
15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 1

15CS44: MICROPROCESSORS AND MICROCONTROLLERS

QUESTION BANK with SOLUTIONS

MODULE-5

1) Which are the different data processing instructions of ARM processor?

Data Processing Instructions
The data processing instructions manipulate data within registers. They are move

instructions, arithmetic instructions, logical instructions, comparison instructions, and

multiply instructions. Most data processing instructions can process one of their operands

using the barrel shifter.

MOV Instructions

Move is the simplest ARM instruction. It copies N into a destination register Rd, where N

is a register or immediate value. This instruction is useful for setting initial values and

transferring data between registers.

Syntax: <instruction>{<cond>}{S} Rd, N

Example: This example shows a simple move instruction. The MOV instruction takes the

contents of register r5 and copies them into register r7, in this case, taking the value 5,

and overwriting the value 8 in register r7.

PRE r5 = 5 r7 = 8

 MOV r7, r5

POST r5 = 5 r7 = 5

Barrel Shifter

 In the above example, we showed a MOV instruction where N is a simple register. But N

can be more than just a register or immediate value; it can also be a register Rm that has

been pre-processed by the barrel shifter prior to being used by a data processing

instruction. Data processing instructions are processed within the arithmetic logic unit

(ALU). A unique and powerful feature of the ARM processor is the ability to shift the 32-

bit binary pattern in one of the source registers left or right by a specific number of

positions before it enters the ALU. This shift increases the power and flexibility of many

data processing operations.

Arithmetic Instructions

The arithmetic instructions implement addition and subtraction of 32-bit signed and

unsigned values.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 2

Logical Instructions

 Logical instructions perform bitwise logical operations on the two source registers.

Comparison Instructions

The comparison instructions are used to compare or test a register with a 32-bit value.

They update the cpsr flag bits according to the result, but do not affect other registers.

After the bits have been set, the information can then be used to change program flow by

using conditional execution. For more information on conditional execution take a look at

Section 3.8. You do not need to apply the S suffix for comparison instructions to update

the flags.

Multiply Instructions

 The multiply instructions multiply the contents of a pair of registers and, depending upon

the instruction, accumulate the results in with another register. The long multiplies

accumulate onto a pair of registers representing a 64-bit value. The final result is placed

in a destination register or a pair of registers.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 3

2) What is a barrel shifter? Which are the different barrel shifter operations?

 Barrel Shifter

 In MOV instruction, the second operand N can be more than just a register or immediate

value; it can also be a register Rm that has been preprocessed by the barrel shifter prior to

being used by a data processing instruction. Data processing instructions are processed

within the arithmetic logic unit (ALU). A unique and powerful feature of the ARM

processor is the ability to shift the 32-bit binary pattern in one of the source registers left

or right by a specific number of positions before it enters the ALU. This shift increases

the power and flexibility of many data processing operations.

There are data processing instructions that do not use the barrel shift, for example, the

MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)

instructions.

 Pre-processing or shift occurs within the cycle time of the instruction. This is particularly

useful for loading constants into a register and achieving fast multiplies or division by a

power of 2.

Example

 We apply a logical shift left (LSL) to register Rm before moving it to the destination

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 4

register. This is the same as applying the standard C language shift operator to the

register. The MOV instruction copies the shift operator result N into register Rd. N

represents the result of the LSL operation described in Table.

PRE r5 = 5

 r7 = 8

MOV r7, r5, LSL #2 ; r7 = r5*4 = (r5 << 2)

POST r5 = 5

r7 = 20

The example multiplies register r5 by four and then places the result into register r7.

3) Tabulate barrel shift operation syntax for data processing instructions.

The five different shift operations that you can use within the barrel shifter are

summarized in Table.

 It illustrates a logical shift left by one. For example, the contents of bit 0 are shifted to bit

1. Bit 0 is cleared. The C flag is updated with the last bit shifted out of the register. This

is bit (32 − y) of the original value, where y is the shift amount. When y is greater than

one, then a shift by y positions is the same as a shift by one position executed y times.

Example

This example of a MOVS instruction shifts register r1 left by one bit. This multiplies

register r1 by a value 21. As you can see, the C flag is updated in the cpsr because the S

suffix is present in the instruction mnemonic.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 5

PRE cpsr = nzcvqiFt_USER

r0 = 0x00000000

r1 = 0x80000004

MOVS r0, r1, LSL #1

POST cpsr = nzCvqiFt_USER

r0 = 0x00000008

r1 = 0x80000004

Table lists the syntax for the different barrel shift operations available on data processing

instructions. The second operand N can be an immediate constant preceded by#, a

register value Rm, or the value of Rm processed by a shift.

4) Explain in detail Arithmetic instructions. How Barrel shifter is used with Arithmetic

instructions?

Arithmetic Instructions

The arithmetic instructions implement addition and subtraction of 32-bit signed and

unsigned values.

Using the Barrel Shifter with Arithmetic Instructions

 The wide range of second operand shifts available on arithmetic and logical instructions

is a very powerful feature of the ARM instruction set. Example 3.7 illustrates the use of

the inline barrel shifter with an arithmetic instruction. The instruction multiplies the value

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 6

stored in register r1 by three.

5) Along with suitable examples describe various logical (AND, ORR, EOR, BIC) and

comparison instructions (CMN, CMP, TEQ, TST).

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 7

Comparison Instructions

 The comparison instructions are used to compare or test a register with a 32-bit value.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 8

6) With example illustrate how following instructions work

i) MLA

ii) MUL

iii) SMLAL

iv) SMULL

v) UMLAL

vi) UMULL

Multiply Instructions

The multiply instructions multiply the contents of a pair of registers and, depending

upon the instruction, accumulate the results in with another register. The long multiplies

accumulate onto a pair of registers representing a 64-bit value. The final result is placed

in a destination register or a pair of registers.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 9

7) Explain software interrupt instructions (SWI)

A software interrupt instruction (SWI) causes a software interrupt exception, which

provides a mechanism for applications to call operating system routines.

Syntax: SWI{<cond>} SWI_number

When the processor executes an SWI instruction, it sets the program counter pc to the

offset 0x8 in the vector table. The instruction also forces the processor mode to SVC,

which allows an operating system routine to be called in a privileged mode.

Each SWI instruction has an associated SWI number, which is used to represent a

particular function call or feature.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 10

Example:

Here we have a simple example of an SWI call with SWI number 0x123456, used by

ARM toolkits as a debugging SWI. Typically the SWI instruction is executed in user

mode.

PRE cpsr = nzcVqift_USER

 pc = 0x00008000

 lr = 0x003fffff; lr = r14

 r0 = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqIft_SVC

 spsr = nzcVqift_USER

 pc = 0x00000008

 lr = 0x00008004

 r0 = 0x12

Since SWI instructions are used to call operating system routines, you need some form of

parameter passing. This is achieved using registers. In this example, register r0 is used to

pass the parameter 0x12. The return values are also passed back via registers.

Code called the SWI handler is required to process the SWI call. The handler obtains the

SWI number using the address of the executed instruction, which is calculated from the

link register lr.

The SWI number is determined by SWI_Number = <SWI instruction> AND

NOT(0xff000000). Here the SWI instruction is the actual 32-bit SWI instruction executed

by the processor.

8) Explain program status register byte fields and explain – MRS & MSR.

The ARM instruction set provides two instructions to directly control a program status

register (psr). The MRS instruction transfers the contents of either the cpsr or spsr into a

register; in the reverse direction, the MSR instruction transfers the contents of a register

into the cpsr or spsr. Together these instructions are used to read and write the cpsr and

spsr.

In the syntax you can see a label called fields. This can be any combination of control (c),

extension (x), status (s), and flags (f). These fields relate to particular byte regions in a

psr, as shown in Figure.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 11

Syntax:

MRS{<cond>} Rd,<cpsr|spsr>

MSR{<cond>} <cpsr|spsr>_<fields>,Rm

MSR{<cond>} <cpsr|spsr>_<fields>,#immediate

The c field controls the interrupt masks, Thumb state, and processor mode.

The following Example shows how to enable IRQ interrupts by clearing the I mask. This

operation involves using both the MRS and MSR instructions to read from and then write

to the cpsr.

The MSR first copies the cpsr into register r1. The BIC instruction clears bit 7 of r1.

Register r1 is then copied back into the cpsr, which enables IRQ interrupts. You can see

from this example that this code preserves all the other settings in the cpsr and only

modifies the I bit in the control field.

PRE cpsr = nzcvqIFt_SVC

 MRS r1, cpsr

 BIC r1, r1, #0x80 ; 0b01000000

MSR cpsr_c, r1

POST cpsr = nzcvqiFt_SVC

This example is in SVC mode. In user mode you can read all cpsr bits, but you can only

update the condition flag field f.

9) Explain Branch Instructions with examples.

A branch instruction changes the flow of execution or is used to call a routine. This type

of instruction allows programs to have subroutines, if-then-else structures, and loops. The

change of execution flow forces the program counter pc to point to a new address.

The ARMv5E instruction set includes four different branch instructions.

Syntax: B{<cond>} label

BL{<cond>} label

BX{<cond>} Rm

BLX{<cond>} label | RM

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 12

The address label is stored in the instruction as a signed pc-relative offset and must be

within approximately 32 MB of the branch instruction. T refers to the Thumb bit in the

cpsr. When instructions set T, the ARM switches to Thumb state.

Example:

This example shows a forward and backward branch. Because these loops are address

specific, we do not include the pre- and post-conditions. The forward branch skips three

instructions. The backward branch creates an infinite loop.

B forward

 ADD r1, r2, #4

 ADD r0, r6, #2

 ADD r3, r7, #4

forward

 SUB r1, r2, #4

backward

 ADD r1, r2, #4

 SUB r1, r2, #4

 ADD r4, r6, r7

B backward

Branches are used to change execution flow. Most assemblers hide the details of a branch

instruction encoding by using labels. In this example, forward and backward are the

labels. The branch labels are placed at the beginning of the line and are used to mark an

address that can be used later by the assembler to calculate the branch offset.

10) With example, explain the operation of four stack instructions.

The ARM architecture uses the load-store multiple instructions to carry out stack

operations. The pop operation (removing data from a stack) uses a load multiple

instruction; similarly, the push operation (placing data onto the stack) uses a store

multiple instruction.

When using a stack you have to decide whether the stack will grow up or down in

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 13

memory. A stack is either ascending (A) or descending (D). Ascending stacks grow

towards higher memory addresses; in contrast, descending stacks grow towards lower

memory addresses.

When you use a full stack (F), the stack pointer sp points to an address that is the last

used or full location (i.e., sp points to the last item on the stack). In contrast, if you use an

empty stack (E) the sp points to an address that is the first unused or empty location (i.e.,

it points after the last item on the stack).

There are a number of load-store multiple addressing mode aliases available to support

stack operations (see Table). Next to the pop column is the actual load multiple

instruction equivalents. For example, a full ascending stack would have the notation FA

appended to the load multiple instruction—LDMFA. This would be translated into an

LDMDA instruction.

ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how

routines are called and how registers are allocated. In the ATPCS, stacks are defined as

being full descending stacks. Thus, the LDMFD and STMFD instructions provide the

pop and push functions, respectively.

Addressing Modes for Stack Operations

Example:

The STMFD instruction pushes registers onto the stack, updating the sp. Figure shows a

push onto a full descending stack. You can see that when the stack grows the stack

pointer points to the last full entry in the stack.

PRE r1 = 0x00000002

 r4 = 0x00000003

 sp = 0x00080014

STMFD sp!, {r1,r4}

POST r1 = 0x00000002

 r4 = 0x00000003

 sp = 0x0008000c

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 14

11) Explain Load-Store Instructions.

Load-Store Instructions:

Load-store instructions transfer data between memory and processor registers. There are

three types of load-store instructions: single-register transfer, multiple-register transfer,

and swap.

1. Single - Register Transfer

These instructions are used for moving a single data item in and out of a register. The data

types supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes.

Here are the various load-store single-register transfer instructions

Syntax: <LDR|STR>{<cond>}{B} Rd,addressing1

LDR{<cond>}SB|H|SH Rd, addressing2

STR{<cond>}H Rd, addressing2

LDR and STR instructions can load and store data on a boundary alignment that is the same

as the datatype size being loaded or stored. For example, LDR can only load 32-bit words on

a memory address that is a multiple of four bytes—0, 4, 8, and so on. This example shows a

load from a memory address contained in register r2, followed by a store back to the same

address in memory.

load register r0 with the contents of ; the memory address

pointed to by register r2.

LDR r0, [r2] ; = LDR r0, [r2, #0]

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 15

The first instruction loads a word from the address stored in register r2 and places it into

register r0. The second instruction goes the other way by storing the contents of register r0 to

the address contained in register r2. The offset from register r2 is zero. Register r2 is called

the base address register.

2. Multiple - Register Transfer

Load-store multiple instructions can transfer multiple registers between memory and the

processor in a single instruction. The transfer occurs from a base address register Rn pointing

in to memory. Multiple-register transfer instructions are more efficient from single-register

transfers for moving blocks of data around memory and saving and restoring context and

stacks.

Syntax: <LDM|STM>{<cond>}<addressing mode> Rn{!},<registers>{ˆ}

3. SWAP instructions.

The swap instruction is a special case of a load-store instruction. It swaps the contents of

memory with the contents of a register. This instruction is an atomic operation—it reads

and writes a location in the same bus operation, preventing any other instruction from

reading or writing to that location until it completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

Example:

The swap instruction loads a word from memory into register r0 and overwrites the memory

with register r1.

store the contents of register r0 to the memory address

pointed to by register r2.

STR r0, [r2] ; = STR r0, [r2, #0]

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 16

PRE mem32[0x9000] = 0x12345678

 r0 = 0x00000000

 r1 = 0x11112222

 r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222

 r0 = 0x12345678

 r1 = 0x11112222

 r2 = 0x00009000

12) Explain Single - Register Load-Store Addressing Modes.

The ARM instruction set provides different modes for addressing memory. These modes

incorporate one of the indexing methods: preindex with writeback, preindex, and postindex

 Preindex with writeback calculates an address from a base register plus address

offset and then updates that address base register with the new address.

Example: LDR r0, [r1, #4]!

 In contrast, the preindex offset is the same as the preindex with writeback but does

not update the address base register.

Example: LDR r0, [r1, #4]

 Postindex only updates the address base register after the address is used.

Example: LDR r0, [r1], #4

The preindex mode is useful for accessing an element in a data structure. The postindex and

preindex with writeback modes are useful for traversing an array.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 17

Detailed Explanation:

Initially PRE r0 = 0x00000000

 r1 = 0x00090000

 mem32[0x00009000] = 0x01010101

 mem32[0x00009004] = 0x02020202

Preindexing with writeback Preindexing Postindexing

LDR r0, [r1, #4]!

LDR r0, [r1, #4] LDR r0, [r1], #4

POST r0 = 0x02020202

 r1 = 0x00009004

 LDR r0, [r1, #4]

POST r0 = 0x02020202

 r1 = 0x00009000

POST r0 = 0x01010101

 r1 = 0x00009004

The following table shows the addressing modes available for load and store of a 32-bit

word or an unsigned byte.

13) Explain Multiple - Register Load-Store Addressing Modes.

Table shows the different addressing modes for the load-store multiple instructions. Here N is

the number of registers in the list of registers.

Any subset of the current bank of registers can be transferred to memory or fetched from

memory. The base register Rn determines the source or destination address for a load store

multiple instruction. This register can be optionally updated following the transfer. This

occurs when register Rn is followed by the ! character, similiar to the single-register load-

store using preindex with writeback.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 18

Example:

In this example, register r0 is the base register Rn and is followed by !, indicating that the

register is updated after the instruction is executed. You will notice within the load multiple

instruction that the registers are not individually listed. Instead the “-” character is used to

identify a range of registers. In this case the range is from register r1 to r3 inclusive.

Each register can also be listed, using a comma to separate each register within “{” and “}”

brackets.

PRE mem32[0x80018] = 0x03

 mem32[0x80014] = 0x02

 mem32[0x80010] = 0x01

 r0 = 0x00080010

 r1 = 0x00000000

 r2 = 0x00000000

 r3 = 0x00000000

LDMIA r0!, {r1-r3}

POST r0 = 0x0008001c

 r1 = 0x00000001

 r2 = 0x00000002

 r3 = 0x00000003

14) Explain the operation of this instruction: LDR r0, [r1], r2, LSR#04 indicate the pre

and post conditions of memory and register.

Basics: (refer previous question)

Now, let’s understand - LDR r0, [r1], r2, LSR#04

This uses a postindex addressing method.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 19

Steps:

1. go to r1’s location, take whatever value of that location and put to r0.

2. update r1 as r1 = r1 + (r2 >> 04) LSR means Logical Shift Right

Example:

PRE r0 = 0x00000000

 r1 = 0x00009000

 mem32[0x00009000] = 0x12121212

 r2 = 0x00000064

LDR r0, [r1], r2, LSR#04

POST r0 = 0x12121212

 r1 = 0x00009004 (r1 = r1 + (64>>4))

 =>r1 = 0x00009000 + 4

 =>r1 = 0x00009004

15) With example illustrate how following instructions work

i) LDRSB

ii) LDRSH

iii) STRB

iv) STRH

v) LDMIA

vi) LDMDA

vii) STMIA

viii) STMDA

LDRSB load signed byte into a register Rd <- SignExtend

(mem8[address])

LDRSH load signed halfword into a register Rd <- SignExtend

(mem16[address])

STRB save byte from a register Rd -> mem8[address]

STRH save halfword into a register Rd -> mem16[address]

LDMIA load multiple and Increment After

LDMDA load multiple and Decrement After

STMIA Save after Increment

STMDA Save after Decrement

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 20

Examples:

This example shows an STM increment before instruction followed by an LDM

decrement after instruction.

PRE r0 = 0x00009000

r1 = 0x00000009

r2 = 0x00000008

r3 = 0x00000007

STMIB r0!, {r1-r3}

MOV r1, #1

MOV r2, #2

MOV r3, #3

PRE(2) r0 = 0x0000900c

r1 = 0x00000001

r2 = 0x00000002

r3 = 0x00000003

LDMDA r0!, {r1-r3}

POST r0 = 0x00009000

r1 = 0x00000009

r2 = 0x00000008

r3 = 0x00000007

The STMIB instruction stores the values 7, 8, 9 to memory. We then corrupt register r1

to r3.

The LDMDA reloads the original values and restores the base pointer r0.

16) Which are the different coprocessor instructions?

Coprocessor instructions are used to extend the instruction set. A coprocessor can either

provide additional computation capability or be used to control the memory subsystem

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 21

including caches and memory management. The coprocessor instructions include data

processing, register transfer, and memory transfer instructions. Wewill provide only a

short overview since these instructions are coprocessor specific. Note that these

instructions are only used by cores with a coprocessor.

Syntax:

CDP{<cond>} cp, opcode1, Cd, Cn {, opcode2}

<MRC|MCR>{<cond>} cp, opcode1, Rd, Cn, Cm {, opcode2}

<LDC|STC>{<cond>} cp, Cd, addressing

In the syntax of the coprocessor instructions, the cp field represents the coprocessor

number between p0 and p15. The opcode fields describe the operation to take place on

the coprocessor. The Cn, Cm, and Cd fields describe registers within the coprocessor.

The coprocessor operations and registers depend on the specific coprocessor you are

using. Coprocessor 15 (CP15) is reserved for system control purposes, such as memory

management, write buffer control, cache control, and identification registers.

17) Explain how a 32-bit constant can be loaded in a register.

We might have noticed that there is no ARM instruction to move a 32-bit constant into a

register. SinceARMinstructions are 32 bits in size, they obviously cannot specify a

general 32-bit constant.

To aid programming there are two pseudo instructions to move a 32-bit value into a

register.

Syntax:

 LDR Rd, =constant

ADR Rd, label

The first pseudo instruction writes a 32-bit constant to a register using whatever

instructions are available. It defaults to a memory read if the constant cannot be encoded

using other instructions.

The second pseudo instruction writes a relative address into a register, which will be

encoded using a pc-relative expression.

15CS44 – Module 5 Questions with Answers

Mr. Shankar R, Asst Prof, CSE, BMSIT&M Page 22

18) Illustrate with a net diagram Logical shift left operation.

NOTE: REFER PREVIOUS EXAMPLES FOR MORE INFORMATION ON LSR.

