

B.M.S INSTITUTE OF TECHNOLOGY & MANAGEMENT

Department of Computer Science & Engineering

LAB MANUAL

MICROPROCESSOR - SOFTWARE PART (8086)

Sub Code: 15CSL48

4
th

 Semester CSE

Prepared by:

Shankar. R

Assistant Professor

CSE, BMSIT&M

Reviewed By:

Dr. G Thippeswamy

Professor & Head, CSE

BMSIT&M

15CSL48 - Microprocessor Lab Manual – Software Part 2

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Programs

1. Design and develop an assembly language program to search a key element “X”

in a list of n 16-bit numbers. Adopt Binary Search algorithm in your program for

searching.

2. Design and develop an assembly program to sort a given set of n 16-bit numbers

in ascending order. Adopt Bubble Sort algorithm to sort given elements.

3. Develop an assembly language program to reverse a given string and verify

whether it is a Palindrome or not. Display the appropriate message.

4. Develop an assembly language program to compute nCr using recursive

procedure. Assume that n and r as non-negative integers.

5. Design and develop an assembly language program to read the current Time and

Date from the system and display it in the standard format on the screen.

15CSL48 - Microprocessor Lab Manual – Software Part 3

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 Some Facts

1. Microprocessor???????

A: Microprocessor is the CPU of microcomputer.

 It is a 16-bit Microprocessor(μp).It’s ALU, internal registers works with 16bit
binary word.

 8086 has a 20 bit address bus can access up to 2
20

= 1 MB memory locations.

 8086 has a 16bit data bus. It can read or write data to a memory/port either
16bits or 8 bit at a time.

 It can support up to 64K I/O ports.

 It provides 14, 16 -bit registers.

 Frequency range of 8086 is 6-10 MHz

 It has multiplexed address and data bus AD0- AD15 and A16 – A19.

 It requires single phase clock with 33% duty cycle to provide internal timing.

 It can prefetch upto 6 instruction bytes from memory and queues them in

order to speed up instruction execution.
 It requires +5V power supply.

 A 40 pin dual in line package.

 8086 is designed to operate in two modes, Minimum mode and Maximum

mode.

The minimum mode is selected by applying logic 1 to the MN / MX#

input pin. This is a single microprocessor configuration.

The maximum mode is selected by applying logic 0 to the MN / MX#
input pin. This is a multi micro processors configuration.

2. What are the components of micro computer?

A: CPU, memory, input and output circuitry.

3. What is IP?

A: It is an instruction pointer which contains the address of next instruction to

be executed.

15CSL48 - Microprocessor Lab Manual – Software Part 4

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

4. What are general purpose registers (GPR)?

A: They are temporary registers used to act upon data…AX,BX,CX,DX

5. What is memory?

A: It is a section usually consists of mixture of RAM and ROM. It may also
have magnetic disks, hard disks or optical disks.

6. What is purpose of using memory?

A: a) is used to store binary codes for the sequence of instructions.

 b) is to store the binary coded data with which the computer is going to be

working.

7. What is bus? What are different types of buses?

A: It is a collection of wires. There are 3 types of buses, they are:

 a) Address bus b) Control bus c) Data bus.

 In general address bus consists of 16, 20, 24 or 32 parallel signals lines.

Data bus consists of 8, 16 or 32 parallel signal lines.

Control bus consists of 4 to 10 parallel signal lines.

8. What are the different registers present in 8086?
A: Different registers present in 8086 are:-

 AX-Accumulator register.

 BX- Base register.

 CX- Counter register.

 DX- Data register.

9. What are the different pointers and index registers in 8086?
A: The different pointers and index registers in 8086 are:-

 SI-Source index registers.

 DI-Destination index registers.

 BP-Base pointer registers.

 SP-Stack pointer registers.

 IP-Instruction pointer registers.

10. What are the different segment registers?
A: The different segment registers are:-

15CSL48 - Microprocessor Lab Manual – Software Part 5

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 CS register: - Code segment.

 DS register: - Data segment.

 ES register: - Extra segment.

 SS register: - Stack segment.

11. What is micro controller?
 A: It is the collection of microprocessor, RAM and ROM.

12. How many bits does 8086 contain?

A: It is of 16 bits.

13.Why it is only of 16 bits?

A: Because in 8086, ALU is composed of 16 bits.

14. What is Extra segment?

 A: It is extended portion of data segment. It is used whenever we use strings.

15. What is syntax of MOV instruction?

 A: MOV destination, source

 Here, source can be any register, memory or immediate number. But

destination can be register or memory but cannot be an immediate number.

16. What are the 2 major parts of 8086 architecture?

 A: BIU → Bus interface unit

 EU → Execution unit

17. What is the application of BIU?

 A: BIU sends address, fetches instruction from memory,read data from parts &

memory & writes data to parts & memory

 OR

It handles all transfers of data & addresses on buses for the execution unit.

18. What is application of EU?

15CSL48 - Microprocessor Lab Manual – Software Part 6

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

The EU of 8086 tells the BIU where to fetch instruction or data from, decodes

instruction & executes instruction.

19. What are components of EU?

 Control circuitary,instruction decode & ALU

 This directs internal operations

 Decoder: It translates instruction fetchedfrom memory into a series of actions

which the EU Carries out.

 ALU: It is 16-bit unit which can add, subtract,AND,OR,XOR,…etc or

shifting binary numbers.

20) What is flag?

 It is a flip flop that indicates some condition produced by the execution of

instruction or controls certain operation of EU.

21) What is a flip flop?

It holds the binary data & holds any single value.

22) How many types of flags we have?

There are 9 types of flags. In which 6 are conditional flags & 3 are control

flags.

CONDITIONAL FLAGS:

CF- Carry flag→ if the carry generates then 1 or else 0.

PF- Parity flag→ set if result has even parity

AF-Auxillary flag→ in BCD system

ZF-Zero flag→ set if result= 0

SF-Sign flag → MSB of result → when the condition produced is negative then it

is 1

OF-Overflow flag→ If memory has overflow.

15CSL48 - Microprocessor Lab Manual – Software Part 7

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

CONTROL FLAGS:

TF- Trap flag → used for single stepping through a program

IF- Interrupt flag → which is used to allow or prohibit the interruption of a

program

DF-Direction flag → which is used with string instruction

23) What are different ALP development tool devices we have?

i. Editor

ii. Assembler

iii. Linker

iv. Loader

v. Debugger

vi. Emulator

24) What is emulator?

It is a mixture of software & hardware used to list the program whether

program will work properly or not.

25) Brief about various Assembler Directives?

ASSUME: - Assume CS: Code, DS: DATA

 DATA Segment

 DATA Segment Ends

 DB: - Define byte

 Ex: s db “abc” ; It stores 3 bytes .
 a db 6 ; (int a=6 in ‘C’)

 END: - Logical end of a program.

 EQU: Equate

 Ex: a equ 6 ;(int a==6 in ‘C’)

 EVEN: - It directs the assembler to increment the location count (IP) to the

next en=ven address if its not already in even address.

 EXTR: - EXTERNAL: It si used to tell the assembler that the names or labels

following the directives are in some other assembly module.

15CSL48 - Microprocessor Lab Manual – Software Part 8

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

26) Validate the following instructions

a. mov ds,3653h → INVALID → Because immediate data can’t be in

segment register.

b. mov dx,3653h → VALID

c. mov al,bx → INVALID → operands should have same size

d. mov ds,es → INVALID → both operands can’t be segment register

e. mov IP,ax → INVALID → because destination can’t be IP address

f. mov [bx],[cx] → INVALID→ both operands can’t be memory locations

g. mov 0C4034h,bx → INVALID → destination can’t be immediate address
h. pop cs → INVALID

I. xchg [bx],[si] → INVALID → one of operands should be a region

j. xchg cs,bx → INVALID → Improper use of register

k. lea ds,56h[si] → INVALID → Can’t use ds in source & also destination

can’t be a segment register

l. lea bx,si → INVALID → Illegal use of register. Always specify source of

addressing mode.
m. lea dx,0C4034h → INVALID → Immediate data not allowed

 lea dx,[0C4034h] → VALID → EA=DS+0C4034h

 n. add ds,0C4034h → INVALID → Segment register are not used

 o. Inc [si] → INVALID → Operands must have size

 p. OR ds, 0C4034h → INVALID → improper use of segment register

27) Write a code for initializing data segment?

mov ax, @data
 mov ds,ax

28) What are branching instructions?

 The statements that alter sequence of execution of the program are called

branching instructions.

29) Write a code for the termination of the program?

 mov ah,4ch

 int 21h

30) Write a code for the initialization of es?

 mov es,ax

15CSL48 - Microprocessor Lab Manual – Software Part 9

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 31) What are the major differences between macro & procedure?

Sl.

No

MACRO PROCEDURE

1 Access using macro name

during ALP (.i.e. conversion

from low level language to
machine level language by

assembler).

 Access using CALL & RET

mechanism during execution.

2 Doesn’t use stack mechanism. It uses stack mechanism.

3 Takes less time to execute

since there is no transfer

control.

Takes time to execute since

control has to be transferred &

from the procedure.

4 Machine code is generated for

instruction each time the macro

is called or invoked.

The machine code is generated

for the procedure it placed in

the memory only once.

5 Size of the execution is more. Due to the reason specified
earlier the size of the executed

is less.

6 Parameters are passed as part

of statement which calls

macro.

Parameters can be passed using

registers, memory or stack.

32) What is re-entrant procedure?

 A portion of the code that can be called by a procedure while another is

already executing is called re-entrant.
 The procedure that contains executing code is called re-entrant procedure.

33) What is key pad interface?

 The interface which has 8 rows and 3 columns. Rows are connected to 26 pin

connector through a register to ground. Columns are directly connected to the 26

pin connector using data cable at the intersection of rows and columns of keyboard

are provided.

34) What is polling effect?

 In microprocessor it will be scanning 8x3 keypad each and every second until

the input is given is called polling effect.

15CSL48 - Microprocessor Lab Manual – Software Part 10

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

35) Key debouncing effect?

 When a key is pressed the signals may be generated more than once as a

microprocessor is fast processor it takes all the three signals to avoid these to take

only one signal at a time we use call delay procedure.

36) Which are arithmetic instructions?

 1)AAA 2)AAS 3)AAM 4)AAD 5)ADC

37) What are shift instructions?

 SHR:- Shift Logical right operation by one bit (division by 2).

 SHL:- Shift logical left operation (multiply by 2).

38) What are rotate instructions?
 ROL:- Rotate by left by one bit.

 Syntax: ROL destination,count

 ROR:- Rotate by right by one bit.

39) Write the Fibonacci series?

 0,1,1,2,3,5,8,13………n.

40) Write syntax for MUL?
 Syntax: mul src

 mul bl: - It multiply with al (by default) result is stored in ax.

 mul bx:- Multiply with AX & result is stored in DX,AX. DX is M.S.W and

AX is L.S.W.

41) Write a syntax of IN?
 Take the input from logic controller.

 Syntax: IN Accumulator,port

 Copies data from a port to the accumulator register it can be done is 2 ways.

a) Fixed Port:- Here 8 bit address is specified directly in the instruction.

Ex:- IN al,3536h

b) Variable Port:- Here port address is loaded into dx register before IN &
port address ranges from 00-FFFFH

Flags:- None of the flags.

15CSL48 - Microprocessor Lab Manual – Software Part 11

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

42) What is CLD?

 CLD:- Clear Direction Flag.

 Syntax:- CLD

Operation:- It clear the direction flag DF=0 left to right.

SI & DI auto incremented by 1.

43) What is LED?

 LED:- Light Emitting Diode.

44) Write a code for display a string in the program?

 lea dx,string_name

mov ah,09h
 int 21h

45) Write a symbolic notation of seven segment display?

46) What is DAC module?

 This device is a bit converter that transforms 8 bit binary number into analog

voltage.

47) Write the formula to calculate the Vout when angle is known?

 Vout = [5v+5sinx]256/10

48) What is STD?

 STD:- Set Direction Flag

 Syntax:- STD

It sets the direction DF=1….SI & DI auto decremented by 1.

49) Write a code for time storage(access)?

 mov ah,2ch
int 21h

d

a

f

e c

b

g

15CSL48 - Microprocessor Lab Manual – Software Part 12

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

50) What is Stepper Motor?

 It is an output device or rotating device.

51) Function of stepper motor?

 It rotates the motor both in clock wise & anti clockwise direction.

52) What is the sequence we use in half step mode?

 11,22,44,88

53) Sequence of full step mode?

 33,66,99

54) Write the interrupt for deleting a file?

 mov ah,41h

 mov dx,offset file name or lea dx, file name

int 21h

55) Write the interrupt for creating a file?

 mov ah,3ch

 mov dx,offset file name or lea dx, file name
 int 21h

56) Write a code to take a single character?

 mov ah,01h

 int 21h

57) Write a code to display a single character?
 mov dl,printable_character’s_ASCII_value

mov ah,02h

 int 21h

58)What are the 8086 interrupt types?

 Dedicated interrupts

Type 0: Divide by zero interrupt
Type 1: Single step interrupt or trap interrupt

15CSL48 - Microprocessor Lab Manual – Software Part 13

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Type 2:Non maskable interrupt

Type 3: Breakpoint

Type 4: Overflow interrupt

 Software interrupts
Type 0-255

59. What is interrupt service routine?

Interrupt means to break the sequence of operation. While the CPU is

executing a program an interrupt breaks the normal sequence of execution of

instructions & diverts its execution to some other program. This program to which

the control is transferred is called the interrupt service routine

60. What is microcontroller?

A device which contains the microprocessor with integrated peripherals like

memory, serial ports, parallel ports, timer/counter, interrupt controller, data

acquisition interfaces like ADC,DAC is called microcontroller.

ADDRESSING MODES:

 Immediate addressing mode: In this mode of addressing the data to be

manipulated is part of the instruction.

Ex: mov dx,4000h

 Immediate data should be in source field.And the destination can be register

or memory location .

 Register addressing mode: In this mode,the data to be manipulated is

present in register.

Ex: mov bx,ax

 Memory addressing mode: In this mode,one operand is a memory

location.There are 2 types of memory addressing mode:

15CSL48 - Microprocessor Lab Manual – Software Part 14

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

o Direct addressing mode:In this mode,16-bit offset address of memory

location is directly specified in the instruction.

Ex: mov ax,[5000h]

o Indirect addressing mode: In this mode,the offset address of the data to

be accessed is not present in the instruction,instead it is present in any

register.

Ex: mov ax,[bx]

This is base register indirect addressing mode,

Similarly,for base register indirect addressing mode with displacement;

 Mov ax,23h[bx]

For indexed addressing mode,offset addressing will be present in si or di .

 Ex: mov ax,[si]

With displacement,

 mov ax,23h[si]

For base indexed addressing mode,the offset of the address will be stored in bx/bp

and si/di.

 Ex: mov ax,[bx+si]

With displacement,

 Mov ax,10000h[bx+si]

 Implied mode of addressing: In this mode,the operands are not explicitly

specified.

Ex: DAA

By default the result sio stored in ax.

 I/O addressing mode:

1. Fixed port addressing → Ex: IN al,70h, OUT 70h,al

2. Variable port addressing →Ex: IN al,dx, OUT dx,al

In this mode, microprocessor si connected to I/O device & memory for

communication.

Program memory addressing mode: The control jumps are example for this
mode

15CSL48 - Microprocessor Lab Manual – Software Part 15

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Selected 8086 Instructions

The following is a brief summary of the 8086 instruction set:

Data Transfer Instructions

MOV Move byte or word to register or memory
IN, OUT Input byte or word from port, output word to port
LEA Load effective address
LDS, LES Load pointer using data segment, extra segment
PUSH, POP Push word onto stack, pop word off stack
XCHG Exchange byte or word
XLAT Translate byte using look-up table

Logical Instructions
NOT Logical NOT of byte or word (one's complement)
AND Logical AND of byte or word
OR Logical OR of byte or word
XOR Logical exclusive-OR of byte or word
TEST Test byte or word (AND without storing)

Shift and Rotate Instructions

SHL, SHR Logical shift left, right byte or word by 1 or CL
SAL, SAR Arithmetic shift left, right byte or word by 1 or CL
ROL, ROR Rotate left, right byte or word by 1 or CL
RCL, RCR Rotate left, right through carry byte or word by 1 or CL

Arithmetic Instructions

ADD, SUB Add, subtract byte or word
ADC, SBB Add, subtract byte or word and carry (borrow)
INC, DEC Increment, decrement byte or word
NEG Negate byte or word (two's complement)
CMP Compare byte or word (subtract without storing)
MUL, DIV Multiply, divide byte or word (unsigned)
IMUL, IDIV Integer multiply, divide byte or word (signed)
CBW, CWD Convert byte to word, word to double word (useful
 before multiply/divide)
AAA, AAS, AAM, AAD ASCII adjust for addition, subtraction, multiplication,
 division (ASCII codes 30-39)
DAA, DAS Decimal adjust for addition, subtraction (binary coded
 decimal numbers)

15CSL48 - Microprocessor Lab Manual – Software Part 16

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Transfer Instructions
JMP Unconditional jump
JA (JNBE) Jump if above (not below or equal)
JAE (JNB) Jump if above or equal (not below)
JB (JNAE) Jump if below (not above or equal)
JBE (JNA) Jump if below or equal (not above)
JE (JZ) Jump if equal (zero)
JG (JNLE) Jump if greater (not less or equal)
JGE (JNL) Jump if greater or equal (not less)JL (JNGE) Jump if less (not greater nor equal)
JLE (JNG) Jump if less or equal (not greater)
JC, JNC Jump if carry set, carry not set
JO, JNO Jump if overflow, no overflow
JS, JNS Jump if sign, no sign
JNP (JPO) Jump if no parity (parity odd)
JP (JPE) Jump if parity (parity even)
LOOP Loop unconditional, count in CX
LOOPE (LOOPZ) Loop if equal (zero), count in CX
LOOPNE (LOOPNZ) Loop if not equal (not zero), count in CX
JCXZ Jump if CX equals zero

Subroutine and Interrupt Instructions

CALL, RET Call , return from procedure
INT, INTO Software interrupt, interrupt if overflow
IRET Return from interrupt

String Instructions

MOVS Move byte or word string
MOVSB, MOVSW Move byte, word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS, STOS Load, store byte or word string
REP Repeat
REPE, REPZ Repeat while equal, zero
REPNE, REPNZ Repeat while not equal (zero)

Processor Control Instructions

STC, CLC, CMC Set, clear, complement carry flag
STD, CLD Set, clear direction flag
STI, CLI Set, clear interrupt enable flag
LAHF, SAHF Load AH from flags, store AH into flags

15CSL48 - Microprocessor Lab Manual – Software Part 17

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

PUSHF, POPF Push flags onto stack, pop flags off stack
ESC Escape to external processor interface
LOCK Lock bus during next instruction
NOP No operation (do nothing)
WAIT Wait for signal on TEST input
HLT Halt processor

Important Usage Notes:

1. The first operand of an instruction is also the destination if there is a resulting value.

Divide and multiply instructions are common exceptions to this rule.

2. There can be at most one memory operand per instruction.

3. There can be at most one immediate operand per instruction.

4. Operands generally must be of the same size (i.e., byte or word).

5. Using a label is the same as using an immediate or constant value.

6. When BP is used in a memory reference, SS is assumed as the segment. Otherwise DS

is assumed.

7. While an instruction is executing, IP refers to the next instruction.

8. Many instructions are smaller if you use the appropriate registers (usually AX or AL).

9. In NASM, all labels are case sensitive but instruction and register names are not.

Terminology Used:

 memory - Refers to an 8 or 16-bit memory location determined by an effective

address.

 register - AX, BX, CX, DX, SI, DI, BP, or SP as well as the 8-bit derivatives of AX,

BX, CX, and DX (other registers or flags are not allowed).

 immediate - A numeric constant or label.

 REG1::REG2 - The concatenation of two registers (e.g., the 32-bit value DX::AX) A

single colon is used for memory addresses.

 XF or XF=b - A flag's value after an instruction can be 0 or 1 and usually depends on

the result of the instruction. A flag being set to '?' by an instruction indicates that the

flag is undefined after the operation.

Instructions:

adc Add with carry flag
 Syntax: adc dest, src
 dest: memory or register
 src: memory, register, or immediate
 Action: dest = dest + src + CF

15CSL48 - Microprocessor Lab Manual – Software Part 18

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 Flags Affected: OF, SF, ZF, AF, PF, CF
 Notes: This instruction is used to perform 32-bit addition.
add Add two numbers
 Syntax: add dest, src
 dest: register or memory
 src: register, memory, or immediate
 Action: dest = dest + src
 Flags Affected: OF, SF, ZF, AF, PF, CF
 Notes: Works for both signed and unsigned numbers.

and Bitwise logical AND
 Syntax: and dest, src
 dest: register or memory
 src: register, memory, or immediate
 Action: dest = dest & src
 Flags Affected: OF=0, SF, ZF, AF=?, PF, CF=0

call Call procedure or function
 Syntax: call addr
 addr: register, memory, or immediate
 Action: Push IP onto stack, set IP to addr.
 Flags Affected: None

cbw Convert byte to word (signed)
 Syntax: cbw
 Action: Sign extend AL to create a word in AX.
 Flags Affected: None
 Notes: For unsigned numbers use "mov ah, 0".

cli Clear interrupt flag (disable interrupts)
 Syntax: cli
 Action: Clear IF
 Flags Affected: IF=0

cmp Compare two operands
 Syntax: cmp op1, op2
 op1: register or memory
 op2: register, memory, or immediate
 Action: Perform op1-op2, discarding the result but setting the flags.
 Flags Affected: OF, SF, ZF, AF, PF, CF
 Notes: Usually used before a conditional jump instruction.

cwd Convert word to doubleword (signed)
 Syntax: cwd
 Action: Sign extend AX to fill DX, creating a dword contained in DX::AX.

15CSL48 - Microprocessor Lab Manual – Software Part 19

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 Flags Affected: None
 Notes: For unsigned numbers use "xor dx, dx" to clear DX.

dec Decrement by 1
 Syntax: dec op
 op: register or memory
 Action: op = op - 1
 Flags Affected: OF, SF, ZF, AF, PF

div Unsigned divide
 Syntax: div op8
 div op16
 op8: 8-bit register or memory
 op16: 16-bit register or memory
 Action: If operand is op8, unsigned AL = AX / op8 and AH = AX % op8
 If operand is op16, unsigned AX = DX::AX / op16 and DX = DX::AX % op16
 Flags Affected: OF=?, SF=?, ZF=?, AF=?, PF=?, CF=?
 Notes: Performs both division and modulus operations in one instruction.

imul Signed multiply
 Syntax: imul op8
 imul op16
 op8: 8-bit register or memory
 op16: 16-bit register or memory
 Action: If operand is op8, signed AX = AL * op8
 If operand is op16, signed DX::AX = AX * op16
 Flags Affected: OF, SF=?, ZF=?, AF=?, PF=?, CF

in Input (read) from port
 Syntax: in AL, op8
 in AX, op8
 op8: 8-bit immediate or DX
 Action: If destination is AL, read byte from 8-bit port op8.
 If destination is AX, read word from 16-bit port op8.
 Flags Affected: None

inc Increment by 1
 Syntax: inc op
 op: register or memory
 Action: op = op + 1
 Flags Affected: OF, SF, ZF, AF, PF

int Call to interrupt procedure
 Syntax: int imm8
 imm8: 8-bit unsigned immediate
 Action: Push flags, CS, and IP; clear IF and TF (disabling interrupts); load

15CSL48 - Microprocessor Lab Manual – Software Part 20

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 word at address (imm8*4) into IP and word at (imm8*4 + 2) into CS.
 Flags Affected: IF=0, TF=0
 Notes: This instruction is usually used to call system routines.

iret Interrupt return
 Syntax: iret
 Action: Pop IP, CS, and flags (in that order).
 Flags Affected: All
 Notes: This instruction is used at the end of ISRs.

j?? Jump if ?? condition met
 Syntax: j?? rel8
 rel8: 8-bit signed immediate
 Action: If condition ?? met, IP = IP + rel8 (sign extends rel8)
 Flags Affected: None
 Notes: Use the cmp instruction to compare two operands then j?? to jump
 conditionally. The ?? of the instruction name represents the jump
 condition, allowing for following instructions:

 ja jump if above, unsigned >
 jae jump if above or equal, unsigned >=
 jb jump if below, unsigned <
 jbe jump if below or equal, unsigned <=
 je jump if equal, ==
 jne jump if not equal, !=
 jg jump if greater than, signed >
 jge jump if greater than or equal, signed >=
 jl jump if less than, signed <
 jle jump if less than or equal, signed <=

 All of the ?? suffixes can also be of the form n?? (e.g., jna for
 jump if not above). See 8086 documentation for many more ?? conditions.

 An assembler label should be used in place of the rel8 operand. The
 assembler will then calculate the relative distance to jump. Note also that rel8
operand greatly limits conditional jump distance
 (-127 to +128 bytes from IP). Use the jmp instruction in combination
 with j?? to overcome this barrier.

jmp Unconditional jump
 Syntax: jump rel
 jump op16
 jump seg:off
 rel: 8 or 16-bit signed immediate
 op16: 16-bit register or memory
 seg:off: Immediate 16-bit segment and 16-bit offset

15CSL48 - Microprocessor Lab Manual – Software Part 21

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 Action: If operand is rel, IP = IP + rel
 If operand is op16, IP = op16
 If operand is seg:off, CS = seg, IP = off
 Flags Affected: None
 Notes: An assembler label should be used in place of the rel8 operand. The
 assembler will then calculate the relative distance to jump.
lea Load effective address offset
 Syntax: lea reg16, memref
 reg16: 16-bit register
 memref: An effective memory address (e.g., [bx+2])
 Action: reg16 = address offset of memref
 Flags Affected: None
 Notes: This instruction is used to easily calculate the address of data in
 memory. It does not actually access memory.

mov Move data
 Syntax: mov dest, src
 dest: register or memory
 src: register, memory, or immediate
 Action: dest = src
 Flags Affected: None

mul Unsigned multiply
 Syntax: mul op8
 mul op16
 op8: 8-bit register or memory
 op16: 16-bit register or memory
 Action: If operand is op8, unsigned AX = AL * op8
 If operand is op16, unsigned DX::AX = AX * op16
 Flags Affected: OF, SF=?, ZF=?, AF=?, PF=?, CF
neg Two's complement negate
 Syntax: neg op
 op: register or memory
 Action: op = 0 - op
 Flags Affected: OF, SF, ZF, AF, PF, CF

nop No operation
 Syntax: nop
 Action: None
 Flags Affected: None

not One's complement negate
 Syntax: not op
 op: register or memory
 Action: op = ~op
 Flags Affected: None

15CSL48 - Microprocessor Lab Manual – Software Part 22

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

or Bitwise logical OR
 Syntax: or dest, src
 dest: register or memory
 src: register, memory, or immediate
 Action: dest = dest | src
 Flags Affected: OF=0, SF, ZF, AF=?, PF, CF=0
out Output (write) to port
 Syntax: out op, AL
 out op, AX
 op: 8-bit immediate or DX
 Action: If source is AL, write byte in AL to 8-bit port op.
 If source is AX, write word in AX to 16-bit port op.
 Flags Affected: None

pop Pop word from stack
 Syntax: pop op16
 reg16: 16-bit register or memory
 Action: Pop word off the stack and place it in op16 (i.e., op16 = [SS:SP]
 then SP = SP + 2).
 Flags Affected: None
 Notes: Pushing and popping of SS and SP are allowed but strongly discouraged.

popf Pop flags from stack
 Syntax: popf
 Action: Pop word from stack and place it in flags register.
 Flags Affected: All

push Push word onto stack
 Syntax: push op16
 op16: 16-bit register or memory
 Action: Push op16 onto the stack (i.e., SP = SP - 2 then [SS:SP] = op16).
 Flags Affected: None
 Notes: Pushing and popping of SS and SP are allowed but strongly discouraged.

pushf Push flags onto stack
 Syntax: pushf
 Action: Push flags onto stack as a word.
 Flags Affected: None

ret Return from procedure or function
 Syntax: ret
 Action: Pop word from stack and place it in IP.
 Flags Affected: None

sal Bitwise arithmetic left shift (same as shl)

15CSL48 - Microprocessor Lab Manual – Software Part 23

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 Syntax: sal op, 1
 sal op, CL
 op: register or memory
 Action: If operand is 1, op = op << 1
 If operand is CL, op = op << CL
 Flags Affected: OF, SF, ZF, AF=?, PF, CF

sar Bitwise arithmetic right shift (signed)
 Syntax: sar op, 1
 sar op, CL
 op: register or memory
 Action: If operand is 1, signed op = op >> 1 (sign extends op)
 If operand is CL, signed op = op >> CL (sign extends op)
 Flags Affected: OF, SF, ZF, AF=?, PF, CF

sbb Subtract with borrow
 Syntax: sbb dest, src
 dest: register or memory
 src: register, memory, or immediate
 Action: dest = dest - (src + CF)
 Flags Affected: OF, SF, ZF, AF, PF, CF
 Notes: This instruction is used to perform 32-bit subtraction.

shl Bitwise left shift (same as sal)
 Syntax: shl op, 1
 shl op, CL
 op: register or memory
 Action: If operand is 1, op = op << 1
 If operand is CL, op = op << CL
 Flags Affected: OF, SF, ZF, AF=?, PF, CF

shr Bitwise right shift (unsigned)
 Syntax: shr op, 1
 shr op, CL
 op: register or memory
 Action: If operand is 1, op = (unsigned)op >> 1
 If operand is CL, op = (unsigned)op >> CL
 Flags Affected: OF, SF, ZF, AF=?, PF, CF

sti Set interrupt flag (enable interrupts)
 Syntax: sti
 Action: Set IF
 Flags Affected: IF=1

sub Subtract two numbers
 Syntax: sub dest, src

15CSL48 - Microprocessor Lab Manual – Software Part 24

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 dest: regsiter or memory
 src: register, memory, or immediate
 Action: dest = dest - src
 Flags Affected: OF, SF, ZF, AF, PF, CF
 Notes: Works for both signed and unsigned numbers.

test Bitwise logical compare
 Syntax: test op1, op2
 op1: register, memory, or immediate
 op2: register, memory, or immediate
 Action: Perform op1 & op2, discarding the result but setting the flags.
 Flags Affected: OF=0, SF, ZF, AF=?, PF, CF=0
 Notes: This instruction is used to test if bits of a value are set.

xor Bitwise logical XOR
 Syntax: xor dest, src
 dest: register or memory
 src: register, memory, or immediate
 Action: dest = dest ^ src
 Flags Affected: OF=0, SF, ZF, AF=?, PF, CF=0

15CSL48 - Microprocessor Lab Manual – Software Part 25

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

The 8086 Microprocessor Pin Diagram

Fig:- The 8086 Microprocessor Pin Diagram

15CSL48 - Microprocessor Lab Manual – Software Part 26

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

MASM COMMANDS

C :/>cd masm32

C:/masm32>edit filename.asm

 After this command executed in command prompt an editor window will

open. Program should be typed in this window and saved. The program structure

is given below.

.model tiny/small/medium/large

.Stack <some number>

.data

 ; Initialize data

 ; which is used in program.

.code

 ; Program logic goes here.

 ;

end

To run the program, the following steps have to be followed:

C:/masm32>masm filename.asm;

 After this command is executed in command prompt if there are no errors in

program regarding to syntax the assembler will generates an object module as

discuss above.

C:/ masm32 >link filename.obj;

 After verifying the program for correct syntax and the generated object files

should be linked together. For this the above link command should be executed and

it will give an EXE file if the model directive is small as discuss above.

15CSL48 - Microprocessor Lab Manual – Software Part 27

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

OR

C:/ masm32>ml /Zi filename.asm

 This is similar to above commands which will check for sytax error as well as

it will link the object file, in the above command Z (capital Z) is case sensitive.

C:/ masm32>debug filename.exe

 After generating EXE file by the assembler it’s the time to check the output.

For this the above command is used and the execution of the program can be done

in different ways. It is as shown below:

-g ; complete execution of program in single step.

-t ; Stepwise execution.

-d ds: starting address or ending address ; To see data in memory locations

-p ; Used to execute interrupt or procedure during stepwise execution of

program

-q ; To quit the execution.

C:/ masm32>cv filename.exe

 This command is used as code viewer which will help in executing the code

line by line parallely we can see the contents of registers

Some of the commands for code viewer are:

F8 :line by line executation

F5 :complete executation

Q :quit

15CSL48 - Microprocessor Lab Manual – Software Part 28

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Enough
enough
enough,

Let’s start!

15CSL48 - Microprocessor Lab Manual – Software Part 29

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

1. Design and develop an assembly language program to search a key element “X”

in a list of ‘n’ 16-bit numbers. Adopt Binary search algorithm in your program for

searching.

.model small

initds macro
 mov ax,@data ; Initializing the Data Segment
 mov ds,ax ; it is ds, not dx
endm

printf macro msg
 lea dx,msg ; Load the Effective Address to DX
 mov ah,9 ; Function Number is 9
 int 21h ; Using DOS interrupt 21h
endm

putchar macro char
 mov dl,char ; load the printable character's HEX value in DL
 mov ah,2 ; Function Number is 9
 int 21h ; Using DOS interrupt 21h
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm

;;;
.data

 array dw 1122h,2345h,3333h,4455h,6666h ; 16 bit array
 len dw ($-array)/2 ; len = (last_index - first_index)/2

 search equ 2345h ; key to Search

 foundmsg db 'Element found at position : $'
 position db 0 ; now it’s 0, later we shall put

 notfoundmsg db 'Element not found $'

.code

 initds ; Initializing Data Segment (call that macro)

 mov bx,1 ; low
 mov dx,len ; high
 mov cx,search ; key

15CSL48 - Microprocessor Lab Manual – Software Part 30

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 again:

 cmp bx,dx ; while(low<high)
 ja failure ; if (low>high) then its not found case.

 mov ax,bx
 add ax,dx ; low+high
 shr ax,1 ; (low+high) /2
 mov si,ax ; have an index
 dec si ; adjust the index (pointing to the mid)
 add si,si ; for 16 bit data
 cmp cx,array[si] ; if(key==array[mid])
 jae bigger ; search in the RIGHT part of the array

 dec ax ; dec high (search in the LEFT part of the array)
 mov dx,ax ; make this as new high
 jmp again ; continue searching

 bigger:

 je success ; found case
 inc ax ; inc low
 mov bx,ax ; make this as new low
 jmp again ; continue searching

 success:

 add al,30h ; add 30h (or '0') to the position(AL)
 ; (just to convert to ascii)
 mov position,al ; move the position to our variable

 printf foundmsg ; printing found message
 putchar position ; printing found position
 exit ; you are done, so bye bye!

 failure:

 printf notfoundmsg ; printing not found message
 exit ; bye!

end

**

;

15CSL48 - Microprocessor Lab Manual – Software Part 31

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

OUTPUT:

masm 1.asm;

link 1.obj;

1

Element found at position : 2

NOTE:

 it is “mov ah,4ch and int 21h” not “mov al,4ch and int 21h”.

 it is putchar position not printf position

15CSL48 - Microprocessor Lab Manual – Software Part 32

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

2. Design and develop an assembly program to sort a given set of ‘n’ 16-bit

numbers in ascending order. Adopt Bubble Sort algorithm to sort given elements.

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm
;;;

.data
 array dw 20h,70h,40h,10h,50h ; our array which has to be sorted
 count dw ($-array)/2 ; length of our array (5 elements)

.code
 initds ; call that macro

 mov dx, count ; copy count to dx
 dec dx ; n-1 iterations

 outerloop: ; i loop

 mov cx,dx ; temporary copy to cx
 lea si,array ; first element’s index to SI

 innerloop: ; j loop

 mov ax,[si] ; first element to ax
 cmp ax,[si+2] ; compare 1st and 2nd element
 jl noswap ; if(1st < 2nd) then don’t swap

 xchg [si+2],ax ; else swapping is required
 mov [si],ax

 noswap:

 add si,02 ; point to next element
 loop innerloop ; finish innerloop first (j)
 dec dx ; dec i
 jnz outerloop ; go and finish i loop

 int 3 ; halt or breakpoint
 align 16 ; properly align
end ; bye bye!

**

Count = ($ – array)/2

 = (10 – 0)/2

 = 5

15CSL48 - Microprocessor Lab Manual – Software Part 33

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

OUTPUT: (please follow these steps for this program)

 masm 2.asm;

 link 2.obj;

 cv 2.exe

 press f5 or g (g means go and execute)

 d ds:0 (d means dump, ds means data segment)

Note:

d ds:0 means dump the data segment from 0th location

Working of Bubble Sort Algorithm

15CSL48 - Microprocessor Lab Manual – Software Part 34

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

3. Develop an assembly language program to reverse a given string and verify

whether it is a Palindrome or not. Display the appropriate message

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

inites macro
 mov es,ax ; initializing the extra segment
endm

printf macro msg
 lea dx,msg ; load the effective address to dx
 mov ah,9 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

getchar macro
 mov ah,1 ; this macro takes 1 key input,
 int 21h ; its ascii value in hex stores in al
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm

;;;

.data
 original db 30 dup(?) ; 1st array
 reverse db 30 dup(?) ; 2nd array to store the reversed array

 ask db 10,13,"String please:$"
 palindromemsg db 10,13,"Palindrome$"
 notpalindromemsg db 10,13,"Not Palindrome$"

.code

 initds

 inites ; initializing extra segment (why??? b’coz we are
 ; playing with strings)

 lea si, original ; 1st array starting index to si
 lea di, reverse ; 2nd array starting index to di

15CSL48 - Microprocessor Lab Manual – Software Part 35

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 printf ask
 mov cx,00 ;counter..right now it’s 0 (we haven't taken any i/p)

 takeinput:

 getchar ; takes single character (pressed key's
 ; ascii value goes to AL automatically)
 cmp al,13 ; compare with ENTER key
 je done ; if you press ENTER key, then goto done
 mov [si],al ; else, store your key in array
 inc cx ; keeps the no. of elements in array
 inc si ; move to next position
 jmp takeinput ; repeat till you press ENTER key

 done: dec si ; point to the last position

 reversingtask:

 mov al,[si] ; last element of si
 mov [di],al ; put that to first element of di
 inc di ; inc 2nd array position
 dec si ; dec 1st array position
 jnz reversingtask

 lea si, original ; comparison part
 lea di, reverse
 cld ; clear direction flag
 ; (so that si & di are auto incremented)
 repe cmpsb ; comparing [si] & [di]
 je palin ; if all the characters are equal, then goto palin

 printf notpalindromemsg ; else, not palindrome case
 exit ; bye bye!

 palin: printf palindromemsg ; palindrome
 exit ; bye bye!

end

**

15CSL48 - Microprocessor Lab Manual – Software Part 36

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

OUTPUT 1:

3.EXE

String please:MADAM

Palindrome

OUTPUT 2:

3.EXE

String please:COLLEGE

Not Palindrome

NOTE:

1. MAKE SURE YOU INITIALIZE EXTRA SEGMENT (mov es,ax)

15CSL48 - Microprocessor Lab Manual – Software Part 37

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

4. Develop an assembly language program to compute nCr using recursive

procedure. Assume that ‘n’ and ‘r’ are non-negative integers.

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

putchar macro char
 mov dl,char ; load the printable character's hex value in dl
 mov ah,2 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm

;;;

.data
 n db 6 ; aim is to find -> 6c3
 r db 3
 answer db 0
 .code
 initds

 mov al,n
 mov bl,r

 call ncr ; call ncr procedure

 mov al,answer ; copy that answer to your al
 aam ; split al into al & ah
 add ax,3030h ; convert into ascii
 mov bx,ax ; take a copy to be safe
 putchar bh ; display 1st digit
 putchar bl ; display 2nd digit

 exit

15CSL48 - Microprocessor Lab Manual – Software Part 38

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

ncr proc

 cmp bl,0 ;
n
C0 = 1

 jne go1
 add answer,1
 ret

 go1: cmp bl,al ;
n
Cn = 1

 jne go2
 add answer,1
 ret

 go2: cmp bl,1 ;
n
C1 = n

 jne go3
 add answer,al
 ret

 go3: dec al ;
n
Cn-1= n

 cmp bl,al
 jne go4
 inc al
 add answer,al
 ret

 go4: push ax
 push bx ; n-1
 call ncr C
 pop bx r
 pop ax

 dec bx
 push ax ; n-1
 push bx C
 call ncr r-1
 pop bx
 pop ax
 ret
ncr endp
end

**

15CSL48 - Microprocessor Lab Manual – Software Part 39

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

OUTPUT:

NOTE:

 FORMULA that we USE:
n
Cr =

n-1
Cr +

n-1
Cr-1

USEFUL VALUES

n
C0 = 1

n
Cn = 1

n
C1 = n

n
Cn-1 = n

Another formula

15CSL48 - Microprocessor Lab Manual – Software Part 40

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

5. Design and develop an assembly language program to read the current Time
and Date from the system and display it in the standard format on the screen.

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

printf macro msg
 lea dx,msg ; load the effective address to dx
 mov ah,9 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

putchar macro char
 mov dl,char ; load the printable character's hex value in dl
 mov ah,2 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

accesstime macro
 mov ah,2ch ; time interrupt ch=hours; cl=minutes
 int 21h ; dh=seconds; dl=milliseconds
endm

accessdate macro ; date interrupt dl=day; dh=month; cx=year
 mov ah,2ah
 int 21h
endm

display macro value
 mov al,value ; copy the passed value to AL bcoz next
 instruction (aam) works only on AL
 aam ; split al into ah & al
 add ax,3030h ; convert ah & al to ascii
 mov bx,ax ; copy ax to bx to be safe
 putchar bh ; print first digit
 putchar bl ; print second digit
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm

15CSL48 - Microprocessor Lab Manual – Software Part 41

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

time macro
 printf timemsg ; print "current time is"
 accesstime ; call accesstime macro
 display ch ; display hours
 putchar ':' ; print ':
 display cl ; display minutes
endm

date macro
 printf datemsg ; print "current date is"
 accessdate ; call accessdate macro
 display dl ; display day
 putchar ':' ; print ':'
 display dh ; display month
endm

;;;

.data

 timemsg db 10,13,"current time is $"
 datemsg db 10,13,"current date is $"

.code

 initds ; initialze data segment
 time ; time task
 date ; date task
 exit ; bye bye!

end

**

OUTPUT:

5.EXE

current time is 10:37
current date is 14:03

15CSL48 - Microprocessor Lab Manual – Software Part 42

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Procedures:

Delay proc

DELAY PROC

 MOV AX,0CFFH

OUTER: MOV CX,0FFFFH

INNER: LOOP INNER

 DEC AX

 JNZ OUTER

 RET

DELAY ENDP

Clear screen Proc

CLS PROC NEAR

MOV AH,0FH ; get the current mode

INT 10H

MOV AH,00H ; clear that current mode

INT 10H

RET

CLS ENDP

Basically, keep decrementing a

huge number till zero huge

number of times.

By the time, microprocessor

does these huge decrements; you

can actually see your front-end

output.

15CSL48 - Microprocessor Lab Manual – Software Part 43

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Important Questions

1.What are the flags in 8086?

- In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag,
Trace flag, Interrupt flag, Direction flag, and Sign flag.

2.What are the various interrupts in 8086?

- Maskable interrupts, Non-Maskable interrupts.

3.What do you mean by Maskable interrupts?
- An interrupt that can be turned off by the programmer is known as Maskable interrupt.

4.What are Non-Maskable interrupts?

An interrupt which can be never be turned off (ie.disabled) is known as Non-
Maskable interrupt.

5.Which interrupts are generally used for critical events?

- Non-Maskable interrupts are used in critical events. Such as Power failure,
Emergency, Shut off etc.,

6.Give examples for Maskable interrupts?

- RST 7.5, RST6.5, RST5.5 are Maskable interrupts

7.Give example for Non-Maskable interrupts?
- Trap is known as Non-Maskable interrupts, which is used in emergency condition.

8.What is the Maximum clock frequency in 8086?

- 5 Mhz is the Maximum clock frequency in 8086.

9.What are the various segment registers in 8086?
- Code, Data, Stack, Extra Segment registers in 8086.

10.Which Stack is used in 8086?
- FIFO (First In First Out) stack is used in 8086.In this type of Stack the first stored information is
retrieved first.

11.What is SIM and RIM instructions?

- SIM is Set Interrupt Mask. Used to mask the hardware interrupts. RIM is Read Interrupt Mask.
Used to check whether the interrupt is Masked or not.

12.Which is the tool used to connect the user and the computer?

- Interpreter is the tool used to connect the user and the tool.

13.What is the position of the Stack Pointer after the PUSH instruction?

- The address line is 02 less than the earlier value.

15CSL48 - Microprocessor Lab Manual – Software Part 44

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

14.What are the address lines for the software interrupts? -

15.What is the position of the Stack Pointer after the POP instruction?

- The address line is 02 greater than the earlier value.

16.Logic calculations are done in which type of registers?

- Accumulator is the register in which Arithmetic and Logic calculations are

done.

17.What are the different functional units in 8086?

- Bus Interface Unit and Execution unit, are the two different functional units in

8086.

18.Give examples for Micro controller?

- Z80, Intel MSC51 &96, Motorola are the best examples of Microcontroller.

19.What is meant by cross-compiler?
- A program runs on one machine and executes on another is called as cross-compiler.

20.What are the address lines for the hardware interrupts? –

15CSL48 - Microprocessor Lab Manual – Software Part 45

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

21.Which Segment is used to store interrupt and subroutine return address registers?

- Stack Segment in segment register is used to store interrupt and subroutine

return address registers.

22.Which Flags can be set or reset by the programmer and also used to control the
operation of the processor?

- Trace Flag, Interrupt Flag, Direction Flag.

23.What does EU do?

- Execution Unit receives program instruction codes and data from BIU, executes

these instructions and store the result in general registers.

24.Which microprocessor accepts the program written for 8086 without any changes?

- 8088 is that processor.

25.What is the difference between 8086 and 8088?

- The BIU in 8088 is 8-bit data bus & 16- bit in 8086.Instruction queue is 4 byte

long in 8088and 6 byte in 8086.

15CSL48 - Microprocessor Lab Manual – Software Part 46

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

You try to answer!!!!

1. Name the different flag registers in 8086.

2. What are GPR's and name them.

3. What is the opcode and operand ?

4. What are the different addressing modes? Give examples.

5. What are the categories of instruction set in 8086?

6. Explain AAA and DAA.

7. Name the string instructions.

8. Give the difference between CMPS and SCAS.

9. What are the interrupts?

10. Name different JUMP instructions.

11. Give the difference between MACRO and PROCEDURE.

12. What are the assembler directives? And name them.

13. What is the use of EVEN, EXTERN, GROUP.

14. Why 8086 has 2 "GND" pins.

15. What are stacks?

16. What is NMI?

17. What formulas are used to generate time delay for 8086 system?

18. Give the differences between static and dynamic RAM.

19. What are the methods of interfacing 10 devices?

20. What are the modes of operation of 8255?

******************* All the Best! ***********************

