16 16 32 32 64 64

Address bus 20 24 32 32 32 36

Data types 8/16 8/16 8/16/32 8/16/32 8/16/32 8/16/32

11MP, CSE, VCET

Pentium II Pentium III Pentium 4 Intel 64

Architecture

7.5 million

transistor

MMX (multi-

media extension)

Used for servers

and workstations

9.5 million

transistor

Instructions to

handle video and

audio

Used for servers

and workstations

Designed for

heavy multimedia

processing

Operates at

400MHz

Used as high

end multi-media

processing

microprocessor

64-bit family of

processors,

formerly called as

Merced.

Can execute

many instructions

simultaneously

Designed to

meet needs of

powerful

workstations

12

Evolution of Intel’s Microprocessors (from Pentium II to Itanium)

MP, CSE, VCET

Product Pentium II Pentium III Pentium 4 Itanium II

Year introduced 1997 1999 2000 2002

Technology BICMOS BICMOS BICMOS BICMOS

Number of transistors 7.5 million 9.5 million 42 million 220 million

Cache size 512K 512K 512K 3MB

Physical memory 64GB 64GB 64GB 64GB

Virtual memory 64TB 64TB 64TB 64TB

Internal data bus 32 32 32 64

External data bus 64 64 64 64

Address bus 36 36 36 64

Data types 8/16/32 8/16/32 8/16/32 8/16/32/64

13

1. Features of the 8086 that were improvements over the 8080/8085

2. Differences between the 8086 and 8088 microprocessors

3. Differences between the 80386 and the 80386SX

4. Additional features introduced with the 80286 that were not

present in the 8086

5. Additional features introduced with the 80486 that were not

present in the 80386

6. Additional features introduced with the Pentium that were not

present in the 80486

MP, CSE, VCET

REVIEW

INSIDE THE 8088/86

14MP, CSE, VCET

15

Pipelining

To process the information faster, the CPU can:

» Increase the working frequency –

» But, it is technology dependent

» Change the internal architecture of the CPU –

» Eg: In 8085, the CPU had to fetch an instruction from memory,

then execute it and then fetch again, execute it, and so on; i.e.,

8085 CPU could either fetch or execute at a given time

MP, CSE, VCET

16MP, CSE, VCET

17MP, CSE, VCET

18

Registers

MP, CSE, VCET

Category Bits Register Names

General
16 AX, BX, CX, DX

8 AH, AL, BH, BL, VH, CL, DH, DL

Pointer 16
SP (Stack Pointer)

BP (Base Pointer)

Index 16
SI (Source Index)

DI (Destination Index)

Segment 16

CS (Code Segment)

DS (Data Segment)

SS (Stack Segment)

ES (Extra Segment)

Instruction 16 IP (Instruction Pointer)

Flag 16 FR (Flag Register)

19MP, CSE, VCET

AX is used for the accumulator

BX as a base addressing register

CX as a counter in loop operations

DX to point to data in I/O operations

20

1. Explain the functions of the EU and BIU

2. What is pipelining? How does it make the CPU execute faster?

MP, CSE, VCET

REVIEW

INTRODUCTION TO
ASSEMBLY LANGUAGE PROGRAMMING

21

» Machine Language – quite tedious and slow for humans to deal

with 0s and 1s

» Assembly Language – mnemonic for the machine code instruction

– programming is faster and less prone to errors

» ALP must be translated into machine code (also called as object code) by a

program called an assembler

» Assembly language is referred to as a low-level language – deals directly

with the internal structure of the CPU

» High-level Language – programmer does not have to be concerned

with the internal details of the CPU – compiler
MP, CSE, VCET

22

Assembly Language Programming

» An Assembly language program (ALP) consists of –

» A series of lines of Assembly language instructions; which

consists of –

» a mnemonic – the commands to the CPU

» (Optionally) operands – the data items being manipulated

MP, CSE, VCET

 Opcode (Mnemonic) Source operand (register

 Relative addressing)

AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.

Label—provides a Destination operand Comment

Means of branching (register addressing)

To this instruction

23

MOV Instruction:

» Copies data from one location to another

MP, CSE, VCET

24MP, CSE, VCET

25

Note:

» Values cannot be loaded directly into any segment register (CS,

DS, SS, and ES)

» If a value less than FFH is moved into a 16-bit register, the rest of

the bits are assumed to be all zeros

» Moving a value that is too large into a register will cause an error

MP, CSE, VCET

E.g.: MOV BX, 5 ; result will be BX = 0005, i.e., BH = 00 and BL = 05

26

ADD Instruction

MP, CSE, VCET

27

1. Which of the following instructions can not be coded in 8086

Assembly language? Give reason

(a) MOV AX, 27H (b) MOV AL, 97FH (c) MOV DS, 9BF2H

(d) MOV CX, 397H (e) MOV Si, 9516H (f) MOV CS, 3490

(g) MOV DS, BX (h) MOV BX, CS (i) MOV CH, AX

(j) MOV CS, BH (k) MOV AX, DL (l) MOV AX, 23FB9H

MP, CSE, VCET

REVIEW

INTRODUCTION TO PROGRAM SEGMENTS

28

» A segment is –

» an area of memory

» includes up to 64K bytes

» begins on an address evenly divisible by 16 (such an address

ends in 0H)

» In 8085, there was only 64K byte (216 = 64K bytes) of memory for

all code, data, and stack information

» In the 8088/86 (addressable range of 1M bytes (220 = 1MB) of

memory) there can be up to 64K bytes of memory assigned to

each category
MP, CSE, VCET

29

Logical Address & Physical Address

» 3 types of addresses in 8086:

1. The physical address – is the 20-bit address that is actually put on

the address pins of the 8086 microprocessor and decoded by

memory interfacing circuitry (00000H – FFFFFH)

2. The offset address – is a location within a 64K byte segment

range (0000H – FFFFH)

3. The logical address – consists of a segment value and an offset

address.

MP, CSE, VCET

30MP, CSE, VCET

31

Code Segment

» 8086 fetches the instruction from the code segment

» The logical address of an instruction always consists of a CS and

an IP

» The physical address of the instruction is generated by –

» Shifting the CS left by one hex digit and then adding it to the IP

(offset)

MP, CSE, VCET

32

» The offset address is contained in IP; let it be 95F3H.

» The logical address is CS: IP, or 2500: 95F3H.

» Then the physical address will be 25000 + 95F3 = 2E5F3H.

» The lowest memory location of the code segment will be 25000H

(25000+0000)

» The highest memory location will be 34FFFH (25000+FFFF)
MP, CSE, VCET

33MP, CSE, VCET

34

Logical Address vs Physical Address

MP, CSE, VCET

35

Data Segment

» One way to add 25H, 12H, 15H, IFH, and 2BH is –

» But, here, data and code are mixed together.

» Hence, if the data changes, the code must be searched for every

place the data is included, and the data retyped.

MP, CSE, VCET

36

» To overcome the problem; set aside an area of memory, strictly for

data – data segment

MP, CSE, VCET

Segment Offset Special Purpose

CS IP Instruction address

DS SI, DI, BX, an 8- or 16-bit number Data address

SS SP or BP Stack address

ES SI, DI, BX for string instructions String destination address

37

» The term pointer is often used for a register holding an offset

address. In the following example, BX is used as a pointer

» The INC instruction adds 1 to (increments) its operand.

» "INC BX" achieves the same result as "ADD BX, 1"

MP, CSE, VCET

38

Logical Address & Physical Address in DS

MP, CSE, VCET

39MP, CSE, VCET

40

Little Endian Conversion

» In x86, the 16-bit data can be used as follows –

» The low byte goes to the low memory location and the high byte

goes to the high memory location

» Hence, memory location DS: 1500 contains F3H and memory

location DS: 1501 contains 35H

» (DS: 1500 = F3 and DS: 1501 = 35). This is called little endian

conversion

MP, CSE, VCET

41

» In the big endian method,

» the high byte goes to the low address

» In the little endian method,

» the high byte goes to the high address and the low byte goes to the low

address.

» All Intel microprocessors use the little endian conversion

MP, CSE, VCET

42

Memory Map of IBM PC

» The 20-bit address of 8088/86 allows a total of 1M bytes (00000H

– FFFFFH)

» Memory map is the process of allocating the 1M bytes of memory

space to various sections of the PC

» Out of 1M byte –

» 640K bytes from the address 00000H – 9FFFFH, for RAM

» The 128KB from A0000H – BFFFFH, for video memory

» The remaining 256KB from C0000H – FFFFFH for ROM

MP, CSE, VCET

43

» Memory management is

the function of OS

» OS allocates the RAM

(first) for its own use and

for applications

» The amount of memory

used by Windows varies

among its various versions

» The memory needs of the

application packages are

different

» The program would not be

portable to another PC

MP, CSE, VCET

» The amount used and location vary depending

on the video board installed on the PC

» 64 KB are used by the BIOS

» Some space is used by various adapter cards

» Rest is free

44

Functions of BIOS ROM

» CPU can only execute programs that are stored in memory

» When the power is turned on, there must be some permanent

(nonvolatile) memory to hold the programs, which tell the CPU

what to do

» This collection of programs held by ROM is referred to as BIOS

in the PC literature

MP, CSE, VCET

45

» BIOS, basic input-output system, contains –

» Programs to test RAM and other components connected to the CPU

» Programs that allow Windows to communicate with peripheral devices such

as the keyboard, video, printer, and disk.

» The functions of BIOS is to –

» Test all the devices connected to the PC when the computer is turned on

» Report any errors

» After testing and setting up the peripherals; BIOS will

» Load Windows from disk into RAM and hand over control of the PC to

Windows

» Windows always controls the PC once it is loaded

MP, CSE, VCET

46

1. How large is a segment in 8086? Can the physical address

346E0H be the starting address for a segment? Justify

2. Name segment registers and their functions in 8086

3. If CS = 3499H and IP = 2500H, find: (a) the logical address (b)

the physical address (c) the lower and the upper ranges of the

code segment

4. If CS = 1296H and IP = 100H, find: (a) the logical address (b) the

physical address (c) the lower and the upper ranges of the code

segment

MP, CSE, VCET

REVIEW

47

5. If DS = 3499H and IP = 3FB9H, find: (a) the logical address (b)

the physical address (c) the lower and the upper ranges of the

code segment

6. If CS = 1296H and IP = 7CC8H, find: (a) the logical address (b)

the physical address (c) the lower and the upper ranges of the

code segment

7. If SS = 2000H and SP = 4578H, find: (a) the logical address (b)

the physical address (c) the lower and the upper ranges of the

code segment

MP, CSE, VCET

REVIEW

THE STACK

48

» The stack is a section of read/write memory (RAM) used by the

CPU to store information temporarily

» The CPU needs this storage area since there are only a limited

number of registers

» The disadvantage is its access time – since the stack is in RAM, it

takes much longer to access compared to the access time of

registers.

» Note that, the registers are inside the CPU and RAM is outside.

MP, CSE, VCET

49

How the Stack are Accessed?

» The stack must be loaded, before accessing it

» SS & SP are registers used to access the stack

» Storing of a CPU register in the stack is a push

» Loading the contents of the stack into the CPU register is a pop

» Push/Pop is associated with entire 16-bit register

» SP points at the current memory location used for the top of the

stack

» When data is pushed onto the stack SP is decremented

» When data is popped off the stack, SP is incremented

» Stack is growing downward from upper addresses to lower addresses
MP, CSE, VCET

50

Pushing onto the Stack

MP, CSE, VCET

51

Popping the Stack

MP, CSE, VCET

52

Logical Address vs Physical Address for the Stack

» The physical location of the stack depends on

» The value of the SS (stack segment) register

» The SP (stack pointer).

» To compute the physical address for stack, shift left SS and then

add offset SP register

MP, CSE, VCET

53

NOTE

1. Dynamic behavior of the segment and offset concept in the 8086 CPU – A

single physical address may belong to many different logical addresses

2. When adding the offset to the shifted segment register; if an address beyond

the maximum allowed range (FFFFFH) is resulted, then wrap-around will

occur

MP, CSE, VCET

54

3. Non-overlapping vs Overlapping Segments

MP, CSE, VCET

55

1. If SS = 2000H and SP = 4578H, find: (a) the logical address (b)

the physical address (c) the lower and the upper ranges of the

code segment

2. Assume that SP = FF2EH, AX = 3291H, BX = F43CH, and CX =

09. Find the contents of the stack and SP after the execution of

each of following instructions: PUSH AX PUSH BX PUSH CX

3. Show the segment register(s) used in the following cases: (a)

MOV SS: [BX], AX (b) MOV SS: [DI], BX (c) MOV

DX, DS:[BP+6]

MP, CSE, VCET

REVIEW

FLAG REGISTER

56

» Conditional flags – indicate some condition that resulted after an instruction

was executed – CF, PF, AF, ZF, SF, and OF

» Control flags – used to control the operation of instructions before they are

executed – TF, IF, DF
MP, CSE, VCET

0123456789101112131415

0F DF IF TF SF ZF AF PF CF

BIT

57MP, CSE, VCET

58MP, CSE, VCET

59MP, CSE, VCET

60MP, CSE, VCET

1. If the previous instruction performed the addition –

 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1

 + 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1

 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0

 Then; CF = 0, PF = 0, AF = 0, ZF = 0, SF = 0, OF = 0

2. If the previous instruction performed the addition –

 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1

 + 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0

 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1

 Then; CF = 0, PF = 1, AF = 0, ZF = 0, SF = 1, OF = 1

61MP, CSE, VCET

3. After adding two numbers 76H and 99H, what is the status of various flags?

 0 1 1 1 0 1 1 0

 + 1 0 0 1 1 0 0 1

 0 0 0 0 1 1 1 1

 Then; CF = 1, PF = 1, AF = 0, ZF = 0, SF = 0

 4. If two numbers 1234H and 95A5H are added, what is the status of various flags?

 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

 + 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1

 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1

 Then; CF = 0, AF = 0, ZF = 0, PF = 0, SF = 1, OF = 0

Here is the tip to identify

the OF:

•Perform the addition in

binary.

•Identify the carry out of

MSB (Cn).

•Identify the carry into

MSB (Cn–1).

•When these two are not

equal, OF is set; i.e.,

OF = Cn ⊗ Cn–1

62MP, CSE, VCET

 5. If two signed numbers 7FH and 01H are added, what is the status of various flags?

 0 1 1 1 1 1 1 1

 + 0 0 0 0 0 0 0 1

 1 0 0 0 0 0 0 0

 Then; CF = 0, AF = 1, ZF = 0, PF = 0, SF = 1, OF = 1

 6. If two unsigned numbers 7FH and 01H are added, what is the status of various flags?

 0 1 1 1 1 1 1 1

 + 0 0 0 0 0 0 0 1

 1 0 0 0 0 0 0 0

 Then; CF = 0, AF = 1, ZF = 0, PF = 0

NOTE: Here, SF and OF are ignored because of unsigned numbers.

63

Use of Zero Flag for Looping

MP, CSE, VCET

64

1. Find the status of the CF, PF, AF, ZF, and SF for the following

operations:

(A) MOV BL, 9FH

ADD BL, 61H

(A) MOV AL, 23H

ADD AL, 97H

(A) MOV DX, 10FFH

ADD DX, 1

MP, CSE, VCET

REVIEW

X86 ADDRESSING MODES

65MP, CSE, VCET

1. Register – MOV BX, DX

2. Immediate – MOV AX, 2550H

3. Direct – MOV DL, [2400]

4. Register Indirect – MOV AL, [BX]

5. Based Relative – MOV CX, [BX+10]

6. Indexed Relative – MOV DX, [SI]+5

7. Based Indexed Relative – MOV CL, [BX+DI+8]

66

1. Register Addressing

2. Immediate Addressing

MP, CSE, VCET

67

3. Direct Addressing

MP, CSE, VCET

PA = DS : Direct Address

68MP, CSE, VCET

Eg: MOV BX, [5634] BX ABCDH 8645H

 DS:5634H 45H LS byte
 DS:5635H 86H MS byte

 Before After

Eg: MOV CL, [5634] CL F2H 45H

 DS:5634H 45H
 DS:5635H 86H

69

4. Register Indirect Addressing

MP, CSE, VCET

 BX

 PA = DS : SI

 DI

70

5. Based Relative Addressing

» Alternative codings are “MOV CX, [BX+10]” or

“MOV CX, 10[BX]”

» Alternative codings are “MOV AL, [BP+5]” or

“MOV AL, 5[BP]”

» In “MOV AL, [BP+5]”, BP+5 is called the effective address;

» In “MOV CX, [BX+10]”, BX+10 is called the effective address
MP, CSE, VCET

PA = DS BX
 or : or + 8 or 16 bit displacement

SS BP

71

6. Indexed Relative Addressing

MP, CSE, VCET

PA = DS SI
 or : or + 8 or 16 bit displacement

SS DI

72

7. Based Indexed Addressing

» These examples can also be written as –

MP, CSE, VCET

PA = DS BX SI
 or : or + or + 8 or 16bit displacement

SS BP DI

73

Segment Override Prefix

» "MOV AL, [BX]", PA of the operand to be moved into AL is DS: BX

» "MOV AL, ES: [BX]“, PA will be ES: BX instead of DS: BX

MP, CSE, VCET

Segment Offset Special Purpose

CS IP Instruction address

DS SI, DI, BX, an 8- or 16-bit number Data address

SS SP or BP Stack address

ES SI, DI, BX for string instructions String destination address

74

1. If CS = 1000H, DS = 2000H, SS = 3000H, SI = 4000H, DI =

5000H, BX = 6080H, BP = 7000H, AX = 25FFH, CX = 8791H,

and DX = 1299H; calculate, the physical address of the memory

accessed: (a) MOV [SI], AL (b) MOV [SI+BX+8], AH

(c) MOV [BX], AX (d) MOV [DI+6], BX (e) MOV

[DI][BX]+28, CX (f) MOV [BP][SI]+10, DX (g) MOV

[3600], AX (h) MOV [BX]+30, DX (i) MOV

[BP]+200, AX (j) MOV [BP+SI+100], BX (k) MOV

[SI]+50, AH (l) MOV [DI+BP+100], AX

MP, CSE, VCET

REVIEW

75

2. Identify the addressing mode for: (a) MOV AX, DS (b) MOV

BX, 5678 (c) MOV CX, [3000] (d) MOV AL, CH (e) MOV

[DI], BX (f) MOV AL, [BX] (g) MOV DX, [BP+DI+4]

(h) MOV CX, DS (i) MOV [BP+6], AL (j) MOV AH,

[BX+SI+50] (k) MOV BL, [SI]+10 (l) MOV

[BP][SI]+12, AX

3. Show the content of the memory location, after the execution of:

(a) MOV BX, 129FH (b) MOV DX, 8C63H

MOV [1450], BX MOV [2348], DX

DS: 1450 DS: 2348

DS: 1451 DS: 2348MP, CSE, VCET

REVIEW

MICROPROCESSORS AND
MICROCONTROLLERS

Mahesh Prasanna K.
Dept. of CSE, VCET.

76

15CS – 44

MP, CSE, VCET

THE x86
MICROPROCESSOR

MODULE 1 – QUIZ 1

77

1. The 80286 is a _____-bit microprocessor, where as the 80386 is a

_____-bit microprocessor

2. Itanium has a _____-bit architecture

3. Which of the following registers cannot be split into high and low

bytes? [CS, AX, DS, SS, BX, DX, CX, SI, DI]

4. Write the Assembly language instructions to add the vales 16H

and ABH; place the result in AX register

5. Values cannot be moved directly into ____ registers

MP, CSE, VCET

78

6. The largest 8-bit hex value is _____, and its decimal equivalent is

7. The largest 16-bit hex value is _____, and its decimal equivalent

is _____

8. A segment is an area of memory that includes up to _____ bytes

9. A physical address is a _____-bit address; and offset address is a

_____-bit address

10. For CS, _____ is used as the offset register

MP, CSE, VCET

79

11. If BX = 1234H and the instruction “MOV [2400], BX” were

executed; then, the contents of memory location at offset 2400 is

_____ and the contents of memory location at offset 2401 _____

12. The stack is a section of RAM used for temporary storage

[TRUE/FALSE]

13. The Carry Flag will be set to 1 in an 8-bit addition, if there is a

carry out from bit _____

14. The Auxiliary Carry Flag will be set to 1 in an 8-bit addition, if

there is a carry out from bit _____

MP, CSE, VCET

80

1. The 80286 is a _____-bit microprocessor, where as the 80386 is a

_____-bit microprocessor (16, 32)

2. Itanium has a _____-bit architecture (64)

3. Which of the following registers cannot be split into high and low

bytes? [CS, AX, DS, SS, BX, DX, CX, SI, DI] (CS, DS, SS, SI,

and DI)

4. Write the Assembly language instructions to add the vales 16H

and ABH; place the result in AX register (MOV AX, 16H ADD

AX, ABH)

5. Values cannot be moved directly into ____ registers (CS, DS, ES,

and SS) MP, CSE, VCET

81

6. The largest 8-bit hex value is _____, and its decimal equivalent is

_____ (FFFFH, 65535)

7. The largest 16-bit hex value is _____, and its decimal equivalent

is _____ (FFH, 255)

8. A segment is an area of memory that includes up to _____ bytes

(64K)

9. A physical address is a _____-bit address; and offset address is a

_____-bit address (20, 16)

10. For CS, _____ is used as the offset register (IP)

MP, CSE, VCET

82

11. If BX = 1234H and the instruction “MOV [2400], BX” were

executed; then, the contents of memory location at offset 2400 is

_____ and the contents of memory location at offset 2401 _____

(34, 12)

12. The stack is a section of RAM used for temporary storage

[TRUE/FALSE]

13. The Carry Flag will be set to 1 in an 8-bit addition, if there is a

carry out from bit _____ (7)

14. The Auxiliary Carry Flag will be set to 1 in an 8-bit addition, if

there is a carry out from bit _____ (3)

MP, CSE, VCET

MICROPROCESSORS AND
MICROCONTROLLERS

Mahesh Prasanna K.
Dept. of CSE, VCET.

83

15CS – 44

MP, CSE, VCET

ASSEMBLY LANGUAGE
PROGRAMMING

MODULE 1

DIRECTIVES AND A SAMPLE PROGRAM

84

» A given Assembly language program (ALP) is a series of

statements. There are two types of statements:

1. Assembly language instructions – instructions to the

microprocessor to do the specific task. (E.g.: MOV, ADD, etc.)

2. Pseudo instructions/Directives – give directions to the assembler

about how it should translate. (E.g.: DB, DW, ASSUME, etc.)

» These instructions are not translated into machine code

» Used by the assembler to organize the program as well as other output files

MP, CSE, VCET

85MP, CSE, VCET

 Opcode (Mnemonic) Source operand (register

 Relative addressing)

AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.

Label—provides a Destination operand Comment

Means of branching (register addressing)

To this instruction

86

Model Definition

» •MODEL – directive selects the size of the memory model

•MODEL SMALL ; this directive defines the model as small

MP, CSE, VCET

87

Segment Definition

MP, CSE, VCET

88

1. Find the errors in the following:

MP, CSE, VCET

REVIEW

ASSEMBLE, LINK, AND RUN A PROGRAM

89

(.lst) – all the opcodes and
the offset addresses, as
well as errors

C>type myfile.lst | more

MP, CSE, VCET

Step Input Program Output

1. Edit the program Keyboard Editor myfile.asm

2. Assemble the program myfile.asm MASM or TASM myfile.obj

3. Link the program myfile.obj LINK or TLINK myfile.exe

 (.crf) – an alphabetical
list of all symbols and
tables used in the
program as well as
program line numbers

(.obj) – produces the
executable program
(.exe)

LINK program sets up
the file, so that, it can
be loaded by the OS
and executed

Run program in OS level,
type C:>myfile – OS
loads the program –
mapping (program is
mapped into physical
memory

use DEBUG to execute the
program and analyze the
results

90MP, CSE, VCET

91

PAGE and TITLE Directives

» Used make the “.lst” file more readable

» The PAGE directive tells the printer how the list should be

printed.

» In the default mode, the output will have 66 lines per page and with a

maximum of 80 characters per line

» TITLE directive can be used to instruct the assembler to print the

title of the program on the top of each page

MP, CSE, VCET

92

1. List the steps in getting a ready to run Assembly language

program

MP, CSE, VCET

REVIEW

MORE SAMPLE PROGRAMS

93MP, CSE, VCET

94MP, CSE, VCET

95

» INC destination – adds 1 to the specified destination

» Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected

» DEC destination – subtract 1 from the specified destination

» Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected

» JNZ label – jump if not zero; if ZF = 0, jumps to the label

specified. Checks for zero flag

» See MASM List for Program 2-1
MP, CSE, VCET

Eg1: INC AL ; Add one to the contents of AL.

Eg2: INC BX ; Add one to the contents of BX.

Eg: DEC AL ; Subtract 1 from the contents of AL.

96MP, CSE, VCET

97

» OFFSET – tells the assembler to determine the offset or

displacement of a named data item (variable) from the start of the

segment

» ORG directive – Used to set the offset addresses for data items.

» In the above program, the ORG directive causes SUM to be stored at DS:

0010

MP, CSE, VCET

Eg: MOV AX, OFFSET MES1 ; Loads the offset of variable MES1 in AX register.

98MP, CSE, VCET

99

1. Explain INC instruction and DEC instruction with example

2. State the difference between the following two instructions:

MOV BX, DATA1 MOV BX, OFFSET DATA1

3. State the difference between the following two instructions:

ADD AX, BX ADD AX, [BX]

MP, CSE, VCET

REVIEW

CONTROL TRANSFER INSTRUCTIONS

100

» In an ALP, instructions are executed sequentially

» It is often necessary to transfer program control to a different location

» Since the CS: IP registers always point to the address of the next instruction to

be executed

» Hence, they must be updated when a control transfer instruction is executed

MP, CSE, VCET

Control Transfer Instructions

Conditional (SHORT) Jumps Unconditional Jumps

FARNEARSHORT
» SHORT: -128 to +127

» NEAR: -32,768 to +32,767

» FAR: Direct Jump Register Indirect Jump

101

FAR and NEAR

» If control is transferred to a memory location within the current

code segment, it is NEAR [intra-segment (within segment) jump]

» In a NEAR jump, the IP is updated and CS remains the same

» If control is transferred to a memory location outside the current

code segment, it is a FAR [intersegment (between segments)

jump]

» In a FAR jump, both CS and IP have to be updated to the new

values.

MP, CSE, VCET

102

Conditional Jumps

» If the condition is met, the control will be transferred to a new

location

MP, CSE, VCET

103MP, CSE, VCET

Opcode: 75
Displacement: FA
IP+Disp = 0013+FA = 0D

104

Unconditional Jumps

MP, CSE, VCET

» SHORT: -128 to +127

» NEAR: -32,768 to +32,767

» FAR:

105MP, CSE, VCET

106

CALL Statement

» Used to call a procedure

» NEAR CALL – target address in the current segment

» FAR CALL – target address outside the current CS

» Microprocessor automatically saves the address of the instruction

following the call on the stack

MP, CSE, VCET

PROC_A
.
.

CALL PROC_B
.
.

RET

Procedure A

.

.

.
CALL PROC_A

.

.

.

Main program

107

Assembly Language Subroutines

MP, CSE, VCET

108

1. Briefly describe the functions of CALL and RET instruction

2. State why the following label names are invalid:

(a) GET.DATA (b) 1_NUM (c) TEST-DATA (d) RET

3. In the following code section, verify the address calculations of:

(a) JNC ERROR1

(b) JNO ERROR1

(c) JMP C8

MP, CSE, VCET

REVIEW

DATA TYPES AND DATA DEFINITIONS

109

» The data types used by the 8088/86 can be 8-bit or 16-bit, positive

or negative.

» If a number is less than 8 bits wide, it still must be coded as an 8-bit

register with the higher digits as zero

» 5 is only 3 bits wide (101) in binary, but the 8088/86 will accept it as 05

or "0000 0101" in binary

» if the number is less than 16 bits wide it must use all 16 bits, with the

rest being 0s

» 514 is "10 0000 0010" in binary, but the 8088/86 will accept it as "0000

0010 0000 0010" in binary

MP, CSE, VCET

110

» ORG (origin) – used to indicate the beginning of the offset

address

» The number that comes after ORG can be either in hex or in decimal.

» DB (define byte) – directive allows allocation of memory in byte-

sized chunks.

» DB can be used to define numbers in decimal (D), binary (B), hex (H), and

ASCII (‘quotation mark')

MP, CSE, VCET

111

» DUP (duplicate) – used to duplicate a given number of characters.

» This can avoid a lot of typing. For example, contrast the following two

methods of filling six memory locations with FFH

MP, CSE, VCET

112

» DW (define word) – used to allocate memory 2 bytes (one word)

at a time. The following are some examples of DW

» EQU (equate) – used to define a constant without occupying a

memory location.

» EQU does not set aside storage for a data item

» EQU associates a constant value with a data label, so that when the label

appears in the program, its constant value will be substituted

» EQU can also be used outside the data segment, even in the middle of a code

segment MP, CSE, VCET

113

» Using EQU for the counter constant in the immediate addressing

mode:

» Advantage of EQU?

» Assume that there is a constant (a fixed value) used in many different places

in the data and code segments.

» By the use of EQU, one can change it once and the assembler will change all

of them, rather than making the programmer tries to find every location and

correct it

MP, CSE, VCET

COUNT EQU 25

When executing the instructions "MOV CX,

COUNT", the register CX will be loaded with the

value 25.

COUNT DB 25

When executing the same instruction "MOV CX,

COUNT" it will be in the direct addressing mode.

 COUNT EQU 25

COUNTER1 DB COUNT

COUNTER2 DB COUNT

114

» DD (define double word) – used to allocate memory locations that

are 4 bytes (two words) in size.

» DQ (define quad word) – used to allocate memory 8 bytes (four

words) in size.

MP, CSE, VCET

115

» DT (define ten bytes) – is used for memory allocation of packed

BCD numbers (multibyte addition)

» This directive allocates 10 bytes, but a maximum of 18 digits can be entered

MP, CSE, VCET

116

» Memory dump of the data section

MP, CSE, VCET
ORG 00C0H DATA20 DQ 4523C2H

DATA4 DB ‘2591’

DATA23 DT 867943569829ORG 00E0H

ORG 00A0H

DATA16 DD 1023
DATA17 DD 10001…B
DAAT18 DD
DATA19 DD

117

1. Briefly state the purpose of ORG directive

2. What is advantage of using the EQU directive to define a

constant value?

MP, CSE, VCET

REVIEW

3. How many bytes are set aside by:

(a) ASC_DATA DB ‘1234’

(b) HEX_DATA DW 1234H

4. Find the precise offset location of

each ASCII character or data in the

following:

118

5. Do the following two data segment definitions result in same

storage in bytes at offset 10H and 11H? If not, explain why

ORG 10H ORG 10H

DATA1 DB 72 DATA1 DW 7204H

DATA2 DB 04H

MP, CSE, VCET

REVIEW

119

6. The following program contains some errors. Fix the errors and

run the program correctly.

MP, CSE, VCET

REVIEW

FULLSEGMENT DEFINITION

120MP, CSE, VCET

121

Stack Segment Definition

MP, CSE, VCET

Data Segment Definition

Stack Segment Definition

122MP, CSE, VCET

123

EXE vs COM Files

» The COM file, similar to the EXE file, contains the executable

machine code and can be run at the OS level

» The EXE file can be of any size. The COM files are used because

of their compactness, since they cannot be greater than 64K bytes

» The COM file must fit into a single segment, and since in the x86 the size of

a segment is 64K bytes, the COM file cannot be larger than 64K

» To limit the size of the file to 64K bytes requires

» defining the data inside the code segment and

» also using an area (the end area) of the code segment for the stack

MP, CSE, VCET

124MP, CSE, VCET

EXE File COM File

1. Unlimited size
1. Maximum size 64K

bytes

2. Stack segment is defined
2. No stack segment

definition

3. Data segment is defined

3. Data segment is

defined in code

segment

4. Larger file (takes more memory)
4. Smaller file (takes

less memory)

5. Header block (contains information such as size, address location in

memory, and stack address of the EXE module), which occupies 512

bytes of memory precedes every EXE file

5. Does not have a

header file

FLOWCHARTS AND PSEUDOCODE

125

» Structured programming – a programming technique that can make a program

easier to code, debug, and maintain over time. Principles:

1. The program should be designed before it is coded, by using techniques of

flowcharting or pseudocode

2. Using comments within the program and documentation accompanying the

program

3. The main routine should consist of calls to subroutines that perform the work

of the program. This is sometimes called top-down programming.

4. Data control is very important. The programmer should document the purpose

of each variable, and which subroutines might alter its value.

5. Each subroutine should document its input and output variables, and which

input variables might be altered within it.
MP, CSE, VCET

126

Flowcharts & Pseudocode

» Flowcharts use graphic symbols to represent different types of

program operations.

» These symbols are connected together into a flowchart to show the

flow of execution of the program

» The limitations of flowchart are –

» We can’t write much in the little boxes

» We can’t get the clear picture of the program without getting bogged down

in the details.

» An alternative to using flowchart is pseudocode, which involves

writing brief descriptions of the flow of the code
MP, CSE, VCET

127

Control Structure: Sequence

MP, CSE, VCET

128

Control Structure: Control

MP, CSE, VCET

129

Control Structure: Iteration

MP, CSE, VCET

130

Flowcharts vs Pseudocode for Program 2-1

MP, CSE, VCET

MICROPROCESSORS AND
MICROCONTROLLERS

Mahesh Prasanna K.
Dept. of CSE, VCET.

131

15CS – 44

MP, CSE, VCET

THE x86
MICROPROCESSOR

MODULE 1 – QUIZ 2

132

1. The _____ are translated by the assembler into machine code,

whereas the _____ are not

2. The input file to the MASM assembler program has the extension

3. The input file to the LINK program has the extension _____

4. The linking process comes after assembling (TRUE/FALSE)

5. In calculating the target address to jump to, a displacement is

added to the contents of _____

MP, CSE, VCET

133

6. A(n) _____ jump is within -128 to +127 bytes of the current IP

7. A(n) _____ jump is within –current code segment

8. A(n) _____ jump is within outside the current code segment

9. In a FAR CALL _____ and _____ are saved on the stack

10. The _____ directive is always used for the ASCII strings longer

than 2 bytes

MP, CSE, VCET

134

11. The DD directive is used to allocate memory locations that are

____ bytes in length; the DQ directive is used to allocate memory

locations that are ____ bytes in length

12. The ASSUME directive is used in full segment definition

(TRUE/FALSE)

13. In full segment definition, each segment begins with the _____

directive and ends with a matching _____ directive

MP, CSE, VCET

135

1. The _____ are translated by the assembler into machine code,

whereas the _____ are not (instructions, pseudo-instructions or

directives)

2. The input file to the MASM assembler program has the extension

_____ (.asm)

3. The input file to the LINK program has the extension _____

(.obj)

4. The linking process comes after assembling (TRUE/FALSE)

5. In calculating the target address to jump to, a displacement is

added to the contents of _____ (IP)

MP, CSE, VCET

136

6. A(n) _____ jump is within -128 to +127 bytes of the current IP

(SHORT)

7. A(n) _____ jump is within –current code segment (NEAR)

8. A(n) _____ jump is within outside the current code segment

(FAR)

9. In a FAR CALL _____ and _____ are saved on the stack (IP, CS)

10. The _____ directive is always used for the ASCII strings longer

than 2 bytes (DB)

MP, CSE, VCET

137

11. The DD directive is used to allocate memory locations that are

____ bytes in length; the DQ directive is used to allocate memory

locations that are ____ bytes in length (4, 8)

12. The ASSUME directive is used in full segment definition

(TRUE/FALSE)

13. In full segment definition, each segment begins with the _____

directive and ends with a matching _____ directive (SEGMENT,

ENDS)

MP, CSE, VCET

	MICROPROCESSORS AND MICROCONTROLLERS
	BRIEF HISTORY OF THE x86 FAMILY
	
	
	
	
	
	
	
	
	
	
	
	INSIDE THE 8088/86
	
	
	
	
	
	
	INTRODUCTION TO �ASSEMBLY LANGUAGE PROGRAMMING
	
	
	
	
	
	
	INTRODUCTION TO PROGRAM SEGMENTS
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	THE STACK
	
	
	
	
	
	
	
	FLAG REGISTER
	
	
	
	
	
	
	
	
	X86 ADDRESSING MODES
	
	
	
	
	
	
	
	
	
	
	MICROPROCESSORS AND MICROCONTROLLERS
	
	
	
	
	
	
	MICROPROCESSORS AND MICROCONTROLLERS
	DIRECTIVES AND A SAMPLE PROGRAM
	
	
	
	
	ASSEMBLE, LINK, AND RUN A PROGRAM
	
	
	
	MORE SAMPLE PROGRAMS
	
	
	
	
	
	
	CONTROL TRANSFER INSTRUCTIONS
	
	
	
	
	
	
	
	
	DATA TYPES AND DATA DEFINITIONS
	
	
	
	
	
	
	
	
	
	
	FULLSEGMENT DEFINITION
	
	
	
	
	FLOWCHARTS AND PSEUDOCODE
	
	
	
	
	
	MICROPROCESSORS AND MICROCONTROLLERS
	
	
	
	
	
	

