15CS - 44

MICROPROCESSORS AND
MICROCONTROLLERS

MODULE 1

THE X86
MICROPROCESSOR

Mahesh Prasanna K.
Dept. of CSE, VCET.

MP, CSE, VCET

BRIEF HISTORY OF THE x86 FAMILY

» A study of history Is not essential to understand the
microprocessor, but it provides a historical perspective of the fast-

paced evolution of the computer

Evolution from 8080/8085 to 8086:
» In 1978 — Intel Corporation — a 16-bit microprocessor — 8086

» 1n 1979 — Intel Corporation — a 16-bit microprocessor — 8088

MP, CSE, VCET 2

» The Intel 8085 »

»

»

»

»

8-bit non pipelined
microprocessor

Addressed 64K bytes of

memory

Can execute 769,230

Instructions per second

Its instruction set contained

246 Instructions

The Intel 8086/8088

N

D

»

N

D

»

16-bit pipelined microprocessors

Addressed 1M bytes (1M byte = 1024K
bytes = 1024 * 1024 bytes = 1,048,576

bytes) of memory

Executed 2.5 MIPs (millions of instructions

per second)

Its instruction set contained over 20,000

instructions

A small 6- or 4-byte instruction cache or
queue that pre-fetched a few instructions

before they were executed

MP, CSE, VCET 3

Evolution of Intel’s Microprocessors (from 8008 to 8088)

Product 8008 8080 8085 8086 8088
Year introduced 1972 1974 1976 1978 1979
Technology PMOS NMOS NMOS NMOS NMOS
Number of pins 18 40 40 40 40
Number of transistors 3000 4500 6500 29,000 29,000
Number of instructions 66 111 113 133 133
Physical memory 16KB 64KB 64KB 1MB 1MB
Virtual memory None None None None None
Internal data bus 8 8 8 16 16
External data bus 8 8 8 16 8
Address bus 8 16 16 20 20
Data types 8 8 8 8/16 8/16

MP, CSE, VCET

» The Intel 80286

»

»

»

»

»

16-bit internal and external data buses

24 address lines; which give 16M bytes of memory (2% = 16M
bytes)

The clock speed of 80286 was increased; hence, it executed 4
MIPs

Virtual memory —swapping data between disk storage and
RAM

The 80286 can operate in one of two modes: real mode and

protected mode

MP, CSE, VCET 5

» The Intel 80386
» Internally and externally a 32-bit microprocessor
» 32-bit address bus; capable of hand ling physical memory of up
to 4 gigabytes (232 = 4G bytes)
» Virtual memory was increased to 64 terabytes (24° = 64T bytes)
» The Intel 803865X
» Internally identical to 80386 ,icroprocessor

» 24-bit address bus, which gives a capacity of 16M bytes (2% =
16M bytes) of memory

» 16-bit external data bus — This makes the 386SX system much cheaper

MP, CSE, VCET 6

» The Intel 80486

»

»

»

»

»

»

»

»

The 80486 is available as an 80486DX (contains the numeric coprocessor),

or an 80486SX (does not contain numeric coprocessor)
Executes many of 80386 instructions in one clock period
80486 microprocessor improved 80386 numeric coprocessor
80486 microprocessor also contains an 8K byte cache memory
The 80486DX contains a 16K byte cache memory

When the 80486 is operated at the same clock frequency as an 80386, it

performs with about a 50% speed improvement

The 80486 is available as a 25 MHz, 33 MHz, 50 MHz, 66 MHz, or 100
MHz device

Note that, all programs written for the 8088/86 will run on 286, 386, and 486

computers MP, CSE, VCET .

» The Intel Pentium

»

»

»

»

»

»

»

»

Submicron fabrication technology — more than 3 million transistors

The Pentium had speeds of 60 and 66 MHz (twice that of 80486 and over
300 times faster than that of the original 8088)

Separate 8K cache memory for code and data

64-bit external data bus with 32-bit register and 32-bit address bus capable

of addressing 4G bytes of memory

Improved floating-point processor

Pentium is packaged in a 273-pin PGA chip

A dual-integer processor, can execute 2 instructions at a time

It uses BICMOS technology, which combines the speed of bipolar

transistors with the power efficiency of CMQOS technology.

MP, CSE, VCET 8

» The Intel Pentium Pro
» Sixth generation of the x86 family

» Pentium Pro i1s an enhanced version of Pentium that uses 5.5

million transistors

» It was designed to be used for 32-bit servers and workstations

MP, CSE, VCET 9

Evolution of Intel’s Microprocessors (from 8086 to the Pentium Pro)

Product 8086 80286 80386 80486 Pentium Pentium Pro
Year introduced 1978 1982 1985 1989 1993 1995
Technology NMOS NMOS CMOS CMOS BICMOS BICMOS
Clock rate (MHz) 3-10 10-16 16-33 25-33 60, 66 150
Number of pins 40 68 132 168 273 387
Number of transistors 29,000 134,000 275,000 1.2 million 3.1 million 5.5 million
Physical memory 1MB 16MB 4GB 4GB 4GB 64GB
Virtual memory None 1GB 64TB 64TB 64TB 64TB
Internal data bus 16 16 32 32 32 32
External data bus 16 16 32 32 64 64
Address bus 20 24 32 32 32 36
Data types 8/16 8/16 8/16/32 8/16/32 8/16/32 8/16/32

MP, CSE, VCET 10

Pentium 11

Pentium 111 Pentium 4

Intel 64

Architecture

v71.5 million
transistor
vMMX (multi-

media extension)
v'Used for servers

and workstations

v95 million v'Designed for
transistor heavy multimedia
v'Instructions to processing
handle video and v Operates at
audio 400MHz
v'Used for servers v'Used as high
and workstations end multi-media
processing

microprocessor

v'64-bit family of
Processors,

formerly called as
Merced.
v'Can execute
many instructions

simultaneously

v'Designed to
meet needs of
powerful

workstations

Evolution of Intel’s Microprocessors (from Pentium Il to Itanium)

Product Pentium 11 Pentium 111 Pentium 4 Itanium 11
Year introduced 1997 1999 2000 2002
Technology BICMOS BICMOS BICMOS BICMOS
Number of transistors 7.5 million 9.5 million 42 million 220 million
Cache size 512K 512K 512K 3MB
Physical memory 64GB 64GB 64GB 64GB
Virtual memory 64TB 64TB 64TB 64TB
Internal data bus 32 32 32 64
External data bus 64 64 64 64
Address bus 36 36 36 64
Data types 8/16/32 8/16/32 8/16/32 8/16/32/64

MP, CSE, VCET

12

REVIEW
Features of the 8086 that were improvements over the 8080/8085

Differences between the 8086 and 8088 microprocessors

Differences between the 80386 and the 80386SX

. Additional features introduced with the 80286 that were not

present in the 8086

. Additional features introduced with the 80486 that were not

present in the 80386

. Additional features introduced with the Pentium that were not

present in the 80486

MP, CSE, VCET 13

INSIDE THE 8088/86

Exa:uticrn Unil (EU)

AH

AL

BH

EL

CH

CH

CL

CL

Multiplexed

Bus Interface Unit (BIU)

Y

A

L

Dperands

A

v

1

ALU

bus

Address generation
and bus control

)

L

Instruction
gueus

Flags

MP, CSE, VCET

14

Pipelining
To process the information faster, the CPU can:
» Increase the working frequency —
» But, It Is technology dependent
» Change the internal architecture of the CPU —

» EQ: In 8085, the CPU had to fetch an instruction from memory,
then execute it and then fetch again, execute it, and so on; I.e.,

8085 CPU could either fetch or execute at a given time

MP, CSE, VCET 15

Nonpipelined
(e.g., BOBS)

Pipelined
(€.8., 30BO]

fetch 1

exec | feich 2 [execi |
fetch ll_ EJ{EE_I
S
fetch 2 exe 2

feich 3 ‘ exec 3

MP, CSE, VCET

16

Execution Unil (EU)

AH AL

BH EL

CH L

CH CL

EP

DI

|

Sp

Multiplexed

Bus Interface Unit (BIU)

Ccs

ES

55

DS

L)

A A
| Y I

Address generaticn
and bus control

A

|

Instruction
queys

MP, CSE, VCET

Nl ol | el |] | e
eg, 84 o b e =
Pl &IEI e&cl
g, 088
fehd | ol
| .fmchl pie)
17

Registers

Category Bits Register Names
16 AX, BX, CX, DX
General
8 AH, AL, BH, BL, VH, CL, DH, DL
SP (Stack Pointer)
Pointer 16)
BP (Base Pointer)
Sl (Source Index)
Index 16 o
DI (Destination Index)
CS (Code Segment)
DS (Data Segment)
Segment 16
SS (Stack Segment)
ES (Extra Segment)
Instruction 16 IP (Instruction Pointer)
Flag 16 FR (Flag Register)

MP, CSE, VCET

18

AX 1s used for the accumulator

AX

16-bit register BX as a base addressing register

AH AL CX as a counter in loop operations
8-bit register | 8-bit register
DX to point to data in 1/O operations
8-bit register:

m‘un]ns‘m‘m‘m‘mlm

16-bit register: —
DIS‘DH‘DIJ L'IIE]IJ'HIUH“J‘ D4 ‘ [‘ D7 ‘ D ‘ D5 | D4 ‘ Djj Dz ‘ Dl ‘ D0

MP, CSE, VCET 19

REVIEW

1. Explain the functions of the EU and BIU

2. What is pipelining? How does it make the CPU execute faster?

MP, CSE, VCET 20

»

»

»

INTRODUCTION TO
ASSEMBLY LANGUAGE PROGRAMMING

Machine Language — quite tedious and slow for humans to deal

with Os and 1s

Assembly Language — mnemonic for the machine code instruction
— programming Is faster and less prone to errors

» ALP must be translated into machine code (also called as object code) by a

program called an assembler

» Assembly language is referred to as a low-level language — deals directly

with the internal structure of the CPU

High-level Language — programmer does not have to be concerned

with the internal details of the CPU — compiler

MP, CSE, VCET 21

Assembly Language Programming
» An Assembly language program (ALP) consists of —

» A series of lines of Assembly language instructions; which

consists of —
» amnemonic — the commands to the CPU

» (Optionally) operands — the data items being manipulated

Opcode (Mnemonic) Source operand (register
Relative addressing)
AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.

Label—provides a \ Destination operand \ Comment

Means of branching (register addressing)

To this instruction

MP, CSE, VCET 22

MOV Instruction:

» Copies data from one location to another

MOV destination,source ;copy source operand to destination

MOV BXCX

|

o Source
Destination

Register array

AX

BX

(4

MOV
Mav
MOV
MOV
MOV
MOV

1 2 3 4 :

the
the
the
the
the

CL,55H ;move 55H into register CL
DL, CL ;copy

contents of CL into DL (now DL=CL=33H)
contents of DL into AH (now AH=DL=53H)
contents of AH into AL (now AL=AH=5%H)
contents of CL into BH (now BH=CL=55H)
contents of BH into CH (now CH=BH=55H)

MP, CSE, VCET

MOV
MoV
MOV
MOV
Mov
MoV
MoV
MOV

C¥, d68FH
AX, CX
X, 2%
BY, DX
DI, BX
51,01
D5, §1
BP, DI

smove 468FH inte CX (now CH=16,CL=EF)
jcopy contents of CX to AX (now AX=CI=468FH)
icopy contents of AX to DX (now DX=AX=468FH)
;copy contents of DX to BX (now BX=DX=468FH)

;now DI=BX=468TH
jhow SI=DI=1GEFH
snow DS=51=168FH
snow BP=DI=168FH

MOV
Mav
MOV
MoV
MOV
MOY
MOV
MOV

AX, JHFCH
DX, 6678H
5I,924BH
BP, 245%H

D5, 2341H
CX,887¢H

CS, JF47H
BH, 99H

fmove
s MOVE
move
move
fmove
i move
move

JHFCH
6TEH
324B

24591

2341H
B87T6H

iIF4TH

into AX

into DX
intg 51
into BP
into DS
intg CX
inta C§

smove 99H into BH

(LEGAL)
(LEGAL)
(LEGAL)
(LEGAL)
(ILLEGAL)
(LEGAL)
(ILLEGAL)
|LEGAL)

MP, CSE, VCET

24

Note:

» Values cannot be loaded directlv into anv seament register (CS,
MOV AX,2345H ;load 2345H into BX
DS, SS, and ES) MOV DS,AX ;then load the value of RX into DS

MoV DI,14008 ;load L400H inte DI

MOY ES,DI ;then move it into ES, now ES=DI=1400

» |If a value less than FFH is moved into a 16-bit register, the rest of

the bits are assumed to be all zeros
E.g.. MOV BX,5 ; result will be BX = 0005, i.e., BH =00 and BL = 05

» Moving a value that is too large into a register will cause an error

WV BL,JF2H ;ILLEGAL: TF2H 1s larger than § bits
MOV AX,ZFE4S6H ;ILLEGAL: the value is larger than AX

MP, CSE, VCET 25

ADD Instruction

ADD destination,source ;ADD the source operand to the destination

MOV AL, 25K

MOV BL, 344
ADD AL, BL

MOV DH, 254
ADD DH, 344

MOV A%, 342K
MOV DY, 6ASH
ADD DX, X

move 25 into AL | MOV DH,25H :move 25 into DH

move 34 into BL | MOV CL,3H ;move 34 into CL
AL = AL+ BL ADD DH,CL ;add CL to DH: DH = DH + CL

+10ad one operand into DH
:add the second operand to DH

'move 34EH into AX [MOV CK,34EH ;load 34EH into CX
move GASH into DX | ADD CX,GASH ;add 6ASH to CX (now CX=OF3H)

;add AX to DX: DK = X + AX

MP, CSE, VCET

26

REVIEW

1. Which of the following instructions can not be coded in 8086

Assembly language? Give reason
(a) MOV AX, 27H (b) MOV AL, 97FH (c) MOV DS, 9BF2H
(d) MOV CX, 397H (e) MOV Si, 9516H (f) MOV CS, 3490
(g) MOV DS,BX (h) MOV BX,CS (i) MOV CH, AX
(j) MOV CS, BH (k) MOV AX, DL (I) MOV AX, 23FB9H

MP, CSE, VCET 27

INTRODUCTION TO PROGRAM SEGMENTS

» Asegmentis —

»

»

» an area of memory
» Includes up to 64K bytes

» begins on an address evenly divisible by 16 (such an address
ends in OH)

In 8085, there was only 64K byte (21 = 64K bytes) of memory for

all code, data, and stack information

In the 8088/86 (addressable range of 1M bytes (22° = 1MB) of
memory) there can be up to 64K bytes of memory assigned to

each category

MP, CSE, VCET 28

Logical Address & Physical Address
» 3 types of addresses in 8086:

1. The physical address — is the 20-bit address that is actually put on
the address pins of the 8086 microprocessor and decoded by

memory interfacing circuitry (00000H — FFFFFH)

2. The offset address — iIs a location within a 64K byte segment

range (0000H — FFFFH)

3. The logical address — consists of a segment value and an offset

address.

MP, CSE, VCET 29

Fuona

Enona

Lnan

coonn

Enoon

Annan

20000

20000
0000

a00og
50000
40000
30000
20000
10000

0000

) Offset = FO0O

Segment register

519001

EFFFH T
| 22 _ 4K Real made memary
FFFFF
Stack Seament E0000 ‘l‘
9FFFF T
——_
|ES _ 64K —]
1FFFF
Frtra Reament, S000 J’
1FOO0
4FFTF 1‘ B4K-byte
sagment
| DS - fK
10000 *
Tiata Remment 40000 ‘l‘
FFFF T
00000
Cnde Seoment, | C5 - pdE
20000 ‘l'

MP, CSE, VCET

30

Code Segment

»

»

»

»

8086 fetches the instruction from the code segment

The logical address of an instruction always consists of a CS and

an IP

1‘5‘n|n : ﬁlﬁlF 3

The physical address of the instruction is generated by —

Shifting the CS left by one hex digit and then adding it to the IP
(offset)

MP, CSE, VCET 31

»

»

»

»

»

The offset address is contained in IP; let it be 95F3H.
The logical address i1s CS: IP, or 2500: 95F3H.
Then the physical address will be 25000 + 95F3 = 2E5F3H.

|. Start with CS, 2 5 0 0
i

2. Shift lefi CS. 2 I 5 0 0 | 0

3. Add IP, + o [5]+ | k

4. Physical address. 2 E I 3 F | 3

The lowest memory location of the code segment will be 25000H
(25000+0000)

The highest memory location will be 34FFFH (25000+FFFF)

MP, CSE, VCET 32

FEE = 24F6H and IP = 634AH, show (a) the logical address, and (b) the offset address.

Calculate (c) the physical address, (d) the lower range, and (e) the upper range of the
code segment.

Solution:

(a) 24E6:634A (b) 634A (c) 2B2AA (24F60 + 634A)
(d) 24F60 (24F60 + 0000) (¢) 34FSF (24F60 + FFFF)

MP, CSE, VCET

33

Logical Address vs Physical Address

LOGICAL ADDRESS MACHINE LANGUAGE ASSEMBLY LANGUAGE

CS:IP QPCODE AND OPERAND MNEMONICS AND QPERAND
1132:0100 8057 MOV AL, 57
1132:0104 Bode MOV DH, Bb
113230104 B272 MOV DL, 72
1132:0108 BA4D1 MOV CX, DX

LOGICAL ADDRESS EHYSICAL ADDRESS MACHINE CODE CONTENTS

1132:0100 11420 BO
1132:0101 11421 37
1132:0102 11422 B
113210103 11423 86
1132:0104 11424 BZ
11320105 11425 72

MP, CSE, VCET 34

Data Segment

» One way to add 25H, 12H, 15H, IFH, and 2BH Is —

MOV AL,00H ;initialize AL
ADD AL,25H ;add 25H to AL
ADD AL,l1ZH :add 1ZH to AL
ADD AL.15%H ;add 15H to AL
ADD AL,lFH ;add IFH to AL
ADD AL,2BH ;add 2BH to AL

» But, here, data and code are mixed together.

» Hence, If the data changes, the code must be searched for every

place the data is included, and the data retyped.

MP, CSE, VCET 35

» To overcome the problem; set aside an area of memory, strictly for

data — data segment

r | MOV AL,D ielear AL
325“354 - 11?5' ADD AL,[0200] :add the contents of DS:200 to AL
05:0201 = 120y AL, [0201] :add the contents of D§:201 to AL

35fggﬂﬁ "1 | A0 AL([0202] jadd the contents of DS:202 to AL
25:0200 = 1F | app aL,(0203] ;edd the contents of DS:203 to AL
10208 = 48 | app AL,[0204] ;add the contents of DS:204 to AL
Segment Offset Special Purpose

CS IP Instruction address

DS SI, DI, BX, an 8- or 16-bit number Data address

SS SPor BP Stack address

ES SlI, DI, BX for string instructions String destination address

MP, CSE, VCET 36

» The term pointer is often used for a register holding an offset

address. In the following example, BX is used as a pointer

MOV AL, ;initialize AL
MOV BX, 02008 BX points to offset addr of [irst Dyte
ADD AL,[BX] ;add the first byte to AL

INC BX rincrement BX to point to the next hyte
ADD AL,[BX] jadd the next byte to AL

INC BX sincrement the pointer

ADD AL,[BY] radd the next byte to AL

INC BX rincrement the pointer

ADD AL,[BA] jadd the last byte to AL

» The INC instruction adds 1 to (increments) its operand.

» "INC BX" achieves the same result as "ADD BX, 1"

MP, CSE, VCET 37

Logical Address & Physical Address in DS

Solution: DS : offset

. 0 0] : I o 5 0

The physical address will be 50000 + 1950 = 51950,

1. Start with DS, s1opo]o
-‘—

2. Shifi DS lefi. stolololo

3, Add the offset. i | 9 5 0

4. Physical address. 3 1 91 3 0

Assume that DS is 5000 and the offset is 1950. Calculate the physical address.

MP, CSE, VCET

38

If DS = TFA2H and the oftsct 15 4381, calculate () the physical address, (b) the lower
range, and (c) the upper range of the data segment. Show (d) the logical address,

Solution:

(2)83DAE (TFA20+ 438E) (b) TFA20 (TFA20 + 0000)
(c)SFALE (TFA20 + FEFF) (d) TFA2436E

If not, what changes need 1o be made?

Solution:

MP, CSE, VCET

Assume that the DS register is S78C. To access a given byte of data at physical
memory location 67F66, does the data segment cover the range where the data resides?

No, since the range is 578C0 to 678BF, location 67F66 is not ingluded in this range. To
access that hyte, DS must he changed so that its range will include that byte,

Little Endian Conversion

» In x86, the 16-bit data can be used as follows —

MOV AX,315F3H ;load 35F3H into AX
MOV [1500] ,AX ;copy the contents of AX to offset 15004

» The low byte goes to the low memory location and the high byte

goes to the high memory location

» Hence, memory location DS: 1500 contains F3H and memory
location DS: 1501 contains 35H

» (DS: 1500 = F3 and DS: 1501 = 35). This is called little endian

conversion

MP, CSE, VCET 40

»

»

»

In the big endian method,

» the high byte goes to the low address

In the little endian method,

» the high byte goes to the high address and the low byte goes to the low

address.

All Intel microprocessors use the little endian conversion

Assume memory locations with the following contents: DS:6826 = 48 and DS:6827 =
22. Show the contents of register BX in the instruction “MOV BX,[6826]".

Solution:
According to the little endian convention used in all x86 microprocessors, register BL
should contain the value from the low offset address 6826 and register BH the value

from the offset address 6827, giving BL = 48H and BH = 22H.

DS:6826 = 48 BH BL
DS:6827 =22 v i

MP, CSE, VCET

41

Memory Map of IBM PC

»

»

»

The 20-bit address of 8088/86 allows a total of 1M bytes (00000H
— FFFFFH)

Memory map Is the process of allocating the 1M bytes of memory

space to various sections of the PC

Out of 1M byte —

» 640K bytes from the address 00000H — 9FFFFH, for RAM
» The 128KB from A0O000OH — BFFFFH, for video memory
» The remaining 256KB from CO000H - FFFFFH for ROM

MP, CSE, VCET 42

» | Memory management is

»

the function of OS \ on the vide}ﬁ board installed on the PC
/

OS allocates the RAM
(first) for its own use and

for applications

» The amount of memory
used by Windows varies

among its various versions

» The memory needs of the
application packages are

different

» The program would not be

portable to another PC

» The amount used and location vary depending

RAM
640K

0O000H

9FFFFH
/ ADDODH
Video Display
RAM 128K
BFFFFH
CO000H
ROM
/ 256K FFFFFH

/

» 64\LKB are used by the BIOS

» Some space is used by various adapter cards

» Reskisvirae

43

Functions of BIOS ROM

»

»

»

CPU can only execute programs that are stored in memory

When the power is turned on, there must be some permanent
(nonvolatile) memory to hold the programs, which tell the CPU

what to do

This collection of programs held by ROM is referred to as BIOS

In the PC literature

MP, CSE, VCET 44

»

»

»

»

BIOS, basic input-output system, contains —
» Programs to test RAM and other components connected to the CPU

» Programs that allow Windows to communicate with peripheral devices such

as the keyboard, video, printer, and disk.

The functions of BIOS is to —

» Test all the devices connected to the PC when the computer is turned on

» Report any errors

After testing and setting up the peripherals; BIOS will

» Load Windows from disk into RAM and hand over control of the PC to

Windows

Windows always controls the PC once it is loaded

MP, CSE, VCET 45

REVIEW
How large is a segment in 80867 Can the physical address

346EQ0H be the starting address for a segment? Justify
Name segment registers and their functions in 8086

If CS = 3499H and IP = 2500H, find: (a) the logical address (b)
the physical address (c) the lower and the upper ranges of the

code segment

If CS =1296H and IP = 100H, find: (a) the logical address (b) the
physical address (c) the lower and the upper ranges of the code

segment

MP, CSE, VCET 46

D.

REVIEW
If DS = 3499H and IP = 3FB9H, find: (a) the logical address (b)

the physical address (c) the lower and the upper ranges of the

code segment

If CS =1296H and IP = 7CC8H, find: (a) the logical address (b)
the physical address (c) the lower and the upper ranges of the

code segment

If SS = 2000H and SP = 4578H, find: (a) the logical address (b)
the physical address (c) the lower and the upper ranges of the

code segment

MP, CSE, VCET 47

»

»

»

»

THE STACK

The stack is a section of read/write memory (RAM) used by the

CPU to store information temporarily

The CPU needs this storage area since there are only a limited

number of registers

The disadvantage Is its access time — since the stack is in RAM, it
takes much longer to access compared to the access time of

registers.

Note that, the registers are inside the CPU and RAM is outside.

MP, CSE, VCET 48

How the Stack are Accessed?

» The stack must be loaded, before accessing it
» SS & SP are registers used to access the stack
» Storing of a CPU register in the stack Is a push

» Loading the contents of the stack into the CPU register is a pop

» Push/Pop is associated with entire 16-bit register

» SP points at the current memory location used for the top of the

stack
» When data is pushed onto the stack SP is decremented
» When data is popped off the stack, SP is incremented

» Stack Is growing downward from upper addresses to lower addresses
MP, CSE, VCET 49

Pushing onto the Stack

Solution:

$8:1230
88:1231
S8:1232
85:1233
S8:1234
$8:1235
88:1236

Assuming that 5P = 1236, AX = 24B6, DI = 85C2, and DX = 5F93, show the contents of the
stack as each of the following instructions is executed.
PUSH AX
PUSH DI
FUSH DX

93
—
5F
e —] —-ﬂ- [f——
Cc2 C2
85 85
—c
Bo6 B6 B6
24 24 24
E—
Start: After Adter After
SP= 1234 PLISH AX PLISH IM PUSH DX
SP= 1234 5P = 1232 SP= 1230

MP, CSE, VCET

Popping the Stack

POP
POR
POFE

Solution:

Cx
DX
BX

SS5:18FA
SS:18FB
S5:18FC

55:18FD

55:18FE
S5:18FF
S5:1900

registers as each of the following instructions 1s executed:

Assuming that the slack 1s as shown below, and SP = 18FA, show the contents of the stack and
e
23
14
r— * JA— h re— i
6B 6B
2C 2C
9] 91 21
G Fé Fé&
o
Start: After After After
5P = 1RFA POPCX POPDX POPBX
aP=|BFC SP=18FE SP = 1900
CX=1423 DX=2C6B BX=F&vl

MP, CSE, VCET

51

Logical Address vs Physical Address for the Stack

» The physical location of the stack depends on

» The value of the SS (stack segment) register

» The SP (stack pointer).

» To compute the physical address for stack, shift left SS and then
add offset SP register

If SS = 3500H and the SP is FFFEH,
(a) Calculate the physical address of the stack. (b) Calculate the lower range.
(¢) Calculate the upper range of the stack segment. (d) Show the stack’s logical address.

Solufion:
(a) 44FFE (35000 + FFFE) (b) 35000 (35000 + DOOO)
(c) 44FFF (35000 + FFFF) (d) 3500:FFFE

MP, CSE, VCET 52

NOTE

1. Dynamic behavior of the segment and offset concept in the 8086 CPU - A

single physical address may belong to many different logical addresses

Logical address (hex] Physical address (hex)
10005020 15020
1500:0020 15020
1502:0000 15020
1400:10210 15020
1302:2000 15020

2. When adding the offset to the shifted segment register; if an address beyond

the maximum allowed range (FFFFFH) is resulted, then wrap-around will

occur What is the range of physical addresses if CS = FF597 00000

Solution: (IF58F

The low range 1s FF590 (FF590 + 0000).
The range goes to FFFFF and wraps around, EES00

from 00000 to OF38F (FF390 + FFFF = (0F38F), .
as shown in the illustration. FEFFF

53

3. Non-overlapping vs Overlapping Segments

Nonaverlspping Overlapping
Segments Segments
25000
€5 =2500
30000
4FFF
CS = 3000
— IFFFF
63210
) D3 = 4030 50000
D5 =632] - “04FE
T320F E
SFFFF
82100
38 =8210 1:
920FF
MP, CSE, VCET 54

REVIEW
1. If SS = 2000H and SP = 4578H, find: (a) the logical address (b)

the physical address (c) the lower and the upper ranges of the

code segment

2. Assume that SP = FF2EH, AX = 3291H, BX = F43CH, and CX =
09. Find the contents of the stack and SP after the execution of

each of following instructions: PUSH AX PUSH BX PUSH CX

3. Show the segment register(s) used in the following cases: (a)
MOV SS: [BX], AX (b) MOV SS: [DI], BX (c) MOV
DX, DS:[BP+6]

MP, CSE, VCET 55

FLAG REGISTER

1 14 13 12 11 10 @ & 7 6 5 4 3 12 1 0
[RTRJR[R[OF[DF]IF] F [SFIZFJ U JAF[U JPF] U JCF
R = reserved SF = s1gn flag
[/ = undetined IF = zero flag
OF = overtlow flag AF = auxiliary carry flag
DF = direction flag PF = parity flag
IF = interrupt flag CF = carry flag
TF = trap flag
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OF | oF | IF | TF | SF | zF AF PF CF

» Conditional flags — indicate some condition that resulted after an instruction

was executed — CF, PF, AF, ZF, SF, and OF

» Control flags — used to control the operation of instructions before they are

executed - TF, IF, DF

MP, CSE, VCET 56

Show how the flag register is affected by the addition of 38H and 2FH.
Solution:
MOV BH,38H :.BH= 38H
‘ADD BH,2FH ;add 2F to BH, now BH=67H

. 38 0011 1000

+ 2F 010 1111
67 0110 011l

CF = 0 since there is no carry beyond d7 ZF = 0 since the result is not zero
AF = 1 since there is a carry from d3 1o d4 SF =0 since d7 of the result is zero
PF = 0 since there is an odd number of 15 in the result

Show how the flag register is affected by

MOV AL, 9CH :AL=9CH
MOV DH, 64H ; DH=-64H
ACD AL,DH ;now AL=0
Solution: :
0C 1001 1100
* 04 0110 0100
00 0000 0000

CF = | since there is a carry beyond d7
AF = | since there is a carry from d2 to d4
PF = | since there is an even number of |s in the result

ZF = | since the result is zero
SF = 0 since d7 of the result 1s zero

MP, CSE, VCET

57

Show how the flag register is affected by
MOV AX, 34F5H :AX= 24FSH

ADD AX, 95EBH rnow A¥= CAE(QH
Solution;

J4F5 0011 0100 1111 0101
+ OSEB 1001 0101 1110 1011

CAEQ 1100 1010 1110 0000
CF = 0 since there 18 no carry beyond d13 ZF = { since the result is not zero
AF = | since there is a carry from d3 to d4 SF = | since dI5 of the result 1s one
PF = (since there is an odd number of 1s in the lower byte

Show how the {lag register is affected by
MOV B, RALRH JB¥= BAAMAH
ADD BX,5556H ;now BX= 000CH

Solution:
AAAA 1010 1010 1010 1010
+ 5556 0101 0101 0101 0110
0000 0000 0000 0000 0000
CF = | since there 1s a carry beyond d13 ZF = | since the result 1s zero
AF = | since there is a carry from d3 to d4 SF = (i since dl5 of the result is zero

PF = 1 since there 1s an even number of 15 in the lower byte

MP, CSE, VCET 58

Show how the flag register is affected by
MOV RX,94C2H s AX=94C2H
MOV BX,323EH +BX=323EH

ADD AX,BX snow A¥X=CT00H
MOV DX, AX :now DI=CI00H
MOV CX,DX ‘now CE=C700H
Solution:
94C2 1001 0DI00 1100 0010
+ 33E 0011 DO1G 0011 11l
C700 1100 D11 G000 0000
Adfter the ADD operation, the following are the flag bits:
CF = 0 since there is no carry beyond d13 ZF = () since the result is not zero
AF = | since there is a carry from d3 to ¢4 SF = 1 since d15 of the result 15 1

PF = 1 since there is an even number of 1s in the lower byte

MP, CSE, VCET

59

1. If the previous instruction performed the addition -
0010 0011 0100 0101
+0011 0010 0001 1001
0101 0101 0101 1110
Then; CF=0, PF=0, AF=0, ZF=0, SF=0, OF=0

2. If the previous instruction performed the addition -
0101 0100 0011 1001
+0100 0101 0110 1010
1001 1001 1010 0011
Then; CF=0, PF=1 AF=0, ZF=0, SF=1 OF=1

MP, CSE, VCET

60

/Here IS the tip to identify\

3. After adding two numbers 76H and 99H, what is the status of various flags?

the OF:
VILTOLT ePerform the addition in
+10011001 binary.
00001111
eldentify the carry out of
Then; CF=1, PF=1 AF=0, ZF=0, SF=0 MSB (C.).
4. 1f two numbers 1234H and 95A5H are added, what is the status of various flags? eldentify the carry into
0001001000120100 MSB (C,_,).
+0001010110100101 eWhen these two are not
101001111101 1001 equal, OF Is set; 1.,
Then: CF=0, AF=0, ZF=0, PF=0, SF=1 OF=0 OF=C,®Cp,

o /

MP, CSE, VCET 61

5. If two signed numbers 7FH and 01H are added, what is the status of various flags?
01111111
+00000001

10000000
Then, CF=0, AF=1 ZF=0, PF=0, SF=1, OF=1
6. If two unsigned numbers 7FH and 01H are added, what is the status of various flags?
01111111
+00000001

10000000
Then; CF=0, AF=1 ZF=0, PF=0

NOTE: Here, SF and OF are ignored hecause of unsigned numbers.

MP, CSE, VCET

62

Use of Zero Flag for Looping

ADD 1P;

MOV
MOV
MOV
ALD
INC
DEC
JNE

CX, 05
BX, 02004
ALJ DU
AL,| BY]
BY

CX
ADD LP

;CX holds the loop count

;B holds the offset data address
rinitialize AL

;add the next byte to AL
jincrement the data pointer

;decrenent the loop counter
;jump to next iteration if counter not zero

MP, CSE, VCET

63

REVIEW
1. Find the status of the CF, PF, AF, ZF, and SF for the following

operations:
(A)MOV BL, 9FH
ADD BL, 61H
(A)MOV AL, 23H
ADD AL, 97H
(A)MOV DX, 10FFH
ADD DX, 1

MP, CSE, VCET 64

/J,—x&&ADQREﬁWDES
. Register - MOV BX, DX

2. Immediate — MOV AX, 2550H

3. Direct— MOV DL, [2400]

4. Register Indirect— MOV AL, [BX]
5. Based Relative - MOV CX, [BX+10]
6. Indexed Relative — MOV DX, [SI]+5

— +1)1+
Addressing Mode Operand Default Segment
Remister reg none
Immediate data none
Direct |oftset] DS
Register indirect [BX] DS
[SI] DS
[DI] DS
Based relative [BX]+disp DS
[BP]+disp S8
Indexed relative [DI]+disp DS
[SI]+disp &Sy D§
Based indexed relative [BX][SI]+disp DS
[BX][DI]+disp DS
[BP][SI}+disp sS

[BP][DI]+disp 55

1. Register Addressing

MOV BX,DX ;copy the contents of DX into BX
MOV ES,AX ;copy the contents of AX infto ES

ADD ALBH :add the contents of BH to contents of AL

2. Immediate Addressing

MOV AX, 25500 ;move 2550H into A
MOV (X, 625 :10ad the decimal valve 629 into CX

MOV BL, 40H +1oad 408 1into BL

MP, CSE, VCET

66

3. Direct Addressing PA= { DS } : {DirectAddress}

MOV DL, 24001 ;move contents of DS:2400H into DL

i of the fol. |

Find the physical address of the memory location and 1ts contents aﬁef the execution of the fol-
lowing, assuming that DS = 1512H.

MOV AL, 99H
MOV [3518] ,AL
Solution:

First AL is initialized to 99H, then in line two, the contents of AL are moved to logical address
DS:3518, which is 1512:3518, Shifting DS left and adding it to the offset gives the physical
address of 18638H (15120H + 3518H = 18638H). That means afler the execution of the second

instruction, the memory location with address 18638H will contain the value 99H.

MP, CSE, VCET

67

Eg.

Eg.

MOV BX, [5634]

MOV CL, [5634]

BX

DS:5634H
DS:5635H

CL

DS:5634H
DS:5635H

MP, CSE, VCET

ARCDH 8645H
45H LS byte
86H MS byte
Before After
E2H 45H
45H

86H

68

BX
4. Register Indirect Addressing pA={ DS } : {a }
DI

MOV AL,[BX] ;moves into AL the contents of the memory
jlocation pointed to by DS:BX.

MOV CL,[51) ;move contents of D5:5I 1nto CL
MOV [DI),RH mave contents of A2H into DS:DI

Assume that DS = 1120, 81 = 2498, and AX = 17FE. Show the contents of memory lucﬁti:;ns
after the execution of "MOV [51] ,A%"

Solution:
The conients of AX are moved into memory locations with logical address DS:SI and DS:SI +

|; therefore, the physical address starts at DS (shifted left) + 1= 13698, According to the little
endian convention, low address 13698H contains FE, the low bvie, and high address 136%9H
will contain 17, the high byte,

MP, CSE, VCET 69

5

>

v

>

v

>

v

>

v

or

SS BP

. Based Relative Addressing PA:{ 0s } | {BX} o 16t comen
MWV CX,[BX]#10 ;move DS:BX+10 and DS:BX+10+41 into CX
tPA = D5 (shifted left) + BX + 10
Alternative codings are “MOV CX, [BX+10]"’ or
“MOV CX, 10[BX]”’
WV AL,[BF+5 jPA = 55 (shifted left) + BP +5
Alternative codings are “MOV AL, [BP+5]” or
“MOV AL, 5[BP]”
In “MOV AL, [BP+5]”’, BP+5 is called the effective address;

In “MQOV CX, [BX+10]”, BX+10is called the effective address

MP, CSE, VCET

70

+ 8 or 16 bit displacement

6. Indexed Relative Addressing pA_{Ds} { }

MOV DX,[ST)45 :PA = DS (shifted left) + SI 4}
MOV CL,[DIJ+20 ;PA = DS (shifted left) 4 DI 4 20

Assume that DS = 4500, S8 = 2000, BX = 2100, SI = 1486, DI = 8500, BP = 7814, and AX =
2512. All values are in hex. Show the exact physical memory location where AX is stored in
each of the following. All values are in hex,

(a) MOV] BX] +20, AX (b) MOV[SI] +10,AX

(c) MOV[DI] +4,AX (d)MOV[BP] +12,AX

Solution:

In each case PA = segment register (shifted left) + offset register + displacement.
(@) D5:BX+20 location 47120 = (12) and 47121 = (25)

(b) DS:SI+10 location 46496 = (12) and 46497 = (25)

(c) DS:DI+4 location 4D504 = (12) and 4D505 = (235)

(d) S8:BP+12 location 27826 = (12) and 27827 = (25)

MP, CSE, VCET

71

SS BP DI

7. Based Indexed Addressing PA:+DS } | |BX} {3|

or or or } + 8 or 16bit displacement

MOV CL(BX[DIJ+8 +PA = DS (shifted left) + BX + DI + §
MOV CH,[BX][SI1+20 ;PA = DS (shifted lEftJ + BX + SI + 20
MOV AH,|BP|[DI 412 ;PA = 55 (shifted left) + BP + DI + 12
MOV AH,[BPI[SI) 429 ;PA = 55 (shifted left) + BP + 5I + 29

» These examples can also be written as —

MOV AH,| BP+SI+ZY]
MOV &H,| SI+BP+29] ;the register order does not matter
Note that "uov AX,(S11(D1 +displacament” s illegal.

MP, CSE, VCET 72

Segment Override Prefix

Segment Offset Special Purpose
CS IP Instruction address
DS | SI, DI, BX, an 8- or 16-hit number Data address
SS SP or BP Stack address
ES SI, DI, BX for string instructions | String destination address

» "MOV AL, [BX]", PA of the operand to be moved into AL is DS: BX

» "MOV AL, ES: [BX]“, PA will be ES: BX instead of DS: BX

Instruction Serment Used Default Segment
MOV AX, CS:[BP] CS:BP SS:BP

MOV DX,58:[51] SS:81 DS:S1

MOV AX,DS:[BF] DS:BP S5:BP

MOV CX.ES[BX]+12 ES:BX+12 DS:BX+12
MOV §S:[BX][DI[+32,AX S8:BX+DI+32 DS:BX+DI+32

MP, CSE, VCET 73

1.

REVIEW
If CS = 1000H, DS = 2000H, SS = 3000H, SI = 4000H, DI =

5000H, BX = 6080H, BP = 7000H, AX = 25FFH, CX = 8791H,
and DX = 1299H; calculate, the physical address of the memory
accessed: (a) MOV [SI], AL (b) MOV [SI+BX+8], AH

(c) MOV [BX], AX (d) MOV [DI+6], BX (€) MOV
DI[BX]+28, CX () MOV [BP][SI]+10, DX (g) MOV
3600], AX (h) MOV [BX]+30, DX (i) MOV
BP]+200, AX (j) MOV [BP+SI+100], BX (K) MOV
SI1]+50, AH () MOV [DI+BP+100], AX

MP, CSE, VCET 74

2.

Identify the addressing mlc?d%%lrl:z(\é\)/ MOV AX,DS (b) MOV
BX, 5678 (c) MOV CX, [3000] (d) MOV AL,CH () MOV
[DI], BX (f) MOV AL, [BX] (g) MOV DX, [BP+DI+4]

(h) MOV CX, DS (i) MOV [BP+6], AL (j) MOV AH,
[BX+S1+50] (k) MOV BL, [SI]+10 (I MOV
[BP][SI]+12, AX

Show the content of the memory location, after the execution of:

(a) MOV BX, 129FH (b) MOV DX, 8C63H
MOV [1450], BX MOV [2348], DX
DS: 1450 DS: 2348

DS: 1451 MP, CSE, VCET DS: 2348 &

15CS - 44

MICROPROCESSORS AND
MICROCONTROLLERS

MODULE 1 —QUIZ 1

THE X86
MICROPROCESSOR

Mahesh Prasanna K.
Dept. of CSE, VCET.

MP, CSE, VCET

. The 80286 is a -bit microprocessor, where as the 80386 Is a

-bit microprocessor

I[tanium has a -bit architecture

. Which of the following registers cannot be split into high and low
bytes? [CS, AX, DS, SS, BX, DX, CX, SI, DlI]
. Write the Assembly language instructions to add the vales 16H

and ABH; place the result in AX register

. Values cannot be moved directly into registers

MP, CSE, VCET 77

. The largest 8-bit hex value is , and its decimal equivalent is

. The largest 16-bit hex value is , and its decimal equivalent

IS
. Asegment is an area of memory that includesupto bytes
. A physical addressisa _____ -bit address; and offset address is a
___-bit address
10. For CS, is used as the offset register

MP, CSE, VCET 78

11.

12.

13.

14.

If BX = 1234H and the instruction “MQOV [2400], BX” were
executed; then, the contents of memory location at offset 2400 is

and the contents of memory location at offset 2401

The stack i1s a section of RAM used for temporary storage
[TRUE/FALSE]

The Carry Flag will be set to 1 in an 8-bit addition, if there is a

carry out from bit

The Auxiliary Carry Flag will be set to 1 in an 8-bit addition, if

there is a carry out from bit

MP, CSE, VCET 79

. The 80286 is a -bit microprocessor, where as the 80386 Is a

-bit microprocessor (16, 32)

Itanium has a -bit architecture (64)

. Which of the following registers cannot be split into high and low
bytes? [CS, AX, DS, SS, BX, DX, CX, SI, DI] (CS, DS, SS, SI,
and DlI)

. Write the Assembly language instructions to add the vales 16H
and ABH; place the result in AX register (MOV AX, 16H ADD
AX, ABH)

. Values cannot be moved directly into registers (CS, DS, ES,

and SS)

MP, CSE, VCET 80

6. The largest 8-bit hex value Is , and its decimal equivalent is
(FFFFH, 65535)

7. The largest 16-bit hex value is , and its decimal equivalent
IS (FFH, 255)

8. A segment is an area of memory that includes up to bytes
(64K)

9. A physical address is a -bit address; and offset address is a
-bit address (20, 16)

10. For CS, IS used as the offset register (IP)

MP, CSE, VCET 81

11.

12.

13.

14.

If BX = 1234H and the instruction “MQOV [2400], BX” were
executed; then, the contents of memory location at offset 2400 is
and the contents of memory location at offset 2401

(34, 12)

The stack i1s a section of RAM used for temporary storage
[TRUE/FALSE]

The Carry Flag will be set to 1 in an 8-bit addition, if there is a

carry out from bit (7)

The Auxiliary Carry Flag will be set to 1 in an 8-bit addition, if

there is a carry out from bit (3)

MP, CSE, VCET 82

15CS - 44

MODULE 1

ASSEMBLY LANGUAGE
PROGRAMMING

Mahesh Prasanna K.
Dept. of CSE, VCET.

DIRECTIVES AND A SAMPLE PROGRAM

» A given Assembly language program (ALP) is a series of

statements. There are two types of statements:

1. Assembly language instructions - instructions to the

microprocessor to do the specific task. (E.g.: MOV, ADD, etc.)

2. Pseudo instructions/Directives — give directions to the assembler

about how it should translate. (E.g.: DB, DW, ASSUME, etc.)
» These instructions are not translated into machine code

» Used by the assembler to organize the program as well as other output files

MP, CSE, VCET 84

[label] mnemonic [operands] [comment]

Opcode (Mnemonic) Source operand (register
Relative addressing)
AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.

Label—provides a \ Destination operand \ Comment

Means of branching (register addressing)

To this instruction

MP, CSE, VCET

85

Model Definition
» *MODEL - directive selects the size of the memory model

*MODEL SMALL ; this directive defines the model as small

MODEL MEDIDM ;the data must fit into 64K bytes

ibut the code can exceed H4K bytes of memory
MODEL COMPACT ;the data can exceed 64K bytes

jbut the code cannot exceed 64K bytes

JMODEL LARGE tboth data and code can exceed 64K

;but no single set of data should exceed 64K
.MODEL HUGE ;both code and data can exceed 64K

;data iltems (such as arrays) can exceed 64K
MODEL TINY ;used with COM files in which data and code

- jmust fit into 6dK bytes

MP, CSE, VCET 86

Segment Deﬁnition . STACK imarks the beginning of the stack segment

.DATA imarks the beginning of the data segment
,CODE smarks the beginning of the code segment
;THE FORM OF AN ASSEMBLY LANGUAGE PROGRAM
;MOTE: USING SIMPLIFIED SEGMENT DEFINITION
+MODEL SMALL
-STACE 64
- DATA
DATAl CB 52H
DATAZ OB 29H
SUM LB /]
; .CODE
MAIN PROC FAR ithis is the program entry point
MOV AX,GDATA iload the data segment address
MOV D5,AX rassign wvalue to DS
MOV AL,DATAl iget the first operand
MOV BL,DATAZ ;get the second cperand
ADD AL,BL radd the operancds
MOV SUM, AL istore the result in location SUM
MOV AH,4CH iaet up te return to O3
INT 21H i
MAIN ENDP
END MAIN ;this is the program exit point

MP, CSE, VCET 87

REVIEW

1. Find the errors in the following:

.MODEL ENORMOUS
« 2TACK
. CODE
.DATA
MAIN PROC FAR
MOV AX,DATA
MOV DS,EDATA
MOV AL, 34H
ADD AL, 4FH
MOV DATAL, AL
START ENDF
END

MP, CSE, VCET

88

ASSEMBLE, LINK, AND RUN A PROGRAM

Step Input Program Output

1. Edit the program Keyboard Editor myfile.asm

2. Assemble the program myfile.asm | MASM or TASM | myfile.obj

3. Link the program myfile.obj | LINK or TLINK | myfile.exe
| 1 th]] e (.crf) — an alphabetical

Ast) — all the opcoades an "
(t)he offset ad%resses as il it st otall symb_ols n
! s tables used in the
well as errors program as well as
C>type myfile.lst | more ASSEMBLER program line numbers
PROGRAM

(.obj) - produces the
executable program
(.exe)

use DEBUG to execute the
program and analyze the
results

myfile lst <—| I—»m}fﬁiﬁcrf

myfile.obj r other obj files

LINKER
PROGRAM

- myfile.exe

4, - myfile.map

LINK program sets up

the file, so that, it can
be loaded by the OS
and executed

Run program in OS level,

type C:.>myfile — OS
loads the program -
mapping (program is

MP, CSE, VCET

mapped into physical
memory 89

C>MASM C:MYFILE.MASM - -<entar>

Miarasoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 19B8. All rights reserved.

Object filename [C:MYFILE.QOBJ]: C: <enter>

Source listing [HUL.L3T] :C:MYFILE.IST <enter>

EDITOR Cross-reference | NUL.CRF] : <enter>
PROGRAM
47962 + 413345 Bytes symbol space free
myfilc.asm

j 0 Warning Errors

0 Severe Errors
ASSEMBLER
PROGRAM

C>LINE C:MYFILE.COBJ <enter>

myfile Ist 4J I_,..nwﬁin:.crf Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Runn File [C:MYFILE.EXE] :C:<enter>

myfile.obj other obj files
r List File [NUL,MAF] : <enter>

LINKER Libraries [.LIE] i<enter>
PROGRAM LINK : warning L4021: no stack segment
C>DEBUG C:MYFILE.EXE <enter>
* Lo myfieap U CS:0 1 <enter>
" myfile.exe 1064:0000 BBE610 MOV BY, 1066

-D 1066:0 F <enter>

1066:0000 52 29 00 00 00 DO 00 O0-00 00 00 00 00 00 Q0 00 Ry......c.......
-G <enter>

Program terminated normally

-D 1066:0 F <enter>

1066:0000 52 29 7B 00 00 0O 0O 0OO0-00 OO OO 0O 00 00 00 00 BM
=0 <enter>

e

MP, CSE, VCET 90

PAGE and TITLE Directives
» Used make the “.Ist” file more readable

» The PAGE directive tells the printer how the list should be

printed. FAGE [lines] ,[columns]

» In the default mode, the output will have 66 lines per page and with a

maximum of 80 characters per line FAGE &0,13:

» TITLE directive can be used to instruct the assembler to print the

title of the program on the top of each page

MP, CSE, VCET 91

REVIEW

1. List the steps in getting a ready to run Assembly language

program

MP, CSE, VCET 92

MORE SAMPLE PROGRAMS

Write, run, and analyze a program that adds 5 bytes of data and saves the result. The data should be
the following hex numbers: 25, 12, 15, 1F, and 2B.

FAGE 60,132

TITLE FROCGZ-1 [EXE) PURPCESE: aADDS 5 BYTES OF DATA
.MICEL SMALL
. STACK &4
.DRETA

DATA IN LB 25H,12H, 158, 1F4, 2EH

S DE ?
s ODE

MAIN FROC FAR
Moy BX, ADATA
MOV DS, AX
MOV CX,05 ;set up loop counter CX=5
MOV BX,O0FFSET DATA IN ;set up data pointer EX

X MO AL,Q rinitialize AL

AGATH: anDh AL,[BX] ;radd next data item to AL
INC BX ;make BX point to nsxt data ltem
DEC CX ;decrement loop counter
JNE AGATN JJunp L lcop counter not Zero
MOV SUM, AT ;load result into sum
MOV AH, 4CH ;set up return
INT 21H ;return to O8

MAIHN ENDP
END MATIH

MP, CSE, VCET 93

After the program was assembled and linked, it was run using DEBUG:
C>debug progZ-l.exe

-u cs:0 19

1067:0000 B36610 MOV AX,10&6
1067:0003 BEDH MOV DS, AX
1067:0005 Ba0500 MOV CX,0005
1067:0008 BBOOOD MOV BX, 0000
1067:000D 0207 ADD AL,| BX]
1067:000F 43 INC BX
1067:0010 43 DEC CX
10670013 A20500 MOV | O005] ,AL
1067:0016 B44C MOV BH,d4C
1067:0018 CD21 INT 21

-d 1066:0 £

1066:0000 25 12 15 1F ZB 00 00 00-00 00 OO0 00 00 00 00 O0 %...%uuvenunns
-q

Program terminated normally

-d 1066:0 £

1066:0000 25 12 15 1F 2B 96 00 00=00 OO0 QOO0 00 OO0 00 00 00 %...+..........
==

Co

MP, CSE, VCET

94

»

»

»

INC destination — adds 1 to the specified destination

» Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected

Egl: INC AL ; Add one to the contents of AL.
Eg2: INC BX ; Add one to the contents of BX.

DEC destination — subtract 1 from the specified destination

» Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected

Eg: DECAL ; Subtract 1 from the contents of AL
JNZ label — jump if not zero; if ZF = 0, jumps to the label

specified. Checks for zero flag

» See MASM L.ist for Program 2-1

MP, CSE, VCET 95

Write and run a program that adds four words of data and saves the result. The values will be 234DH,
1DE6H, 3BCTH, and 566AH. Use DEBUG to verify the sum is D364,

TITLE PROGZ-2 (EXE) PURPOSE: ADDS 4 WORDS OF DATA
FAGE 60,132
MODEL SMALL

LSTACE B4
LDATR ;

DATA_IN Dl 234DH, 1DEEH, 3BCTH, 566AK
QORG 10H

S0 B 7
LCODE

MAIN FROC FAR
MOY AYX,@DATA
MoV DS, AX
MO CX,04 jact up loop counter CK=4
MOV DI,OFFSET DATA IN ;set up data pointer DI
MGV BX,00 ;inftlalize BXR

ADD 1P: ADD BX,[DI] ;add contents pointed at by [DI] to BX
INC DI ;jincrement DI twice
INC DI ;to point to next word
DEC CX ;decrement loop counter
JNIZI ADD LF ;jump if loop counter not zero
MOV SI,0FFSET S5UM :load pointer for sum
MoV [51 ,BX ;s5tore in data segment
MOV AH,4CH jset up return
INT Z21H ;jreturn to 0S

MRIN ENDE
END MATH

After the program was assembled and linked, it was run using DEBUG:
C=debug ci:progl-2.exe

10680000 BEEe1D MoV MM,10ER

=0 1066:0 1F ;
1066:0000 4D 23 E6 1D C7 3B 6a& 56-00 00 00 00 OO0 00 00 00 MEL.GiiV.eeren. s
1006:0010 00 00 00 DO Q0 00 00 00-00 00 00 00 00 Q0 00 00 ..vvuviinvunainn
=G

Program terminated normally

-0 1066:0 1F

1066:0000 4D 23 E6 1D C7 3B &A 56-00 00 00 00 00 00 00 00 MRE.GiiV.eieuran
1066:0010 64 D3 00 00 Q0 OO0 00 OO0-00 00 00 00 Q0 00 00 00 d5.. e enernnrun
-Q

>

96

»

»

OFFSET - tells the assembler to determine the offset or
displacement of a named data item (variable) from the start of the

segment

Eg: MOV AX, OFFSET MES1 ; Loads the offset of variable MES1 in AX register.

ORG directive — Used to set the offset addresses for data items.

» In the above program, the ORG directive causes SUM to be stored at DS:
0010

MP, CSE, VCET 97

Write and run a program that transfers 6 bytes of data from memory locations with offset of 0010H
to memory locations with offset of 0028H.

TITLE PROGZ-3 (EXE) FURPOSE: TRANSFERS & BYTES OF DATA

FAGE ©0,132
.MODEL SMALL

.STACKE G4
.DATA
ORG 10H
DATE IN DB 25H, 4FH, 858H, 1FH,2BH, 0C4H
u ORis FEH
COBRY DB & DUPIT)
.CODE
MAIN FROC FAR
= Mo A¥,@DATA
MOV L3, ,4ax

MOV S5I,OFFSET DATA IN ;51 points to data to be copied
MOV DI,QFFSET COPY ;DI points to copy of data

MOV CH,06H iloop counkter = 6

MOV LOOE: MOV AL,[5I] imove the next byte from DATA area to AL

= MOV [DI} , AL imove the next byte to COPY area

INC 51 ;increment DATA pointer
INC DI rincrement COPY pointer
DEC CX ;decrement LOOP counter
JHE MOV LOOF ;jump if lpop counter not zero
MOV AH,9CH ;set up to return
INT 21H sraturn to 08

MAIN ENDP
END MATIN

After the program was assembled and linked, 1t was run using DEBUG:
Cr>debug prog2-3.exe '

-1 ca:d 1

1069:0000 BBE61D MOV A¥, 1066

-d 10&6&:=0 Zf

1066:0000 00 00 00 OO0 00 OO0 00 00-00 Q0 DO 00 Q0 00 00 00 ...ovvewrvennnnann
1066:0010 25 4F B> 1F 2B C4 00 00-00 00 DO 00 00 00 00 00 %Q0..+4D..........
1066:0020 00 00 00 00 OO0 Q0 QO 00-00 OO DO 00 00 00 00 00 suvvvvsrvvrrrnnns
g

Program terminated normally

-d 1066:0 2I

1066:0000 00 00 00 00 OO0 OO0 00 00-00 OO0 DO 00 Q0 00 0D 00 ...ccvnucnuns .

1066:0010 25 4F BS 1F 2B C4 00 00-00 00 DO 00 00 00 0D 00 $0..4Du s vuvsvrs
10660020 Q0 00 00 Q0 OO0 OO0 00 00=25 4F BE 1F 2B C4 0D 00 %0. c#Dw s v w s s s st
—q
)

98

REVIEW

Explain INC instruction and DEC instruction with example
State the difference between the following two instructions:

MOV BX, DATA1 MOV BX, OFFSET DATA1

State the difference between the following two instructions:

ADD AX, BX ADD AX, [BX]

MP, CSE, VCET 99

CONTROL TRANSFER INSTRUCTIONS

» Inan ALP, instructions are executed sequentially
» It is often necessary to transfer program control to a different location

» Since the CS: IP registers always point to the address of the next instruction to

be executed

» Hence, they must be updated when a control transfer instruction is executed

[Control Transfer Instructions]

[Conditional (SHORT) Jumps] [Unconditional Jumps]

» SHORT: -128 to +127

| SHORT | | NEAR | [FAR |

» NEAR:-32,768 to +32,767

» FAR: [M@g@%gﬂmp] [Register Indirect Jump]

FAR and NEAR

»

»

If control iIs transferred to a memory location within the current

code segment, it iIs NEAR [intra-segment (within segment) jump]
» Ina NEAR jump, the IP is updated and CS remains the same

If control is transferred to a memory location outside the current

code segment, it is a FAR [intersegment (between segments)

jump]
» In a FAR jump, both CS and IP have to be updated to the new

values.

MP, CSE, VCET 101

Conditional Jumps

» |f the condition is met, the control will be transferred to a new

location

Mnemonic_| Condition Tested “Jump IF ...”

JA/INBE (CF = 0)and (ZF = () above/not below nor zero
JAE/INB CF=0 above or equalmot below
IB/INAE CF=1 below/not above nor equal
IBE/INA (CF or ZF) =1 below or equal'not above
IC CF=1 carry

JIE/IZ . | ZF =1 equal/zero

JG/INLE ({SF xor OF) or ZF) = 0 greater/not less nor equal
JGE/INL (SF xor OF) =0 greater or equal/not less
JL/INGE (SF xor OR) =1 less/not greater nor equal
JLE/ING ({SF xor OF) or ZF) = 1 less or equal/not greater
INC CF=0 not carry

INE/INZ ZF =0 not equal/not zero

INO OF=0 not overflow

INP/JPO FF =10 not parity/parity odd

INS SF =0 not sign

10 OF =1 overflow

IP/JPE PF=1 parity/parity equal

IS SF =1 sign

Nore:

“Above"” and “below™ refer to the relationship of two unsigned values; “greater” and “less
to the relationship of two signed values.

" refer

102

0005
0008
000A
000C
000E
0010
0012

MIDEL SMALL

.STACKE €4
« OATA
DATA IN DB 254,12H,15H, 1F4, 2BH
S LB 7
«JDE
MATN PROC FAR
MOV BX,QDATA
MOV DS,AX
MOV CX,05
MOV BX,OFFSET DATA IN
MOV AL,0
AGAIN: ADD AL, BX
INC BX
] %
QD>
MoV AH, 4CH
INT 21
MAIN ENDP
END MAIN
84 47 02 AGAIN: MOV AL, BX +2
iC 61 CMP__ M 618
12 06 CIB_ NEXT S
ac TA Tivm—
7 0 <>,
a1 DF AN ML,ODFH
88 04 NEXT: MOV [5I],AL

1067:0000
1067:0003
1067:0005
1067:0008
1067: 000D
10&67:000F
1067:0010
1067:0011
1067:0013
1067:001&
1067:001%8

BB6610 MOV AX, 1066
SEDE MOV DS,AX
E90500 MOY X, 0005
ER0000 MOV BX, 0000
0207 ADD AL, BY
43 INC BX
49 LEC X
T5FA
A2 oV | 0005] ,AL
B44C_ MOV AH,4C
bzl 21

Opeode

N 78 Disp
Opcode: 75

Short

MP, CSE, VCET

Displacement: FA
IP+Disp = 0013+FA = 0D

103

Unconditional Jumps

Opcode » SHORT: -128 to +127
EB Disp Short » NEAR: -32,768 to +32,767
» FAR:
Opcode
Disp Dis
E9 ov | Hg Near
Opcode
IP IP (3 S
EA | tw | Hgh | Low Mo |

MP, CSE, VCET 104

JMP BX Before After
IP=5678H IP=1234H <
l BX =1234H BX = 1234H
(IP) &—(BX)
=1234H
JMP [BX] Before After
BX =1234H BX =1234H
DS = 5000H DS = 5000H
IP = 567SH IP=3691H =

PA =BX+ DS * 10H
= 1234H + 5000 * 10H

=351234H

, 51234H

51233H

Data segment memory

91H
36H

105

Main program Procedure A

CALL Statement ;
CALL F;ROC_(/ CALL P.ROC_B
» Used to call a procedure T

I

» NEAR CALL - target address in the current segment
» FAR CALL - target address outside the current CS

» Microprocessor automatically saves the address of the instruction

following the call on the stack

12B0:0200 BBl2%5 MOV BX, 58512
12B0:0203 EBFAOQD CALL 0300
12B0:0208 BEZF14 MOV AX,142F

2 | |
=
95 ;
12ZB0:0300 53 PUSH BX : —
12BO:0301 ... heenin FFFC 06 o
s - |

""""" i O et S FFFD 02
12B0:030% 5B POP BX =

12B0:0308 ©3 RET FFFE

MP, CSE, VCET 106

‘ Assembly Language Subroutines

.COLE

METH PEOC FAR
MOV AY, ADATH
MOWV DS, AX
CALL EUBRI1
CALL SUBR2
CALL SUBE3
MOV RAH, 4CH
INT <1H

MAIN ENDD

SUBR1 PROC
RET

SUERL ENDF

SUBRZ PROC
RET

SUBRZ ENDP

SUBE3 FROC
RET

SUERZ3 ENDF
END MAIN

sTHIS IS THE ENTRY POINT FOR OS5

;THIS IS THE EXIT POINT

MP, CSE, VCET

107

REVIEW

1. Briefly describe the functions of CALL and RET instruction

2. State why the following label names are invalid:

(a) GET.DATA

(b) 1. NUM (c) TEST-DATA

(d) RET

3. Inthe following code section, verify the address calculations of:

(a) JNC ERROR1
(b) JNO ERRORL
(c) JMP C8

5
EQ6C

E072
E08C
EOA7
EOAD

733F
7139
8EDS
EBE3
F4

CcB:

Code
JNC ERROR1

JNO ERRORI1
MOV DS,AX
JYP CB8
ERROR1: HLT

MP, CSE, VCET

108

DATA TYPES AND DATA DEFINITIONS

» The data types used by the 8088/86 can be 8-bit or 16-bit, positive
or negative.
» If a number is less than 8 bits wide, it still must be coded as an 8-bit
register with the higher digits as zero

» 51s only 3 bits wide (101) in binary, but the 8088/86 will accept it as 05
or "0000 0101" in binary

» If the number is less than 16 bits wide it must use all 16 bits, with the

rest being 0s

» 514 1s "10 0000 0010" in binary, but the 8088/86 will accept it as "0000
0010 0000 0010" in binary

MP, CSE, VCET 109

»

»

ORG (origin) — used to indicate the beginning of the offset
address

» The number that comes after ORG can be either in hex or in decimal.

DB (define byte) — directive allows allocation of memory in byte-
sized chunks.

» DB can be used to define numbers in decimal (D), binary (B), hex (H), and

ASCII (‘quotation mark') DATA] DB - 25 'DECIMAL

DATAZ DB 100010018 :BINARY

DATA3 DB 12H ‘HEX
ORG 0010H

DATA4 DB *2591° ASCI NUMBERS
ORG D018H :

DATAY DB 7 SET ASIDE A BYTE
ORG 0020H

DATAG6 DB "My name s Jog" :ASCII CHARACTERS

MP, CSE, VCET 110

» DUP (duplicate) — used to duplicate a given number of characters.

» This can avoid a lot of typing. For example, contrast the following two

methods of filling six memory locations with FFH

(1030 ORG 0030H
(030 FF FF FF FFFF FF DATAT DB OFFH,OFFH,OFFH.OFFH OFFH,OFFH : 6 FF
0038 ORG 18H
0038 0006] i DATAS DB 6 DUP(OFFH) ;FILL 6 BYTES WITH FF
0040 I ORG 40H
(040 ﬂﬂg’g | DATAY DB 32DUP(") SET ASIDE 32 BYTES
']
0060 ORG 60H
0060 0005] DATAIODB 5 DUP (2 DUF (99)) ‘FILL 10 BYTES WITH 99
0002
63
;]

MP, CSE, VCET 111

»

»

DW (define word) — used to allocate memory 2 bytes (one word)

at atime. The following are some examples of DW

1070 ORG 70H

0070 03BA DATAIl DW 954 :DECIMAL

(072 0954 DATALZ DW 1001010101008 ‘BINARY

(074 253F DATA13 DW 253FH ;HEX

0078 ORG T8H

(078 0008 0002 0007 000C DATAL4 DW 9,2 7.0CH, 0010000085, HI' :MISC. DATA
0020 D003 4849

(086 DODE[s] DATALS DW 8DUP(?) SET ASIDE 8 WORDS

EQU (equate) — used to define a constant without occupying a
memory location.

» EQU does not set aside storage for a data item

» EQU assoclates a constant value with a data label, so that when the label

appears in the program, its constant value will be substituted

» EQU can also be used outside the data segment, even in the middle of acode

MP, CSE, VCET 112
segment

» Using EQU for the counter constant in the immediate addressing

mode: COUNT EQU 25 COUNT DB 25
" | When executing the instructions "MOV CX, | When executing the same instruction "MOV CX,
COUNT", the register CX will be loaded with the | COUNT" it will be in the direct addressing mode.
value 25.
COUNT EQU 25
» Advantage of EQU? COUNTERL DB COUNT
COUNTER2 DB COUNT

» Assume that there is a constant (a fixed value) used in many different places

In the data and code segments.

» By the use of EQU, one can change it once and the assembler will change all
of them, rather than making the programmer tries to find every location and

correct it

MP, CSE, VCET 113

» DD (define double word) — used to allocate memory locations that

are 4 bytes (two words) in size.

00A0 ORG 00AOH
00AD 000003FF DATAI6 - DD 1023 DECIMAL
00A4 0008965C DATALT DD 1000100101100101 11008 BINARY
00A8 SC2A57F] DATAIS DD 3CIASTFIH HEX
00AC (0000023 0003478Y DATAI9 DD 23H,3478%H 63533

(OOOFEFD

» DQ (define quad word) — used to allocate memory 8 bytes (four

words) in size.

00CY ORG OOCOH

00O CI23450000000000 DATAD DQ 4323CIH HEX

00CS 4948000000000000 DATA2I DQ °HI ASCI CHARACTERS
0000 DOO00UO0OA000NN DAIALL DQ 7 NUTHING

MP, CSE, VCET 114

» DT (define ten bytes) — is used for memory allocation of packed

BCD numbers (multibyte addition)

» This directive allocates 10 bytes, but a maximum of 18 digits can be entered

(OEQ ORG ODEOH

QOED 29985643 7986000000 DATAZ3 DT B67943569829 BCD
]

D0EA 00000000000000000D0 DATAZ4 DT 7 NOTHING
(X)

MP, CSE, VCET 115

DATA16 DD 1023

Memory dump of the data section
7 Y ¥ DATAL7 M0001...B

DATA4 DB “2591°

-D 1066:0 100 ATA19 DD
1066:0000 19 89 00 00 0D 00-00 O 00 00 00 80 00 00 vovvuvurnvnrnses

1066:0010032_35 39 31U 00 00 00 00= 0 00 00 00 2591,... .
1066:0020 4D 79 20 AE 61 €D & . 43 6F 65 00 00 My rame 15 JGE

106610030 FF FF FF FF FF EPU FF FE EF EF 00 00 oivivininmivini
1066:0040 00 00 00 0O <00 00 00 00D 00 00 Q0 00 .ovvvvvrnninnans

1066:0060 63 63 63 6363 63 00 00 00 00 00 00 ccccecceec..
1066:0070 BA 03/ 5 00 00=-0% 00 02 00 07 00 OC 00 - T 7"-?;
1066:0080 2 4F 48 00 00-0C 00 00 0O 00 00 00 00 .

1066:00 0 00 00 GO 00 00=-00 Q0 00 00 00 00 00 00 vevvvssvnnnnnnns

1066:00A0 FF 03 00 00 5C %6 08 00-F2 57 2A 5C 23 00 00 00 . A5, it A
1066:00B0 89 47 03 00 FD FF 00 00-0C 00 00 00 00 00 0O 00 B#E THicia
1066:0 I'.'I[JIZII 00 CO 00 00-49 48 00 00 00 00 D0 00 vevuvervannnsnns
1066:00D0 00 00 OB 00 00 CO 00 O0-0C 00 00 00 00 00 00 00 +vvivvvennunsas

1066:00E0(29 98 56 13 79 89 00 00-00 00 00 00 00 00 00 00 9.VCy6......... .
ORG 00EOH "DATA23 D1\67943569829

ORG 00COH DATAZ20DQ 4523C2H

MP, CSE, VCET 116

REVIEW
Briefly state the purpose of ORG directive

What is advantage of using the EQU directive to define a

constant value?

How many bytes are set aside by: '1 ORG
DATALl DB

(2) ASC DATA DB “1234’ oy
ORG

(b) HEX_DATA DW 1234H PR
DATAL DW

Find the precise offset location of ™™ gre

_ DATA® DD
each ASCII character or data in the DATA7 {I;EG

o DATAS DT
fol |OW|ng. DATAS DB

20H
'1-800-555-12234"
40H

'"Wame: John Jones’
6OH

'5950342"

TOH
2560H,1000000000110E
49

BOH

Z25607FAEH
QETBAZ1CO99F2H

808
4399979249949828

i DUE (DEEH)

MP, CSE, VCET

117

REVIEW

5. Do the following two data segment definitions result in same

storage in bytes at offset 10H and 11H? If not, explain why
ORG 10H ORG 10H
DATA1 DB 72 DATA1 DW 7204H
DATAZ2 DB 04H

MP, CSE, VCET 118

REVIEW
6. The following program contains some errors. Fix the errors and

run the program correctly.

TITLE PROBELEM (EXE) FEOBLEM 16 PROGRAM
PAGE 60,132
LMODEL SMALL

_STACK 32

" DATA

DATA j Br 234DH, DEeH, 3BC7H,566AH
CRi3 10H

SOM O *

. CODE

STRRT: PROC FAR

MOV AX, DATA
MOV DS, AX

MOV CX,04 : SET UP LOOP COUNTER CX=4
MOV~ BX,0 : INITIALIZE BX TO ZERD
MOV DI,OFFSET DATA ; SET UP DATA POINTER BX
LOOPLl:ADD BX,[DI] ;ADD CONTENTS POINTED AT BY [DI] TO BX
INC DI s INCREMENT DI
JHZE LoOorl : JUMP IF COUNTER HOT ZERD
MOV 5I,0FFSET RESULT ;IOAD FOINTER FOR RESULT
MOV [SI],BX : STORE THE SOM
MOV AH,4CH
INT Z1H
START ENDP

END STRT

MP, CSE, VCET 119

FULLSEGMENT DEFINITION

sFUULL SEGMENT DEFINITION
f—= stack segment —-
namel SEGCMENT
DE b4 DUP (7)
namel END3
;—= data segment —-
named SEGMENT
;place data definitions here
named ENDS
i—= code segment —-
named SEGMENT
MAIN FPHOC FAR
ASSUME ...
MOV AX, nanel
MOV D5, AX

MAIN ENDP
name ENDS
EKD MAIN

: SIMPLIFIED FORMAT

.MODEL SMALL
- STACK &4
. DATA

:place data definitions here

.CODE
MAIN PROC FAR
MOV AKX, @DATA
MOV DS, AX

MAIN ENDE
END MAIN

MP, CSE, VCET

120

Stack Segment Definition

STSEG SEQENT sthe "SEQENT" directive begins the seqment
IB &4 OUP 7) ;this seqment contains only one line
STSEG ENDS sthe "ENDS" seqment ends the segment

Data Segment Definition

OTSEG SEGMENT ;jLhe SEGMENT directive begins the seogment
;define your data here
DTSEG ENDS jthe ENDS segment ends the segment

Stack Segment Definition

CDSSEG SEGMENT ;the SEGMENT directive begins the segment
;your code is here
CDSEG ENDS jthe ENDS segment ends the segment

MP, CSE, VCET 121

TITLE

PURBCSE: ADDS 4 WORDS OF DATA

PAGE 60,132
STSEG SEGMENT
DB 32 DUP (?)
STSEG ENDS
DTSES SEGMENT
DATA IN DW 234DH, 1DE6H, 3BCTH, 5662H
QORG 104
SUM DY ?
OTSEG ENDS
CDSEG SEGMENT
HMAIN BROC FAR
ASSUME CS:CDSEG,DS:DTSEG, 55:STSEG
MOV AX, DTSEG
MOV DS, AX
MOV CX, 04
MOV DI,OFFSET DATA IN
MOV BX,00
RDD_LF: ADD BX,[DI
INC DI
ING DI
DEC CX
gNZ ADD LP
MoV SI,0FFSET SUM
MOV [SI],3X
MOV AH,4CH
INT 21H
MATN ENDP
CDSEG ENDS
END MAIN

TITLE PROG2-2 [(EXE) PURPOSE: ADDS 4 WORDS OF DATA

PAGE 60,132
MODEL SMALL
LGTACK bd
LDATR :

DATA_IN DW 234DH, IDEEH, 3BCTH, 566AK
ORG 10H

SUM W ?
.CODE

MRIN PROC FAR
MOV AX,@DATA
MOV DS,AX
MOY CX,04 jaet up loop counter CH=4
MoV DI,OFFSET DATA IN ;set up data pointer DI
Mov BX,00 iinitlalize BX

ADD LP: ADD BX,[DI ;add contents pointed at by [DI] to BX
INC DI ;increment DI twice
INC DI ;to point to next word
DEC CX ;decrement loop counter
JNI ADD LP ;jump 1if loop counter not zer
MOV S5I,0FFSET SUM ;1oad pointer for sum
MoV [SI},BK jstore In data segment
MOV AH,4CH ;set up return
INT 21H jreturn to 0§

MEIN ENDP
END MAIN

MP, CSE, VCET

122

EXE vs COM Files

»

»

»

The COM file, similar to the EXE file, contains the executable

machine code and can be run at the OS level

The EXE file can be of any size. The COM files are used because
of their compactness, since they cannot be greater than 64K bytes

» The COM file must fit into a single segment, and since in the x86 the size of

a segment is 64K bytes, the COM file cannot be larger than 64K

To limit the size of the file to 64K bytes requires

» defining the data inside the code segment and

» also using an area (the end area) of the code segment for the stack

MP, CSE, VCET 123

EXE File

COM File

Unlimited size

Maximum size 64K
bytes

. Stack segment is defined

No stack segment

definition

Data segment is defined

Data segment is
defined in code

segment

Larger file (takes more memory)

. Smaller file (takes

less memory)

Header block (contains information such as size, address location in
memory, and stack address of the EXE module), which occupies 512

bytes of memory precedes every EXE file

Does not have a

header file

MP, CSE, VCET

124

v

FLOWCHARTS AND PSEUDOCODE

Structured programming — a programming technique that can make a program

easier to code, debug, and maintain over time. Principles:

The program should be designed before it is coded, by using techniques of

flowcharting or pseudocode

Using comments within the program and documentation accompanying the
program

The main routine should consist of calls to subroutines that perform the work

of the program. This is sometimes called top-down programming.

Data control is very important. The programmer should document the purpose

of each variable, and which subroutines might alter its value.

Each subroutine should document its input and output variables, and which

Input variables might be altered within it.
MP, CSE, VCET 125

Flowcharts & Pseudocode

» Flowcharts use graphic symbols to represent different types of

program operations.

» These symbols are connected together into a flowchart to show the

flow of execution of the program

» The limitations of flowchart are —

» We can’t write much in the little boxes

» We can’t get the clear picture of the program without getting bogged down

in the detalils.

» An alternative to using flowchart is pseudocode, which involves

writing brief descriptions of the flow of the code

MP, CSE, VCET 126

Control Structure: Sequence

'

Statement |1

'

Statement 2

!

Statement 1
Statemeant 2

MP, CSE, VCET 127

Control Structure: Control

IF {condition) THEN
Statement 1

ELSE
Statement 2

Statement |

Statement 2

IF (condition) THEMN
Statement |

Condition

Statement |

!
?—

MP, CSE, VCET

128

Control Structure: Iteration

REPEAT
Statement |
UNTIL (condition)

Condition

?

Yes

WHILE [condition) DO
Statement |

Condition

Statement 1

Flowcharts vs Pseudocode for Program 2-1

(=%)
i

Count = 5

Count = 5

Add next byte
— | Add one byte Increment pointer

; Decrement count
* Until Count =0

Increment
pointer

=

Decrement
counter

Store STUM

o ¥oi

Store
SUM

G

ESEEE R e

B

MP, CSE, VCET 130

15CS - 44

MICROPROCESSORS AND
MICROCONTROLLERS

MODULE 1 — QUIZ 2

THE X86
MICROPROCESSOR

Mahesh Prasanna K.
Dept. of CSE, VCET.

MP, CSE, VCET

. The are translated by the assembler into machine code,

whereas the are not

. The input file to the MASM assembler program has the extension

. The input file to the LINK program has the extension

. The linking process comes after assembling (TRUE/FALSE)

In calculating the target address to jump to, a displacement is

added to the contents of

MP, CSE, VCET 132

6. A(n) jump is within -128 to +127 bytes of the current IP

7. A(n) __ jump is within —current code segment

8. A(n) __ jump is within outside the current code segment

9. InaFARCALL and _ are saved on the stack

10. The _ directive is always used for the ASCII strings longer

than 2 bytes

MP, CSE, VCET 133

11. The DD directive is used to allocate memory locations that are
bytes in length; the DQ directive is used to allocate memory

locations that are bytes in length

12. The ASSUME directive is used in full segment definition
(TRUE/FALSE)

13. In full segment definition, each segment begins with the

directive and ends with a matching directive

MP, CSE, VCET 134

. The are translated by the assembler into machine code,

whereas the are not (instructions, pseudo-instructions or

directives)

. The input file to the MASM assembler program has the extension

(.asm)

. The input file to the LINK program has the extension
(-obj)
. The linking process comes after assembling (TRUE/FALSE)

In calculating the target address to jump to, a displacement is

added to the contents of (IP)

MP, CSE, VCET 135

6. A(n) jump is within -128 to +127 bytes of the current IP
(SHORT)

7. A(n) __ jump is within —current code segment (NEAR)

8. A(n) __ jump is within outside the current code segment
(FAR)

9. InaFARCALL and __ are saved on the stack (IP, CS)

10. The _ directive is always used for the ASCII strings longer

than 2 bytes (DB)

MP, CSE, VCET 136

11. The DD directive is used to allocate memory locations that are
bytes in length; the DQ directive is used to allocate memory

locations that are bytes in length (4, 8)

12. The ASSUME directive is used in full segment definition
(TRUE/FALSE)

13. In full segment definition, each segment begins with the

directive and ends with a matching directive (SEGMENT,
ENDS)

MP, CSE, VCET 137

	MICROPROCESSORS AND MICROCONTROLLERS
	BRIEF HISTORY OF THE x86 FAMILY
	
	
	
	
	
	
	
	
	
	
	
	INSIDE THE 8088/86
	
	
	
	
	
	
	INTRODUCTION TO �ASSEMBLY LANGUAGE PROGRAMMING
	
	
	
	
	
	
	INTRODUCTION TO PROGRAM SEGMENTS
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	THE STACK
	
	
	
	
	
	
	
	FLAG REGISTER
	
	
	
	
	
	
	
	
	X86 ADDRESSING MODES
	
	
	
	
	
	
	
	
	
	
	MICROPROCESSORS AND MICROCONTROLLERS
	
	
	
	
	
	
	MICROPROCESSORS AND MICROCONTROLLERS
	DIRECTIVES AND A SAMPLE PROGRAM
	
	
	
	
	ASSEMBLE, LINK, AND RUN A PROGRAM
	
	
	
	MORE SAMPLE PROGRAMS
	
	
	
	
	
	
	CONTROL TRANSFER INSTRUCTIONS
	
	
	
	
	
	
	
	
	DATA TYPES AND DATA DEFINITIONS
	
	
	
	
	
	
	
	
	
	
	FULLSEGMENT DEFINITION
	
	
	
	
	FLOWCHARTS AND PSEUDOCODE
	
	
	
	
	
	MICROPROCESSORS AND MICROCONTROLLERS
	
	
	
	
	
	

