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12 Write a program to perform a series of transforma-
tions on a 30 × 30 square whose centroid lies at
(−20, −20, 0) and that is contained in the xy plane.
Use three-dimensional OpenGL matrix operations
to perform the transformations. The square should
first be reflected in the x axis, then rotated counter-
clockwise by 45◦ about its center, then sheared in
the x direction by a value of 2.

13 Modify the program from the previous exercise so
that the transformation sequence can be applied to
any two-dimensional polygon, with vertices spec-
ified as user input.

14 Modify the example program in the previous exer-
cise so that the order of the geometric transforma-
tion sequence can be specified as user input.

1 Modify the example program from the previ-
ous exercise so that the geometric transformation
parameters are specified as user input.

IN MORE DEPTH
1 You have not yet been exposed to the material nec-

essary to construct three-dimensional representa-
tions of the objects in your application, so you
can instead embed the two-dimensional polyg-
onal approximations to those objects in a three
dimensional scene and perform three-dimensional

transformations on those approximations using
the techniques in this chapter. In this exercise, you
will set up a set of transformations to produce an
animation. Define the three-dimensional
formation matrices to do this using homogeneous
coordinate representations. If
act as a single ”unit” in certain
easier to model in terms of rel
can use the techniques in Sec
local transformations of the
other (in their own coordi
formations in the world coordinate frame.

2

5

trans-

two or more objects
behaviors that are

ative positions, you
t ion 6 to convert the

objects relative to each
nate frame) into trans-

Use the matrices you designed in the previous
exercise to produce an animation. You should em-
ploy the OpenGL matrix operations for three-
dimensional transformations and have the matri-
ces produce small changes in position for each of
the objects in the scene. Since you haven t yet cov-
ered the material necessary for generating views
of a threedimensional scene, simply display the
animation using a two-dimensional orthogonal
projection, with all of the polygons in the scene
being contained in the xy plane. The transfor-
mations themselves, however, are still three-
dimensional.

Three-Dimensional Geometric Transformations
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Three-Dimensional Viewing

1 Overview of Three-Dimensional
Viewing Concepts

2 The Three-Dimensional Viewing
Pipeline

3 Three-Dimensional
Viewing-Coordinate Parameters

4 Transformation from World
to Viewing Coordinates

5 Projection Transformations

6 Orthogonal Projections

7 Oblique Parallel Projections

8 Perspective Projections

9 The Viewport Transformation and
Three-Dimensional Screen
Coordinates

10 OpenGL Three-Dimensional
Viewing Functions

11 Three-Dimensional Clipping
Algorithms

12 OpenGL Optional Clipping Planes

13 Summary
F or two-dimensional graphics applications, viewing opera-

tions transfer positions from the world-coordinate plane to

pixel positions in the plane of the output device. Using

the rectangular boundaries for the clipping window and the view-

port, a two-dimensional package clips a scene and maps it to device

coordinates. Three-dimensional viewing operations, however, are

more involved, because we now have many more choices as to how

we can construct a scene and how we can generate views of the

scene on an output device.

From Chapter 1  of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson 
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1 Overview of Three-Dimensional
Viewing Concepts

When we model a three-dimensional scene, each object in the scene is typically
defined with a set of surfaces that form a closed boundary around the object
interior. And, for some applications, we may need also to specify information
about the interior structure of an object. In addition to procedures that generate
views of the surface features of an object, graphics packages sometimes provide
routines for displaying internal components or cross-sectional views of a solid
object. Viewing functions process the object descriptions through a set of pro-
cedures that ultimately project a specified view of the objects onto the surface
of a display device. Many processes in three-dimensional viewing, such as the
clipping routines, are similar to those in the two-dimensional viewing pipeline.
But three-dimensional viewing involves some tasks that are not present in two-
dimensional viewing. For example, projection routines are needed to transfer the
scene to a view on a planar surface, visible parts of a scene must be identified, and,
for a realistic display, lighting effects and surface characteristics must be taken
into account.

Viewing a Three-Dimensional Scene
To obtain a display of a three-dimensional world-coordinate scene, we first set
up a coordinate reference for the viewing, or “camera,” parameters. This coordi-
nate reference defines the position and orientation for a view plane (or projection
plane) that corresponds to a camera film plane (Figure 1). Object descriptions
are then transferred to the viewing reference coordinates and projected onto the
view plane. We can generate a view of an object on the output device in wire-
frame (outline) form, or we can apply lighting and surface-rendering techniques
to obtain a realistic shading of the visible surfaces.

View
Plane

F I G U R E 1
Coordinate reference for obtaining a
selected view of a three-dimensional
scene.

Projections
Unlike a camera picture, we can choose different methods for projecting a scene
onto the view plane. One method for getting the description of a solid object
onto a view plane is to project points on the object surface along parallel lines.
This technique, called parallel projection, is used in engineering and architectural
drawings to represent an object with a set of views that show accurate dimensions
of the object, as in Figure 2.

Another method for generating a view of a three-dimensional scene is to
project points to the view plane along converging paths. This process, called a
perspective projection, causes objects farther from the viewing position to be dis-
played smaller than objects of the same size that are nearer to the viewing position.
A scene that is generated using a perspective projection appears more realistic,
because this is the way that our eyes and a camera lens form images. Parallel lines
along the viewing direction appear to converge to a distant point in the back-
ground, and objects in the background appear to be smaller than objects in the
foreground.

F I G U R E 2
Three parallel-projection views of an
object, showing relative proportions
from different viewing positions.

Top Side Front

Three-Dimensional Viewing
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Depth Cueing
With few exceptions, depth information is important in a three-dimensional scene
so that we can easily identify, for a particular viewing direction, which is the
front and which is the back of each displayed object. Figure 3 illustrates the
ambiguity that can result when a wire-frame object is displayed without depth
information. There are several ways in which we can include depth information
in the two-dimensional representation of solid objects. (a)

(b)

(c)

F I G U R E 3
The wire-frame representation of the
pyramid in (a) contains no depth
information to indicate whether the
viewing direction is (b) downward
from a position above the apex or
(c) upward from a position below
the base.

A simple method for indicating depth with wire-frame displays is to vary
the brightness of line segments according to their distances from the viewing
position. Figure 4 shows a wire-frame object displayed with depth cueing. The
lines closest to the viewing position are displayed with the highest intensity,
and lines farther away are displayed with decreasing intensities. Depth cueing is
applied by choosing a maximum and a minimum intensity value and a range of
distances over which the intensity is to vary.

Another application of depth cuing is modeling the effect of the atmosphere
on the perceived intensity of objects. More distant objects appear dimmer to us
than nearer objects due to light scattering by dust particles, haze, and smoke.
Some atmospheric effects can even change the perceived color of an object, and
we can model these effects with depth cueing.

Identifying Visible Lines and Surfaces
We can also clarify depth relationships in a wire-frame display using techniques
other than depth cueing. One approach is simply to highlight the visible lines
or to display them in a different color. Another technique, commonly used for
engineering drawings, is to display the nonvisible lines as dashed lines. Or we
could remove the nonvisible lines from the display, as in Figures 3(b) and
3(c). But removing the hidden lines also removes information about the shape
of the back surfaces of an object, and wire-frame representations are generally
used to get an indication of an object’s overall appearance, front and back.

F I G U R E 4
A wire-frame object displayed with
depth cueing, so that the brightness of
lines decreases from the front of the
object to the back.

When a realistic view of a scene is to be produced, back parts of the objects
are completely eliminated so that only the visible surfaces are displayed. In this
case, surface-rendering procedures are applied so that screen pixels contain only
the color patterns for the front surfaces.

Surface Rendering
Added realism is attained in displays by rendering object surfaces using the light-
ing conditions in the scene and the assigned surface characteristics. We set the
lighting conditions by specifying the color and location of the light sources, and
we can also set background illumination effects. Surface properties of objects
include whether a surface is transparent or opaque and whether the surface is
smooth or rough. We set values for parameters to model surfaces such as glass,
plastic, wood-grain patterns, and the bumpy appearance of an orange. In Color
Plate 9 surface-rendering methods are combined with perspective and visible-
surface identification to generate a degree of realism in a displayed scene.

Exploded and Cutaway Views
Many graphics packages allow objects to be defined as hierarchical structures, so
that internal details can be stored. Exploded and cutaway views of such objects
can then be used to show the internal structure and relationship of the object parts.
An alternative to exploding an object into its component parts is a cutaway view,
which removes part of the visible surfaces to show internal structure.

Three-Dimensional Viewing
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Three-Dimensional and Stereoscopic Viewing
Other methods for adding a sense of realism to a computer-generated scene

Stereoscopic devices present two views of a scene: one for the left eye and the
other for the right eye. The viewing positions correspond to the eye positions of
the viewer. These two views are typically displayed on alternate refresh cycles of a
raster monitor. When we view the monitor through special glasses that alternately
darken first one lens and then the other, in synchronization with the monitor
refresh cycles, we see the scene displayed with a three-dimensional effect.

2 The Three-Dimensional Viewing Pipeline
Procedures for generating a computer-graphics view of a three-dimensional scene
are somewhat analogous to the processes involved in taking a photograph. First
of all, we need to choose a viewing position corresponding to where we would
place a camera. We choose the viewing position according to whether we want
to display a front, back, side, top, or bottom view of the scene. We could also
pick a position in the middle of a group of objects or even inside a single object,
such as a building or a molecule. Then we must decide on the camera orientation
(Figure 5). Which way do we want to point the camera from the viewing
position, and how should we rotate it around the line of sight to set the “up”
direction for the picture? Finally, when we snap the shutter, the scene is cropped
to the size of a selected clipping window, which corresponds to the aperture or
lens type of a camera, and light from the visible surfaces is projected onto the
camera film.

We need to keep in mind, however, that the camera analogy can be carried only
so far, because we have more flexibility and many more options for generating
views of a scene with a computer-graphics program than we do with a real camera.
We can choose to use either a parallel projection or a perspective projection, we
can selectively eliminate parts of a scene along the line of sight, we can move the
projection plane away from the “camera” position, and we can even get a picture
of objects in back of our synthetic camera.

Some of the viewing operations for a three-dimensional scene are the same as,

F I G U R E 5
Photographing a scene involves selection of the camera
position and orientation. z

y

x

Three-Dimensional Viewing

include three-dimensional displays and stereoscopic views. Three-dimensional
views can be obtained by reflecting a raster image from a vibrating, flexible mir-
ror. The vibrations of the mirror are synchronized with the display of the scene
on the cathode ray tube (CRT). As the mirror vibrates, the focal length varies so
that each point in the scene is reflected to a spatial position corresponding to its
depth.

or similar to, those used in the two-dimensional viewing pipeline. A two-dimen-
sional viewport is used to position a projected view of the threedimensional
scene on the output device, and a two-dimensional clipping window is used to 
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Modeling
Transformation

Viewing
Transformation

Projection
Transformation

MC WC VC

Viewport
Transformation

Normalization
Transformation

and
Clipping

PC NC DC

F I G U R E 1 0 - 6
General three-dimensional transformation pipeline, from modeling coordinates (MC) to world coordinates (WC) to
viewing coordinates (VC) to projection coordinates (PC) to normalized coordinates (NC) and, ultimately, to device
coordinates (DC).

Figure 6 shows the general processing steps for creating and transforming a
three-dimensional scene to device coordinates. Once the scene has been modeled
in world coordinates, a viewing-coordinate system is selected and the descrip-
tion of the scene is converted to viewing coordinates. The viewing coordinate
system defines the viewing parameters, including the position and orientation
of the projection plane (view plane), which we can think of as the camera film
plane. A two-dimensional clipping window, corresponding to a selected camera
lens, is defined on the projection plane, and a three-dimensional clipping region
is established. This clipping region is called the view volume, and its shape and
size depends on the dimensions of the clipping window, the type of projection
we choose, and the selected limiting positions along the viewing direction. Pro-
jection operations are performed to convert the viewing-coordinate description
of the scene to coordinate positions on the projection plane. Objects are mapped
to normalized coordinates, and all parts of the scene outside the view volume are
clipped off. The clipping operations can be applied after all device-independent
coordinate transformations (from world coordinates to normalized coordinates)
are completed. In this way, the coordinate transformations can be concatenated
for maximum efficiency.

As in two-dimensional viewing, the viewport limits could be given in normal-
ized coordinates or in device coordinates. In developing the viewing algorithms,
we will assume that the viewport is to be specified in device coordinates and
that normalized coordinates are transferred to viewport coordinates, following
the clipping operations. There are also a few other tasks that must be performed,
such as identifying visible surfaces and applying the surface-rendering proce-
dures. The final step is to map viewport coordinates to device coordinates within
a selected display window. Scene descriptions in device coordinates are some-
times expressed in a left-handed reference frame so that positive distances from
the display screen can be used to measure depth values in the scene.

Three-Dimensional Viewing

select a view that is to be mapped to the viewport. In addition, we set up a dis-
play window in screen coordinates, just as we do in a two-dimensional applica-
tion. Clipping windows, viewports, and display windows are usually specified
as rectangles with their edges parallel to the coordinate axes. In three-dimensional
viewing, however, the clipping window is positioned on a selected view plane,
and scenes are clipped against an enclosing volume of space, which is defined
by a set of clipping planes. The viewing position, view plane, clipping window,
and clipping planes are all specified within the viewing-coordinate reference
frame.
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3 Three-Dimensional Viewing-Coordinate
Parameters

referred to as the eye position or the camera position.) And we specify a view-up
vector V, which defines the yview direction. For three-dimensional space, we also
need to assign a direction for one of the remaining two coordinate axes. This
is typically accomplished with a second vector that defines the zview axis, with
the viewing direction along this axis. Figure 7 illustrates the positioning of a
three-dimensional viewing-coordinate frame within a world system.

yview

zview

xview

P0 � (x0, y0, z0)

xw
zw

yw

F I G U R E 7
A right-handed viewing-coordinate
system, with axes xview, yview, and
zview, relative to a right-handed
world-coordinate frame. The View-Plane Normal Vector

Because the viewing direction is usually along the zview axis, the view plane, also
called the projection plane, is normally assumed to be perpendicular to this axis.
Thus, the orientation of the view plane, as well as the direction for the positive zview
axis, can be defined with a view-plane normal vector N, as shown in Figure 8.

An additional scalar parameter is used to set the position of the view plane
at some coordinate value zvp along the zview axis, as illustrated in Figure 9.
This parameter value is usually specified as a distance from the viewing origin
along the direction of viewing, which is often taken to be in the negative zview
direction. Thus, the view plane is always parallel to the xview yview plane, and the
projection of objects to the view plane corresponds to the view of the scene that
will be displayed on the output device.

Vector N can be specified in various ways. In some graphics systems, the
direction for N is defined to be along the line from the world-coordinate origin
to a selected point position. Other systems take N to be in the direction from a
reference point Pref to the viewing origin P0, as in Figure 10. In this case, the
reference point is often referred to as a look-at point within the scene, with the
viewing direction opposite to the direction of N.

We could also define the view-plane normal vector, and other vector direc-
tions, using direction angles. These are the three angles, α, β, and γ , that a spatial line
makes with the x, y, and z axes, respectively. But it is usually much easier to specify
a vector direction with two point positions in a scene than with direction angles.

View
Plane

N

P0

xw
zw

yw

yview
xview zview

F I G U R E 8
Orientation of the view plane and
view-plane normal vector N.

zview

xview

yview

zvp � 0

zvp � 0

zvp � 0

F I G U R E 9
Three possible positions for the view
plane along the zview axis.

Three-Dimensional Viewing

Establishing a three-dimensional viewing reference frame is similar to set-
ting up the two-dimensional viewing reference frame. We first select a 
world-coordinate position P0 =(x0, y0, z0) for the viewing origin, which is 
called the view point or viewing position. (Sometimes the view point is also 
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xw
zw

yw

Pref

yview xview

zview

P0N

F I G U R E 1 0
Specifying the view-plane normal vector N as
the direction from a selected reference point
Pref to the viewing-coordinate origin P0.

The View-Up Vector
Once we have chosen a view-plane normal vector N, we can set the direction for
the view-up vector V. This vector is used to establish the positive direction for
the yview axis.

Adjusted
V

Input
V

N

F I G U R E 1 1
Adjusting the input direction of the
view-up vector V to an orientation
perpendicular to the view-plane
normal vector N.

Usually, V is defined by selecting a position relative to the world-coordinate
origin, so that the direction for the view-up vector is from the world origin to this
selected position. Because the view-plane normal vector N defines the direction
for the zview axis, vector V should be perpendicular to N. But, in general, it can
be difficult to determine a direction for V that is precisely perpendicular to N.
Therefore, viewing routines typically adjust the user-defined orientation of vector
V, as shown in Figure 11, so that V is projected onto a plane that is perpendicular
to the view-plane normal vector.

We can choose any direction for the view-up vector V, so long as it is not
parallel to N. A convenient choice is often in a direction parallel to the world yw

axis; that is, we could set V = (0, 1, 0).

The uvn Viewing-Coordinate Reference Frame
Left-handed viewing coordinates are sometimes used in graphics packages, with
the viewing direction in the positive zview direction. With a left-handed system,
increasing zview values are interpreted as being farther from the viewing posi-
tion along the line of sight. But right-handed viewing systems are more common,
because they have the same orientation as the world-reference frame. This allows
a graphics package to deal with only one coordinate orientation for both world
and viewing references. Although some early graphics packages defined view-
ing coordinates within a left-handed frame, right-handed viewing coordinates
are now used by the graphics standards. However, left-handed coordinate ref-
erences are often used to represent screen coordinates and for the normalization
transformation.

Because the view-plane normal N defines the direction for the zview axis and
the view-up vector V is used to obtain the direction for the yview axis, we need
only determine the direction for the xview axis. Using the input values for N and V,
we can compute a third vector, U, that is perpendicular to both N and V. Vector U
then defines the direction for the positive xview axis. We determine the correct
direction for U by taking the vector cross product of V and N so as to form a
right-handed viewing frame. The vector cross product of N and U also produces
the adjusted value for V, perpendicular to both N and U, along the positive yview
axis. Following these procedures, we obtain the following set of unit axis vectors
for a right-handed viewing coordinate system.

n = N
|N| = (nx, ny, nz)

u = V × n
|V × n| = (ux, uy, uz) (1)

v = n × u = (vx, vy, vz)

Three-Dimensional Viewing
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The coordinate system formed with these unit vectors is often described as a uvn
viewing-coordinate reference frame (Figure 12).

u
v

n

yview

xview

zview

F I G U R E 1 2
A right-handed viewing system defined
with unit vectors u, v, and n.

Generating Three-Dimensional Viewing Effects
By varying the viewing parameters, we can obtain different views of objects in
a scene. For instance, from a fixed viewing position, we could change the direc-
tion of N to display objects at positions around the viewing-coordinate origin.
We could also vary N to create a composite display consisting of multiple views
from a fixed camera position. We can simulate a wide viewing angle by producing
seven views of the scene from the same viewing position, but with slight shifts in
the viewing direction; the views are then combined to form a composite display.
Similarly, we generate stereoscopic views by shifting the viewing direction as well
as shifting the view point slightly to simulate the two eye positions.

In interactive applications, the normal vector N is the viewing parameter that
is most often changed. Of course, when we change the direction for N, we also have
to change the other axis vectors to maintain a right-handed viewing-coordinate
system.

If we want to simulate an animation panning effect, as when a camera moves
through a scene or follows an object that is moving through a scene, we can keep

And to display different views of an object, such as a side view and a front view,

different views of an object or group of objects can be generated using geometric
transformations without changing the viewing parameters.

4 Transformation from World
to Viewing Coordinates

In the three-dimensional viewing pipeline, the first step after a scene has been
constructed is to transfer object descriptions to the viewing-coordinate reference
frame. This conversion of object descriptions is equivalent to a sequence of trans-
formations that superimposes the viewing reference frame onto the world frame.
We can accomplish this conversion using the methods for transforming between

F I G U R E 1 3
Panning across a scene by changing the
viewing position, with a fixed direction
for N.

P0

N

P0

N

P0

N

xw

zw

yw

Three-Dimensional Viewing

the direction for N fixed as we move the view point, as illustrated in Figure 13.

we could move the view point around the object, as in Figure 14. Alternatively,
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N

N

N

Pref

F I G U R E 1 4
Viewing an object from different
directions using a fixed reference point.

coordinate system :

1. Translate the viewing-coordinate origin to the origin of the world-
coordinate system.

2. Apply rotations to align the xview, yview, and zview axes with the world xw,
yw, and zw axes, respectively.

The viewing-coordinate origin is at world position P0 = (x0, y0, z0). Therefore,
the matrix for translating the viewing origin to the world origin is

T =

⎡

⎢
⎢
⎣

1 0 0 −x0
0 1 0 −y0
0 0 1 −z0
0 0 0 1

⎤

⎥
⎥
⎦

(2)

For the rotation transformation, we can use the unit vectors u, v, and n to
form the composite rotation matrix that superimposes the viewing axes onto the
world frame. This transformation matrix is

R =

⎡

⎢
⎢
⎣

ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

⎤

⎥
⎥
⎦

(3)

where the elements of matrix R are the components of the uvn axis vectors.
The coordinate transformation matrix is then obtained as the product of the

preceding translation and rotation matrices:

MWC, VC = R · T

=

⎡

⎢
⎢
⎣

ux uy uz −u · P0
vx vy vz −v · P0
nx ny nz −n · P0
0 0 0 1

⎤

⎥
⎥
⎦

(4)

Three-Dimensional Viewing

s
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Translation factors in this matrix are calculated as the vector dot product of each
of the u, v, and n unit vectors with P0, which represents a vector from the world
origin to the viewing origin. In other words, the translation factors are the negative
projections of P0 on each of the viewing-coordinate axes (the negative components
of P0 in viewing coordinates). These matrix elements are evaluated as

−u · P0 = −x0ux − y0uy − z0uz

−v · P0 = −x0vx − y0vy − z0vz (5)

−n · P0 = −x0nx − y0ny − z0nz

Matrix 4 transfers world-coordinate object descriptions to the viewing refer-
ence frame.

5 Projection Transformations
In the next phase of the three-dimensional viewing pipeline, after the transforma-
tion to viewing coordinates, object descriptions are projected to the view plane.
Graphics packages generally support both parallel and perspective projections.

In a parallel projection, coordinate positions are transferred to the view plane
along parallel lines. Figure 15 illustrates a parallel projection for a straight-
line segment defined with endpoint coordinates P1 and P2. A parallel projection
preserves relative proportions of objects, and this is the method used in computer-
aided drafting and design to produce scale drawings of three-dimensional objects.
All parallel lines in a scene are displayed as parallel when viewed with a parallel
projection. There are two general methods for obtaining a parallel-projection view
of an object: We can project along lines that are perpendicular to the view plane,
or we can project at an oblique angle to the view plane.

For a perspective projection, object positions are transformed to projection
coordinates along lines that converge to a point behind the view plane. An exam-
ple of a perspective projection for a straight-line segment, defined with endpoint

6 Orthogonal Projections
A transformation of object descriptions to a view plane along lines that are all
parallel to the view-plane normal vector N is called an orthogonal projection (or,

P1

P2

P2�

View
Plane

P1�

F I G U R E 1 5
Parallel projection of a line segment
onto a view plane.

P1

P2

P2�

P1�

View
Plane

Convergence 
Point

F I G U R E 1 6
Perspective projection of a line
segment onto a view plane.

Three-Dimensional Viewing

coordinates P1 and P2, is given in Figure 16. Unlike a parallel projection, a perspec-
tive projection does not preserve relative proportions of objects. But perspective
views of a scene are more realistic because distant objects in the projected display
are reduced in size.
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Plan View

Side Elevation View

Front Elevation View

F I G U R E 1 7
Orthogonal projections of an object,
displaying plan and elevation views.

equivalently, an orthographic projection). This produces a parallel-projection
transformation in which the projection lines are perpendicular to the view plane.
Orthogonal projections are most often used to produce the front, side, and top

projections of an object are called elevations; and a top orthogonal projection is
called a plan view. Engineering and architectural drawings commonly employ
these orthographic projections, because lengths and angles are accurately depicted
and can be measured from the drawings.

Axonometric and Isometric Orthogonal Projections
We can also form orthogonal projections that display more than one face of an
object. Such views are called axonometric orthogonal projections. The most com-
monly used axonometric projection is the isometric projection, which is generated
by aligning the projection plane (or the object) so that the plane intersects each
coordinate axis in which the object is defined, called the principal axes, at the same

We can obtain the isometric projection shown in this figure by aligning the view-
plane normal vector along a cube diagonal. There are eight positions, one in each
octant, for obtaining an isometric view. All three principal axes are foreshortened
equally in an isometric projection, so that relative proportions are maintained.
This is not the case in a general axonometric projection, where scaling factors
may be different for the three principal directions.

Orthogonal Projection Coordinates
With the projection direction parallel to the zview axis, the transformation equa-
tions for an orthogonal projection are trivial. For any position (x, y, z) in viewing
coordinates, as in Figure 19, the projection coordinates are

xp = x, yp = y (6)

Three-Dimensional Viewing

views of an object, as shown in Figure 17. Front, side, and rear orthogonal 

distance from the origin. Figure 18 shows an isometric projection for a cube. 
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F I G U R E 1 8
An isometric projection of a cube.
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F I G U R E 1 9
An orthogonal projection of a spatial
position onto a view plane.
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The z-coordinate value for any projection transformation is preserved for use in
the visibility determination procedures. And each three-dimensional coordinate
point in a scene is converted to a position in normalized space.

Clipping Window and Orthogonal-Projection View Volume
In the camera analogy, the type of lens is one factor that determines how much of
the scene is transferred to the film plane. A wide-angle lens takes in more of the
scene than a regular lens. For computer-graphics applications, we use the rectan-
gular clipping window for this purpose. As in two-dimensional viewing, graphics
packages typically require that clipping rectangles be placed in specific positions.
In OpenGL, we set up a clipping window for three-dimensional viewing just as
we did for two-dimensional viewing, by choosing two-dimensional coordinate
positions for its lower-left and upper-right corners. For three-dimensional view-
ing, the clipping window is positioned on the view plane with its edges parallel

shape or orientation for the clipping window, we must develop our own viewing
procedures.

The edges of the clipping window specify the x and y limits for the part of
the scene that we want to display. These limits are used to form the top, bot-
tom, and two sides of a clipping region called the orthogonal-projection view
volume. Because projection lines are perpendicular to the view plane, these four
boundaries are planes that are also perpendicular to the view plane and that pass

Three-Dimensional Viewing

to the xview and yview axes, as shown in Figure 20. If we want to use some other
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Infinite orthogonal-projection view
volume.

through the edges of the clipping window to form an infinite clipping region, as
in Figure 21.

We can limit the extent of the orthogonal view volume in the zview direction
by selecting positions for one or two additional boundary planes that are parallel
to the view plane. These two planes are called the near-far clipping planes, or the
front-back clipping planes. The near and far planes allow us to exclude objects
that are in front of or behind the part of the scene that we want to display. With
the viewing direction along the negative zview axis, we usually have zfar < znear,
so that the far plane is father out along the negative zview axis. Some graphics
libraries provide these two planes as options, and other libraries require them.
When the near and far planes are specified, we obtain a finite orthogonal view

possible placement for the view plane. Our view of the scene will then contain
only those objects within the view volume, with all parts of the scene outside the
view volume eliminated by the clipping algorithms.

Graphics packages provide varying degrees of flexibility in the positioning
of the near and far clipping planes, including options for specifying additional
clipping planes at other positions in the scene. In general, the near and far planes
can be in any relative position to each other to achieve various viewing effects,
including positions that are on opposite sides of the view point. Similarly, the view
plane can sometimes be placed in any position relative to the near and far clipping
planes, although it is often taken to be coincident with the near clipping plane.
However, providing numerous positioning options for the clipping and view
planes usually results in less efficient processing of a three-dimensional scene.

Three-Dimensional Viewing

volume that is a rectangular parallelepiped, as shown in Figure 22 along with one
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F I G U R E 2 2
A finite orthogonal view volume with
the view plane “in front” of the near
plane.
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Normalization Transformation for an Orthogonal Projection
Using an orthogonal transfer of coordinate positions onto the view plane, we
obtain the projected position of any spatial point (x, y, z) as simply (x, y). Thus,
once we have established the limits for the view volume, coordinate descriptions
inside this rectangular parallelepiped are the projection coordinates, and they
can be mapped into a normalized view volume without any further projection
processing. Some graphics packages use a unit cube for this normalized view
volume, with each of the x, y, and z coordinates normalized in the range from 0
to 1. Another normalization-transformation approach is to use a symmetric cube,
with coordinates in the range from −1 to 1.

Because screen coordinates are often specified in a left-handed reference frame
(Figure 23), normalized coordinates also are often specified in a left-handed
system. This allows positive distances in the viewing direction to be directly
interpreted as distances from the screen (the viewing plane). Thus, we can convert
projection coordinates into positions within a left-handed normalized-coordinate
reference frame, and these coordinate positions will then be transferred to left-
handed screen coordinates by the viewport transformation.

To illustrate the normalization transformation, we assume that the
orthogonal-projection view volume is to be mapped into the symmetric

F I G U R E 2 3
A left-handed screen-coordinate
reference frame.

Viewport

Display
Window
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xscreen

zscreen

yscreen
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Normalization transformation from an
orthogonal-projection view volume to
the symmetric normalization cube
within a left-handed reference frame.

normalization cube within a left-handed reference frame. Also, z-coordinate po-
sitions for the near and far planes are denoted as znear and zfar, respectively. Fig-
ure 24 illustrates this normalization transformation. Position (xmin, ymin, znear )

is mapped to the normalized position (−1, −1, −1), and position (xmax, ymax, zfar)

is mapped to (1, 1, 1).
Transforming the rectangular-parallelepiped view volume to a normalized

Mortho,norm =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
xwmax − xwmin

0 0 − xwmax + xwmin

xwmax − xwmin

0
2

ywmax − ywmin
0 − ywmax + ywmin

ywmax − ywmin

0 0
−2

znear − zfar

znear + zfar

znear − zfar

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)
This matrix is multiplied on the right by the composite viewing transformation
R·T (Section 4) to produce the complete transformation from world coordinates
to normalized orthogonal-projection coordinates.

At this stage of the viewing pipeline, all device-independent coordinate trans-
formations are completed and can be concatenated into a single composite matrix.
Thus, the clipping procedures are most efficiently performed following the nor-
malization transformation. After clipping, procedures for visibility testing, sur-
face rendering, and the viewport transformation can be applied to generate the
final screen display of the scene.

7 Oblique Parallel Projections
In general, a parallel-projection view of a scene is obtained by transferring object
descriptions to the view plane along projection paths that can be in any selected

Three-Dimensional Viewing

cube is similar to the methods for converting the clipping window into the nor-
malized symmetric square. The normalization transformation for the orthogonal
view volume is

315



F I G U R E 2 5
An oblique parallel projection of a
cube, shown in a top view (a),
produces a view (b) containing
multiple surfaces of the cube.

View Plane

(a)

View Plane

(b)

direction relative to the view-plane normal vector. When the projection path is
not perpendicular to the view plane, this mapping is called an oblique parallel
projection. Using this projection, we can produce combinations such as a front,
side, and top view of an object, as in Figure 25. Oblique parallel projections
are defined by a vector direction for the projection lines, and this direction can be
specified in various ways.

Oblique Parallel Projections in Drafting and Design
For applications in engineering and architectural design, an oblique parallel pro-
jection is often specified with two angles, α and φ, as shown in Figure 26. A
spatial position (x, y, z), in this illustration, is projected to (xp, yp, zvp) on a view
plane, which is at location zvp along the viewing z axis. Position (x, y, zvp) is the
corresponding orthogonal-projection point. The oblique parallel projection line
from (x, y, z) to (xp, yp, zvp) has an intersection angle α with the line on the projec-
tion plane that joins (xp, yp, zvp) and (x, y, zvp). This view-plane line, with length
L , is at an angle φ with the horizontal direction in the projection plane. Angle α

can be assigned a value between 0 and 90◦, and angle φ can vary from 0 to 360◦.
We can express the projection coordinates in terms of x, y, L , and φ as

xp = x + L cos φ

yp = y + L sin φ
(8)

F I G U R E 2 6
An oblique parallel projection of
coordinate position ( x , y , z) to
position ( x p , y p , zvp ) on a projection
plane at position zvp along the zview
axis.
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L1
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f F I G U R E 2 7
An oblique parallel projection (a) of a
cube (top view) onto a view plane that
is coincident with the front face of the
cube produces the combination front,
side, and top view shown in (b).

Length L depends on the angle α and the perpendicular distance of the point
(x, y, z) from the view plane:

tan α = zvp − z
L

(9)

Thus

L = zvp − z
tan α

= L1(zvp − z) (10)

where L1 = cot α, which is also the value of L when zvp − z = 1. We can then write
the oblique parallel projection equations 8 as

xp = x + L1(zvp − z) cos φ

yp = y + L1(zvp − z) sin φ
(11)

An orthogonal projection is obtained when L1 = 0 (which occurs at the projection
angle α = 90◦).

Cavalier and Cabinet Oblique Parallel Projections
Typical choices for angleφ are 30◦ and 45◦, which display a combination view of the
front, side, and top (or front, side, and bottom) of an object. Two commonly used
values for α are those for which tan α = 1 and tan α = 2. For the first case, α = 45◦

and the views obtained are called cavalier projections. All lines perpendicular to
the projection plane are projected with no change in length. Examples of cavalier
projections for a cube are given in Figure 28.

When the projection angle α is chosen so that tan α = 2, the resulting view
is called a cabinet projection. For this angle (≈ 63.4◦), lines perpendicular to the
viewing surface are projected at half their length. Cabinet projections appear
more realistic than cavalier projections because of this reduction in the length of
perpendiculars. Figure 29 shows examples of cabinet projections for a cube.

Three-Dimensional Viewing

Equations 11 represent a z-axis shearing transformation. In fact, the effect of
an oblique parallel projection is to shear planes of constant z and project them
onto the view plane. The (x, y) positions on each plane of constant z are shifted
by an amount proportional to the distance of the plane from the view plane, so
that angles, distances, and parallel lines in the plane are projected accurately.
This effect is shown in Figure 27, where the view plane is positioned at the front
face of a cube. The back plane of the cube is sheared and overlapped with the
front plane in the projection to the viewing surface. A side edge of the  cube con-
necting the front and back planes is projected into a line of length L1 that makes
an angle  with a horizontal line in the projection plane.φ
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F I G U R E 2 8
Cavalier projections of a cube onto a
view plane for two values of angle φ.
The depth of the cube is projected with
a length equal to that of the width and
height. (a) (b)

f � 45� f � 30�

(a) (b)

f � 45� f � 30�

F I G U R E 2 9
Cabinet projections of a cube onto a
view plane for two values of angle φ.
The depth is projected with a length
that is one half that of the width and
height of the cube. (a) (b)

f � 45� f � 30�

Oblique Parallel-Projection Vector
In graphics programming libraries that support oblique parallel projections, the
direction of projection to the view plane is specified with a parallel-projection vec-
tor, Vp. This direction vector can be designated with a reference position relative to
the view point, as we did with the view-plane normal vector, or with any other two
points. Some packages use a reference point relative to the center of the clipping
window to define the direction for a parallel projection. If the projection vector is
specified in world coordinates, it must first be transformed to viewing coordinates
using the rotation matrix discussed in Section 4. (The projection vector is unaf-
fected by the translation, because it is simply a direction with no fixed position.)

Once the projection vector Vp is established in viewing coordinates, all points
in the scene are transferred to the view plane along lines that are parallel to this
vector. Figure 30 illustrates an oblique parallel projection of a spatial point to
the view plane. We can denote the components of the projection vector relative
to the viewing-coordinate frame as Vp = (Vpx, Vpy, Vpz), where Vpy/Vpx = tan φ.
Then, comparing similar triangles in Figure 30, we have

xp − x
zvp − z

= Vpx

Vpz

yp − y
zvp − z

= Vpy

Vpz

And we can write the equivalent of the oblique parallel-projection equations 11
in terms of the projection vector as

xp = x + (zvp − z)
Vpx

Vpz

yp = y + (zvp − z)
Vpy

Vpz

(12)

Three-Dimensional Viewing
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F I G U R E 3 0
Oblique parallel projection of position
( x , y , z) to a view plane along a
projection line defined with vector Vp .

The oblique parallel-projection coordinates in 12 reduce to the orthogonal-
projection coordinates 6 when Vpx = Vpy = 0.

Clipping Window and Oblique Parallel-Projection View Volume
A view volume for an oblique parallel projection is set up using the same proce-
dures as in an orthogonal projection. We select a clipping window on the view
plane with coordinate positions (xwmin, ywmin) and (xwmax, ywmax), for the lower-
left and upper-right corners of the clipping rectangle. The top, bottom, and sides
of the view volume are then defined by the direction of projection and the edges
of the clipping window. In addition, we can limit the extent of the view volume
by adding a near plane and a far plane, as in Figure 31. The finite oblique
parallel-projection view volume is an oblique parallelepiped.

Oblique parallel projections may be affected by changes in the position of the
view plane, depending on how the projection direction is to be specified. In some
systems, the oblique parallel-projection direction is parallel to the line connecting
a reference point to the center of the clipping window. Therefore, moving the
position of the view plane or clipping window without adjusting the reference
point changes the shape of the view volume.

Oblique Parallel-Projection Transformation Matrix
Using the projection-vector parameters from the equations in 12, we can
express the elements of the transformation matrix for an oblique parallel

Far Plane

Near Plane

View
Volume

Vp

View Plane
Clipping Window

F I G U R E 3 1
Top view of a finite view volume for
an oblique parallel projection in the
direction of vector Vp .
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projection as

Moblique =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 − Vpx

Vpz
zvp

Vpx

Vpz

0 1 − Vpy

Vpz
zvp

Vpy

Vpz

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)

This matrix shifts the values of the x and y coordinates by an amount proportional
to the distance from the view plane, which is at position zvp on the zview axis. The z
values of spatial positions are unchanged. If Vpx = Vpy = 0, we have an orthogonal
projection and matrix 13 is reduced to the identity matrix.

For a general oblique parallel projection, matrix 13 represents a z-axis
shearing transformation. All coordinate positions within the oblique view vol-
ume are sheared by an amount proportional to their distance from the view
plane. The effect is to shear the oblique view volume into a rectangular paral-
lelepiped, as illustrated in Figure 32. Thus, positions inside the view volume are
sheared into orthogonal-projection coordinates by the oblique parallel-projection
transformation.

Normalization Transformation for an Oblique Parallel Projection
Because the oblique parallel-projection equations convert object descriptions to
orthogonal-coordinate positions, we can apply the normalization procedures fol-
lowing this transformation. The oblique view volume has been converted to a
rectangular parallelepiped, so we use the same procedures as in Section 6.

Following the normalization example in Section 6, we again map to the
symmetric normalized cube within a left-handed coordinate frame. Thus, the
complete transformation, from viewing coordinates to normalized coordinates,
for an oblique parallel projection is

Moblique,norm = Mortho,norm · Moblique (14)

Clipping Window Clipping Window
View Plane

Near Plane

Far Plane

Shear Transformation

(a)
Oblique-Projection

View Volume

(b)
Transformed

Oblique
View Volume

Vp

F I G U R E 3 2
Top view of an oblique parallel-projection transformation. The oblique view volume is converted into a rectangular
parallelepiped, and objects in the view volume, such as the green block, are mapped to orthogonal-projection
coordinates.
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Transformation Moblique is matrix 13, which converts the scene description
to orthogonal-projection coordinates; and transformation Mortho,norm is matrix
7, which maps the contents of the orthogonal view volume to the symmet-
ric normalization cube.

To complete the viewing transformations (with the exception of the map-
ping to viewport screen coordinates), we concatenate matrix 14 to the left
of the transformation MWC,VC from Section 4. Clipping routines can then be
applied to the normalized view volume, followed by the determination of visible
objects, the surface-rendering procedures, and the viewport transformation.

8 Perspective Projections
Although a parallel-projection view of a scene is easy to generate and preserves
relative proportions of objects, it does not provide a realistic representation. To
simulate a camera picture, we need to consider that reflected light rays from
the objects in a scene follow converging paths to the camera film plane. We can
approximate this geometric-optics effect by projecting objects to the view plane
along converging paths to a position called the projection reference point (or
center of projection). Objects are then displayed with foreshortening effects, and
projections of distant objects are smaller than the projections of objects of the same
size that are closer to the view plane (Figure 33).

Perspective-Projection Transformation Coordinates
We can sometimes select the projection reference point as another viewing pa-
rameter in a graphics package, but some systems place this convergence point

(xpr p, ypr p, zpr p). The projection line intersects the view plane at the coordinate
position (xp, yp, zvp), where zvp is some selected position for the view plane on
the zview axis. We can write equations describing coordinate positions along this
perspective-projection line in parametric form as

x′ = x − (x − xpr p)u

y′ = y − (y − ypr p)u 0 ≤ u ≤ 1 (15)

z′ = z − (z − zpr p)u

Coordinate position (x′, y′, z′) represents any point along the projection line. When
u = 0, we are at position P = (x, y, z). At the other end of the line, u = 1 and

Projection
Reference

Point

View
Plane

F I G U R E 3 3
A perspective projection of two
equal-length line segments at different
distances from the view plane.
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at a fixed position, such as at the view point. Figure 34 shows the projection 
path of a spatial position (x, y, z) to a general projection reference point at
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F I G U R E 3 4
A perspective projection of a point P
with coordinates ( x , y , z) to a
selected projection reference point.
The intersection position on the view
plane is ( x p , y p , zv p ) .

P � (x, y, z)

xview

yview

zview

(xprp, yprp, zprp)(xp, yp, zvp)

View Plane

we have the projection reference-point coordinates (xpr p, ypr p, zpr p). On the view
plane, z′ = zvp and we can solve the z′ equation for parameter u at this position
along the projection line:

u = zvp − z
zpr p − z

(16)

Substituting this value of u into the equations for x′ and y′, we obtain the general
perspective-transformation equations

xp = x
(

zpr p − zvp

zpr p − z

)

+ xpr p

(
zvp − z
zpr p − z

)

yp = y
(

zpr p − zvp

zpr p − z

)

+ ypr p

(
zvp − z
zpr p − z

) (17)

Calculations for a perspective mapping are more complex than the
parallel-projection equations, because the denominators in the perspective
calculations 17 are functions of the z coordinate of the spatial position. There-
fore, we now need to formulate the perspective-transformation procedures a little
differently so that this mapping can be concatenated with the other viewing trans-
formations. But first we take a look at some of the properties of Equations 17.

Perspective-Projection Equations: Special Cases
Various restrictions are often placed on the parameters for a perspective pro-
jection. Depending on a particular graphics package, positioning for either the
projection reference point or the view plane may not be completely optional.

To simplify the perspective calculations, the projection reference point could
be limited to positions along the zview axis, then

1. xpr p = ypr p = 0:

xp = x
(

zpr p − zvp

zpr p − z

)

, yp = y
(

zpr p − zvp

zpr p − z

)

(18)

Sometimes the projection reference point is fixed at the coordinate origin, and

2. (xpr p, ypr p, zpr p) = (0, 0, 0) :

xp = x
(

zvp

z

)

, yp = y
(

zvp

z

)

(19)

If the view plane is the uv plane and there are no restrictions on the placement of
the projection reference point, then we have

Three-Dimensional Viewing
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3. zvp = 0:

xp = x
(

zpr p

zpr p − z

)

− xpr p

(
z

zpr p − z

)

yp = y
(

zpr p

zpr p − z

)

− ypr p

(
z

zpr p − z

) (20)

With the uv plane as the view plane and the projection reference point on the zview
axis, the perspective equations are

4. xpr p = ypr p = zvp = 0:

xp = x
(

zpr p

zpr p − z

)

, yp = y
(

zpr p

zpr p − z

)

(21)

Of course, we cannot have the projection reference point on the view plane.
In that case, the entire scene would project to a single point. The view plane
is usually placed between the projection reference point and the scene, but, in
general, the view plane could be placed anywhere except at the projection point.
If the projection reference point is between the view plane and the scene, objects
are inverted on the view plane (Figure 35). With the scene between the view
plane and the projection point, objects are simply enlarged as they are projected
away from the viewing position onto the view plane.

Perspective effects also depend on the distance between the projection ref-
erence point and the view plane, as illustrated in Figure 36. If the projection

View Plane

(xprp, yprp, zprp)

F I G U R E 3 5
A perspective-projection view of an
object is upside down when the
projection reference point is between
the object and the view plane.
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F I G U R E 3 6
Changing perspective effects by
moving the projection reference
point away from the view plane.

Three-Dimensional Viewing

323



reference point is close to the view plane, perspective effects are emphasized; that
is, closer objects will appear much larger than more distant objects of the same size.
Similarly, as the projection reference point moves farther from the view plane, the
difference in the size of near and far objects decreases. When the projection refer-
ence point is very far from the view plane, a perspective projection approaches a
parallel projection.

Vanishing Points for Perspective Projections
When a scene is projected onto a view plane using a perspective mapping, lines
that are parallel to the view plane are projected as parallel lines. But any par-
allel lines in the scene that are not parallel to the view plane are projected into
converging lines. The point at which a set of projected parallel lines appears to
converge is called a vanishing point. Each set of projected parallel lines has a
separate vanishing point.

For a set of lines that are parallel to one of the principal axes of an object,
the vanishing point is referred to as a principal vanishing point. We control the
number of principal vanishing points (one, two, or three) with the orientation
of the projection plane, and perspective projections are accordingly classified as
one-point, two-point, or three-point projections. The number of principal vanish-
ing points in a projection is equal to the number of principal axes that intersect
the view plane. Figure 37 illustrates the appearance of one-point and two-
point perspective projections for a cube. In the projected view (b), the view plane
is aligned parallel to the xy object plane so that only the object z axis is inter-
sected. This orientation produces a one-point perspective projection with a z-axis

F I G U R E 3 7
Principal vanishing points for
perspective-projection views of a cube.
When the cube in (a) is projected to a
view plane that intersects only the
z axis, a single vanishing point in the z
direction (b) is generated. When the
cube is projected to a view plane that
intersects both the z and x axes, two
vanishing points (c) are produced.
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vanishing point. For the view shown in (c), the projection plane intersects both
the x and z axes but not the y axis. The resulting two-point perspective projec-
tion contains both x-axis and z-axis vanishing points. There is not much increase
in the realism of a three-point perspective projection compared to a two-point
projection, so three-point projections are not used as often in architectural and
engineering drawings.

Perspective-Projection View Volume
We again create a view volume by specifying the position of a rectangular clipping
window on the view plane. But now the bounding planes for the view volume are
not parallel, because the projection lines are not parallel. The bottom, top, and sides
of the view volume are planes through the window edges that all intersect at the
projection reference point. This forms a view volume that is an infinite rectangular
pyramid with its apex at the center of projection (Figure 38). All objects outside
this pyramid are eliminated by the clipping routines. A perspective-projection
view volume is often referred to as a pyramid of vision because it approximates
the cone of vision of our eyes or a camera. The displayed view of a scene includes
only those objects within the pyramid, just as we cannot see objects beyond our
peripheral vision, which are outside the cone of vision.

By adding near and far clipping planes that are perpendicular to the zview
axis (and parallel to the view plane), we chop off parts of the infinite, perspective-
projection view volume to form a truncated pyramid, or frustum, view volume.
Figure 39 illustrates the shape of a finite, perspective-projection view volume
with a view plane that is placed between the near clipping plane and the projection
reference point. Sometimes the near and far planes are required in a graphics
package, and sometimes they are optional.

Usually, both the near and far clipping planes are on the same side of the
projection reference point, with the far plane farther from the projection point
than the near plane along the viewing direction. And, as in a parallel projection,
we can use the near and far planes simply to enclose the scene to be viewed. But
with a perspective projection, we could also use the near clipping plane to take out
large objects close to the view plane that could project into unrecognizable shapes
within the clipping window. Similarly, the far clipping plane could be used to cut
out objects far from the projection reference point that might project to small blots
on the view plane. Some systems restrict the placement of the view plane relative
to the near and far planes, and other systems allow it to be placed anywhere except
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F I G U R E 3 8
An infinite, pyramid view volume
for a perspective projection.
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F I G U R E 3 9
A perspective-projection frustum view
volume with the view plane “in front”
of the near clipping plane.
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at the position of the projection reference point. If the view plane is “behind” the
projection reference point, objects are inverted, as shown in Figure 35.

Perspective-Projection Transformation Matrix
Unlike a parallel projection, we cannot directly use the coefficients of the x and y
coordinates in equations 17 to form the perspective-projection matrix elements,
because the denominators of the coefficients are functions of the z coordinate.
But we can use a three-dimensional, homogeneous-coordinate representation to
express the perspective-projection equations in the form

xp = xh

h
, yp = yh

h
(22)

where the homogeneous parameter has the value

h = zpr p − z (23)

The numerators in 22 are the same as in equations 17:

xh = x(zpr p − zvp) + xpr p(zvp − z)

yh = y(zpr p − zvp) + ypr p(zvp − z)
(24)

Thus, we can set up a transformation matrix to convert a spatial position to
homogeneous coordinates so that the matrix contains only the perspective param-
eters and not coordinate values. The perspective-projection transformation of a
viewing-coordinate position is then accomplished in two steps. First, we calculate
the homogeneous coordinates using the perspective-transformation matrix:

Ph = Mpers · P (25)

where Ph is the column-matrix representation of the homogeneous point
(xh , yh , zh , h) and P is the column-matrix representation of the coordinate posi-
tion (x, y, z, 1). (Actually, the perspective matrix would be concatenated with the
other viewing-transformation matrices, and then the composite matrix would be
applied to the world-coordinate description of a scene to produce homogeneous
coordinates.) Second, after other processes have been applied, such as the nor-
malization transformation and clipping routines, homogeneous coordinates are
divided by parameter h to obtain the true transformation-coordinate positions.
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Setting up matrix elements for obtaining the homogeneous-coordinate xh and
yh values in 24 is straightforward, but we must also structure the matrix to
preserve depth (z-value) information. Otherwise, the z coordinates are distorted
by the homogeneous-division parameter h. We can do this by setting up the matrix
elements for the z transformation so as to normalize the perspective-projection zp

coordinates. There are various ways that we could choose the matrix elements to
produce the homogeneous coordinates 24 and the normalized z p value for a
spatial position (x, y, z). The following matrix gives one possible way to formulate
a perspective-projection matrix.

Mpers =

⎡

⎢
⎢
⎢
⎣

zpr p − zvp 0 −xpr p xpr pzpr p

0 zpr p − zvp −ypr p ypr pzpr p

0 0 sz tz

0 0 −1 zpr p

⎤

⎥
⎥
⎥
⎦

(26)

Parameters sz and tz are the scaling and translation factors for normalizing the
projected values of z-coordinates. Specific values for sz and tz depend on the
normalization range we select.

Matrix 26 converts the description of a scene into homogeneous parallel-
projection coordinates. However, the frustum view volume can have any ori-
entation, so that these transformed coordinates could correspond to an oblique
parallel projection. This occurs if the frustum view volume is not symmetric. If the
frustum view volume for the perspective projection is symmetric, the resulting
parallel-projection coordinates correspond to an orthogonal projection. We next
consider these two possibilities.

Symmetric Perspective-Projection Frustum
The line from the projection reference point through the center of the clipping
window and on through the view volume is the centerline for a perspective-
projection frustum. If this centerline is perpendicular to the view plane, we have
a symmetric frustum (with respect to its centerline) as in Figure 40.

Because the frustum centerline intersects the view plane at the coordinate
location (xpr p, ypr p, zvp), we can express the corner positions for the clipping
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Near Clipping Plane

View Plane
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Window

(xprp, yprp, zvp)

(xprp, yprp, zprp)

View Volume

F I G U R E 4 0
A symmetric perspective-projection
frustum view volume, with the view plane
between the projection reference point
and the near clipping plane. This frustum is
symmetric about its centerline when
viewed from above, below, or either side.
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window in terms of the window dimensions:

xwmin = xpr p − width
2

, xwmax = xpr p + width
2

ywmin = ypr p − height
2

, ywmax = ypr p + height
2

Therefore, we could specify a symmetric perspective-projection view of a scene
using the width and height of the clipping window instead of the window coor-
dinates. This uniquely establishes the position of the clipping window, because it
is symmetric about the x and y coordinates of the projection reference point.

Another way to specify a symmetric perspective projection is to use parame-
ters that approximate the properties of a camera lens. A photograph is produced
with a symmetric perspective projection of a scene onto the film plane. Reflected
light rays from the objects in a scene are collected on the film plane from within
the “cone of vision” of the camera. This cone of vision can be referenced with a
field-of-view angle, which is a measure of the size of the camera lens. A large
field-of-view angle, for example, corresponds to a wide-angle lens. In computer
graphics, the cone of vision is approximated with a symmetric frustum, and we
can use a field-of-view angle to specify an angular size for the frustum. Typically,
the field-of-view angle is the angle between the top clipping plane and the bottom
clipping plane of the frustum, as shown in Figure 41.

For a given projection reference point and view-plane position, the field-of-
view angle determines the height of the clipping window (Figure 42), but not
the width. We need an additional parameter to define completely the clipping-
window dimensions, and this second parameter could be either the window width
or the aspect ratio (width/height) of the clipping window. From the right triangles
in the diagram of Figure 42, we see that

tan
(

θ

2

)

= height/2
zpr p − zvp

(27)

so that the clipping-window height can be calculated as

height = 2(zpr p − zvp) tan
(

θ

2

)

(28)

F I G U R E 4 1
Field-of-view angle θ for a symmetric
perspective-projection view volume,
with the clipping window between the
near clipping plane and the projection
reference point.
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F I G U R E 4 2
Relationship between the field-of-view
angle θ , the height of the clipping
window, and the distance between the
projection reference point and the
view plane.

Therefore, the diagonal elements with the value zpr p − zvp in matrix 26 could
be replaced by either of the following two expressions.

zpr p − zvp = height
2

cot
(

θ

2

)

= width · cot(θ/2)

2 · aspect
(29)

In some graphics libraries, fixed positions are used for the view plane and
the projection reference point, so that a symmetric perspective projection is
completely specified by the field-of-view angle, the aspect ratio of the clipping
window, and the distances from the viewing position to the near and far clip-
ping planes. The same aspect ratio is usually applied to the specification of the
viewport.

If the field-of-view angle is decreased in a particular application, the foreshort-
ening effects of a perspective projection are also decreased. This is comparable to
moving the projection reference point farther from the view plane. Also, decreas-
ing the field-of-view angle decreases the height of the clipping window, and this
provides a method for zooming in on small regions of a scene. Similarly, a large
field-of-view angle results in a large clipping-window height (a zoom out), and it
increases perspective effects, which is what we achieve when we set the projec-
tion reference point close to the view plane. Figure 43 illustrates the effects of
various field-of-view angles for a fixed-width clipping window.

When the perspective-projection view volume is a symmetric frustum, the
perspective transformation maps locations inside the frustum to orthogonal-
projection coordinates within a rectangular parallelepiped. The centerline of the
parallelepiped is the frustum centerline, because this line is already perpendicular
to the view plane (Figure 44). This is a consequence of the fact that all posi-
tions along a projection line within the frustum map to the same point (xp, yp) on
the view plane. Thus, each projection line is converted by the perspective trans-
formation to a line that is perpendicular to the view plane and, thus, parallel to
the frustum centerline. With the symmetric frustum converted to an orthogonal-
projection view volume, we can next apply the normalization transformation.

Oblique Perspective-Projection Frustum
If the centerline of a perspective-projection view volume is not perpendicular to
the view plane, we have an oblique frustum. Figure 45 illustrates the general
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F I G U R E 4 3
Increasing the size of the field-of-view angle
increases the height of the clipping window
and increases the perspective-projection
foreshortening.
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F I G U R E 4 4
A symmetric frustum view volume is
mapped to an orthogonal
parallelepiped by a perspective-
projection transformation.
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F I G U R E 4 5
An oblique frustum, as viewed from at
least one side or a top view, with the
view plane positioned between the
projection reference point and the near
clipping plane.

appearance of an oblique perspective-projection view volume. In this case, we can
first transform the view volume to a symmetric frustum and then to a normalized
view volume.

An oblique perspective-projection view volume can be converted to a sym-

z-axis reference position. In this case, the reference position is zpr p, which is the
z coordinate of the projection reference point. And we need to shift by an amount
that will move the center of the clipping window to position (xpr p, ypr p) on the
view plane. Because the frustum centerline passes through the center of the clip-
ping window, this shift adjusts the centerline so that it is perpendicular to the
view plane, as in Figure 40.

The computations for the shearing transformation, as well as for the per-
spective and normalization transformations, are greatly reduced if we take the
projection reference point to be the viewing-coordinate origin. We could do this
with no loss in generality by translating all coordinate positions in a scene so that
our selected projection reference point is shifted to the coordinate origin. Or we
could have initially set up the viewing-coordinate reference frame so that its ori-
gin is at the projection point that we want for a scene. And, in fact, some graphics
libraries do fix the projection reference point at the coordinate origin.

Taking the projection reference point as (xpr p, ypr p, zpr p) = (0, 0, 0), we obtain
the elements of the required shearing matrix as

Mz shear =

⎡

⎢
⎢
⎣

1 0 shzx 0
0 1 shzy 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(30)

We can also simplify the elements of the perspective-projection matrix a bit more
if we place the view plane at the position of the near clipping plane. And, because
we now want to move the center of the clipping window to coordinates (0, 0)
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metric frustum by applying a z-axis shearing-transformation matrix. This trans-
formation shifts all positions on any plane that is perpendicular to the z axis by
an amount that is proportional to the distance of the plane from a specified
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on the view plane, we need to choose values for the shearing parameters such
that

⎡

⎢
⎢
⎣

0
0

znear

1

⎤

⎥
⎥
⎦

= Mz shear ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

xwmin + xwmax

2
ywmin + ywmax

2
znear

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(31)

Therefore, the parameters for this shearing transformation are

shzx = − xwmin + xwmax

2 znear

shzy = − ywmin + ywmax

2 znear

(32)

Similarly, with the projection reference point at the viewing-coordinate origin
and with the near clipping plane as the view plane, the perspective-projection
matrix 26 is simplified to

Mpers =

⎡

⎢
⎢
⎣

−znear 0 0 0
0 −znear 0 0
0 0 sz tz

0 0 −1 0

⎤

⎥
⎥
⎦

(33)

Expressions for the z-coordinate scaling and translation parameters will be deter-
mined by the normalization requirements.

Concatenating the simplified perspective-projection matrix 33 with the
shear matrix 30, we obtain the following oblique perspective-projection matrix
for converting coordinate positions in a scene to homogeneous orthogonal-
projection coordinates. The projection reference point for this transformation is
the viewing-coordinate origin, and the near clipping plane is the view plane.

Mobliquepers = Mpers · Mz shear

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−znear 0
xwmin + xwmax

2
0

0 −znear
ywmin + ywmax

2
0

0 0 sz tz

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)

Although we no longer have options for the placement of the projection reference
point and the view plane, this matrix provides an efficient method for generating a
perspective-projection view of a scene without sacrificing a great deal of flexibility.

If we choose the clipping-window coordinates so that xwmax = −xwmin and
ywmax = −ywmin, the frustum view volume is symmetric and matrix 34 reduces
to matrix 33. This is because the projection reference point is now at the origin
of the viewing-coordinate frame. We could also use Equations 29, with z pr p = 0
and zvp = znear, to express the first two diagonal elements of this matrix in terms
of the field-of-view angle and the clipping-window dimensions.

Normalized Perspective-Projection Transformation Coordinates
Matrix 34 transforms object positions in viewing coordinates to perspective-
projection homogeneous coordinates. When we divide the homogeneous
coordinates by the homogeneous parameter h, we obtain the actual projection
coordinates, which are orthogonal-projection coordinates. Thus, this perspective
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F I G U R E 4 6
Normalization transformation from a
transformed perspective-projection
view volume (rectangular
parallelepiped) to the symmetric
normalization cube within a
left-handed reference frame, with the
near clipping plane as the view plane
and the projection reference point at
the viewing-coordinate origin.

projection transforms all points within the frustum view volume to positions
within a rectangular parallelepiped view volume. The final step in the perspec-
tive transformation process is to map this parallelepiped to a normalized view
volume.

We follow the same normalization procedure that we used for a parallel
projection. The transformed frustum view volume, which is a rectangular par-
allelepiped, is mapped to a symmetric normalized cube within a left-handed ref-
erence frame (Figure 46). We have already included the normalization param-
eters for z coordinates in the perspective-projection matrix 34, but we still need
to determine the values for these parameters when we transform to the symmetric
normalization cube. Also, we need to determine the normalization transforma-
tion parameters for x and y coordinates. Because the centerline of the rectangular
parallelepiped view volume is now the zview axis, no translation is needed in
the x and y normalization transformations: We require only the x and y scaling
parameters relative to the coordinate origin. The scaling matrix for accomplishing
the xy normalization is

Mxy scale =

⎡

⎢
⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(35)

Concatenating the xy-scaling matrix with matrix 34 produces the following
normalization matrix for a perspective-projection transformation.

Mnormpers = Mxy scale · Mobliquepers

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−znearsx 0 sx
xwmin + xwmax

2
0

0 −znearsy sy
ywmin + ywmax

2
0

0 0 sz tz

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36)

From this transformation, we obtain the homogeneous coordinates:
⎡

⎢
⎢
⎣

xh

yh

zh

h

⎤

⎥
⎥
⎦

= Mnormpers ·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(37)
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And the projection coordinates are

xp = xh

h
= −znearsxx + sx(xwmin + xwmax)/2

−z

yp = yh

h
= −znearsy y + sy(ywmin + ywmax)/2

−z
(38)

zp = zh

h
= szz + tz

−z

To normalize this perspective transformation, we want the projection coordi-
nates to be (xp, yp, zp) = (−1, −1, −1) when the input coordinates are (x, y, z) =
(xwmin, ywmin, znear), and we want the projection coordinates to be (xp, yp, zp) =
(1, 1, 1) when the input coordinates are (x, y, z) = (xwmax, ywmax, zfar). Therefore,
when we solve equations 38 for the normalization parameters using these
conditions, we obtain

sx = 2
xwmax − xwmin

, sy = 2
ywmax − ywmin

sz = znear + zfar

znear − zfar
, tz = 2 znear zfar

znear − zfar

(39)

And the elements of the normalized transformation matrix for a general
perspective-projection are

Mnormpers =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2znear

xwmax − xwmin
0

xwmax + xwmin

xwmax − xwmin
0

0
−2znear

ywmax − ywmin

ywmax + ywmin

ywmax − ywmin
0

0 0
znear + zfar

znear − zfar
− 2znearzfar

znear − zfar

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(40)

If the perspective-projection view volume was originally specified as a symmetric
frustum, we can express the elements of the normalized perspective transforma-
tion in terms of the field-of-view angle and the dimensions of the clipping window.
Thus, using Equations 29, with the projection reference point at the origin and
the view plane at the position of the near clipping plane, we have

Mnormsymmpers =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cot
(

θ
2

)

aspect
0 0 0

0 cot
(

θ

2

)

0 0

0 0
znear + zfar

znear − zfar
− 2znear zfar

znear − zfar

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(41)

The complete transformation from world coordinates to normalized
perspective-projection coordinates is the composite matrix formed by concate-
nating this perspective matrix on the left of the viewing-transformation product
R · T. Next, the clipping routines can be applied to the normalized view vol-
ume. The remaining tasks are visibility determination, surface rendering, and the
transformation to the viewport.
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9 The Viewport Transformation and
Three-Dimensional Screen Coordinates

Once we have completed the transformation to normalized projection coordi-
nates, clipping can be applied efficiently to the symmetric cube (or the unit cube).
Following the clipping procedures, the contents of the normalized view volume
can be transferred to screen coordinates. For the x and y positions in the normal-
ized clipping window, this procedure is the same as the two-dimensional view-

The x and y transformation equations from the normalized clipping window
to positions within a rectangular viewport are given in matrix 8-10. We can adapt
that matrix to three-dimensional applications by including parameters for the
transformation of z values to screen coordinates. Often the normalized z values
within the symmetric cube are renormalized on the range from 0 to 1.0. This
allows the video screen to be referenced as z = 0, and depth processing can be
conveniently carried out over the unit interval from 0 to 1. If we include this z
renormalization, the transformation from the normalized view volume to three-
dimensional screen coordinates is

Mnormviewvol,3D screen =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xvmax − xvmin

2
0 0

xvmax + xvmin

2

0
yvmax − yvmin

2
0

yvmax + yvmin

2

0 0
1
2

1
2

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(42)
In normalized coordinates, the znorm = −1 face of the symmetric cube corresponds
to the clipping-window area. And this face of the normalized cube is mapped
to the rectangular viewport, which is now referenced at zscreen = 0. Thus, the
lower-left corner of the viewport screen area is at position (xvmin, yvmin, 0) and
the upper-right corner is at position (xvmax, yvmax, 0).

Each xy position on the viewport corresponds to a position in the refresh
buffer, which contains the color information for that point on the screen. And the
depth value for each screen point is stored in another buffer area, called the depth
buffer. In later chapters, we explore the algorithms for determining the visible
surface positions and their colors.

We position the rectangular viewport on the screen just as we did for two-
dimensional applications. The lower-left corner of the viewport is usually placed
at a coordinate position specified relative to the lower-left corner of the display
window. And object proportions are maintained if we set the aspect ratio of this
viewport area to be the same as the clipping window.

10 OpenGL Three-Dimensional
Viewing Functions

The OpenGL Utility library (GLU) includes a function for specifying the three-
dimensional viewing parameters and another function for setting up a symmetric
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port transformation. But positions throughout the three-dimensional view vol-
ume also have a depth (z coordinate), and we need to retain this depth informa-
tion for the visibility testing and surface-rendering algorithms. So we can now
think of the viewport transformation as a mapping to three-dimensional screen
coordinates.
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perspective-projection transformation. Other functions, such as those for an or-
thogonal projection, an oblique perspective projection, and the viewport transfor-
mation, are contained in the basic OpenGL library. In addition, GLUT functions
are available for defining and manipulating display windows.

OpenGL Viewing-Transformation Function
When we designate the viewing parameters in OpenGL, a matrix is formed and
concatenated with the current modelview matrix. Consequently, this viewing
matrix is combined with any geometric transformations we may have also spec-
ified. This composite matrix is then applied to transform object descriptions in
world coordinates to viewing coordinates. We set the modelview mode with the
statement:

glMatrixMode (GL_MODELVIEW);

Viewing parameters are specified with the following GLU function, which
is in the OpenGL Utility library because it invokes the translation and rotation
routines in the basic OpenGL library.

gluLookAt (x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

Values for all parameters in this function are to be assigned double-precision,
floating-point values. This function designates the origin of the viewing reference
frame as the world-coordinate position P0 = (x0, y0, z0), the reference posi-
tion as Pref = (xref, yref, zref), and the view-up vector as V = (Vx, Vy, Vz).
The positive zview axis for the viewing frame is in the direction N = P0 − Pref,
and the unit axis vectors for the viewing reference frame are calculated with
Equations 1.

Because the viewing direction is along the −zview axis, the reference position
Pref is also referred to as the “look-at point.” This is usually taken to be some
position in the center of the scene that we can use as a reference for specifying
the projection parameters. And we can think of the reference position as the point
at which we want to aim a camera that is located at the viewing origin. The up
orientation for the camera is designated with vector V, which is adjusted to a
direction perpendicular to N.

Viewing parameters specified with the gluLookAt function are used to form
the viewing-transformation matrix 4 that we derived in Section 4. This
matrix is formed as a combination of a translation, which shifts the viewing origin
to the world origin, and a rotation, which aligns the viewing axes with the world
axes.

If we do not invoke the gluLookAt function, the default OpenGL viewing
parameters are

P0 = (0, 0, 0)

Pref = (0, 0, −1)

V = (0, 1, 0)

For these default values, the viewing reference frame is the same as the world
frame, with the viewing direction along the negative zworld axis. In many appli-
cations, we can conveniently use the default values for the viewing parameters.

OpenGL Orthogonal-Projection Function
Projection matrices are stored in the OpenGL projection mode. So, to set up
a projection-transformation matrix, we must first invoke that mode with the
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statement

glMatrixMode (GL_PROJECTION);

Then, when we issue any transformation command, the resulting matrix will be
concatenated with the current projection matrix.

Orthogonal-projection parameters are chosen with the function

glOrtho (xwmin, xwmax, ywmin, ywmax, dnear, dfar);

All parameter values in this function are to be assigned double-precision, floating-
point numbers. We use glOrtho to select the clipping-window coordinates and
the distances to the near and far clipping planes from the viewing origin. There
is no option in OpenGL for the placement of the view plane. The near clipping
plane is always also the view plane, and therefore the clipping window is always
on the near plane of the view volume.

Function glOrtho generates a parallel projection that is perpendicular to
the view plane (the near clipping plane). Thus, this function creates a finite
orthogonal-projection view volume for the specified clipping planes and clip-
ping window. In OpenGL, the near and far clipping planes are not optional; they
must always be specified for any projection transformation.

Parameters dnear and dfar denote distances in the negative zview direction
from the viewing-coordinate origin. For example, if dfar = 55.0, then the far
clipping plane is at the coordinate position zfar = −55.0. A negative value for either
parameter denotes a distance “behind” the viewing origin, along the positive zview
axis. We can assign any values (positive, negative, or zero) to these parameters,
so long as dnear< dfar.

The resulting view volume for this projection transformation is a rectangular
parallelepiped. Coordinate positions within this view volume are transformed to
locations within the symmetric normalized cube in a left-handed reference frame
using matrix 7, with z near = − dnear and zfar = − dfar.

Default parameter values for the OpenGL orthogonal-projection function are
±1, which produce a view volume that is a symmetric normalized cube in the
right-handed viewing-coordinate system. This default is equivalent to issuing
the statement

glOrtho (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

The default clipping window is thus a symmetric normalized square, and the
default view volume is a symmetric normalized cube with znear = 1.0 (behind
the viewing position) and zfar = −1.0. Figure 47 shows the appearance and
position of the default orthogonal-projection view volume.

For two-dimensional applications, we used the gluOrtho2D function to set
up the clipping window. We could also have used theglOrtho function to specify
the clipping window, as long as parametersdnearanddfarwere assigned values
that were on opposite sides of the coordinate origin. In fact, a call to gluOrtho2D
is equivalent to a call to glOrtho with dnear = −1.0 and dfar = 1.0.

There is no OpenGL function for generating an oblique projection. To produce
an oblique-projection view of a scene, we could set up our own projection matrix
as in Equation 14. Then we need to make this the current OpenGL projection
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matrix. Another way to generate an oblique-projection view is to rotate the scene
into an appropriate position so that an orthogonal projection in the zview direc-
tion yields the desired view.
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OpenGL Symmetric Perspective-Projection Function
There are two functions available for producing a perspective-projection view of a
scene. One of these functions generates a symmetric frustum view volume about
the viewing direction (the negative zview axis). The other function can be used for
either a symmetric-perspective projection or an oblique-perspective projection.
For both functions, the projection reference point is the viewing-coordinate origin
and the near clipping plane is the view plane.

A symmetric, perspective-projection, frustum view volume is set up with the
GLU function

gluPerspective (theta, aspect, dnear, dfar);

with each of the four parameters assigned a double-precision, floating-point num-
ber. The first two parameters define the size and position of the clipping window
on the near plane, and the second two parameters specify the distances from
the view point (coordinate origin) to the near and far clipping planes. Param-
eter theta represents the field-of-view angle, which is the angle between the
top and bottom clipping planes (Figure 41). This angle can be assigned any
value from 0◦ to 180◦. Parameter aspect is assigned a value for the aspect ratio
(width/height) of the clipping window.

For a perspective projection in OpenGL, the near and far clipping planes must
always be somewhere along the negative zview axis; neither can be “behind” the
viewing position. This restriction does not apply to an orthogonal projection, but
it precludes the inverted perspective projection of an object when the view plane is
behind the view point. Therefore, bothdnear anddfarmust be assigned positive
numerical values, and the positions of the near and far planes are calculated as
znear = −dnear and zfar = −dfar.

If we do not specify a projection function, our scene is displayed using the
default orthogonal projection. In this case, the view volume is the symmetric
normalized cube shown in Figure 47.

The frustum view volume set up by the gluPerspective function is sym-
metric about the negative zview axis. And the description of a scene is converted
to normalized, homogeneous projection coordinates with matrix 41.

OpenGL General Perspective-Projection Function
We can use the following function to specify a perspective projection that has
either a symmetric frustum view volume or an oblique frustum view volume.

F I G U R E 4 7
Default orthogonal-projection view
volume. Coordinate extents for this
symmetric cube are from −1 to +1 in
each direction. The near clipping plane
is at znear = 1, and the far clipping
plane is at zfar = −1.

xview

zview

yview

Clipping
Window

Far Clipping Plane

Near Clipping Plane

1

1
1
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glFrustum (xwmin, xwmax, ywmin, ywmax, dnear, dfar);

All parameters in this function are assigned double-precision, floating-point num-
bers. As in the other viewing-projection functions, the near plane is the view
plane and the projection reference point is at the viewing position (coordinate ori-
gin). This function has the same parameters as the orthogonal, parallel-projection
function, but now the near and far clipping-plane distances must be positive.
The first four parameters set the coordinates for the clipping window on the
near plane, and the last two parameters specify the distances from the coor-
dinate origin to the near and far clipping planes along the negative zview axis.
Locations for the near and far planes are calculated as znear = −dnear and
zfar = −dfar.

The clipping window can be specified anywhere on the near plane. If we select
the clipping window coordinates so that xwmin = −xwmax and ywmin = −ywmax,
we obtain a symmetric frustum (about the negative zview axis as its centerline).

Again, if we do not explicitly invoke a projection command, OpenGL applies
the default orthogonal projection to the scene. The view volume in this case is the
symmetric cube (Figure 47).

OpenGL Viewports and Display Windows
After the clipping routines have been applied in normalized coordinates, the
contents of the normalized clipping window, along with the depth information,
are transferred to three-dimensional screen coordinates. The color value for each
xy position on the viewport is stored in the refresh buffer (color buffer), and the
depth information for each xy position is stored in the depth buffer.

A rectangular viewport is defined with the follow

glViewport (xvmin, yvmin, vpWidth, vpHeight);

The first two parameters in this function specify the integer screen position of the
lower-left corner of the viewport relative to the lower-left corner of the display
window. And the last two parameters give the integer width and height of the
viewport. To maintain the proportions of objects in a scene, we set the aspect ratio
of the viewport equal to the aspect ratio of the clipping window.

OpenGL Three-Dimensional Viewing Program Example
A perspective-projection view of a square, as shown in Figure 48, is displayed
using the following program example. The square is defined in the xy plane,
and a viewing-coordinate origin is selected to view the front face at an angle.
Choosing the center of the square as the look-at point, we obtain a perspective
view using the glFrustum function. If we move the viewing origin around to
the other side of the polygon, the back face would be displayed as a wire-frame
object.
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 ing OpenGL function.

Display windows are created and managed with GLUT routines. The default
viewport in OpenGL is the size and position of the current display window.
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F I G U R E 4 8
Output display generated by the
three-dimensional viewing example
program.

#include <GL/glut.h>

GLint winWidth = 600, winHeight = 600; // Initial display-window size.

GLfloat x0 = 100.0, y0 = 50.0, z0 = 50.0; // Viewing-coordinate origin.
GLfloat xref = 50.0, yref = 50.0, zref = 0.0; // Look-at point.
GLfloat Vx = 0.0, Vy = 1.0, Vz = 0.0; // View-up vector.

/* Set coordinate limits for the clipping window: */
GLfloat xwMin = -40.0, ywMin = -60.0, xwMax = 40.0, ywMax = 60.0;

/* Set positions for near and far clipping planes: */
GLfloat dnear = 25.0, dfar = 125.0;

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 0.0);

glMatrixMode (GL_MODELVIEW);
gluLookAt (x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

glMatrixMode (GL_PROJECTION);
glFrustum (xwMin, xwMax, ywMin, ywMax, dnear, dfar);

}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT);
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/* Set parameters for a square fill area. */
glColor3f (0.0, 1.0, 0.0); // Set fill color to green.
glPolygonMode (GL_FRONT, GL_FILL);
glPolygonMode (GL_BACK, GL_LINE); // Wire-frame back face.
glBegin (GL_QUADS);

glVertex3f (0.0, 0.0, 0.0);
glVertex3f (100.0, 0.0, 0.0);
glVertex3f (100.0, 100.0, 0.0);
glVertex3f (0.0, 100.0, 0.0);

glEnd ( );

glFlush ( );
}

void reshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, newWidth, newHeight);

winWidth = newWidth;
winHeight = newHeight;

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Perspective View of A Square");

init ( );
glutDisplayFunc (displayFcn);
glutReshapeFunc (reshapeFcn);
glutMainLoop ( );

}

11 Three-Dimensional Clipping Algorithms

of the clipping window in two-dimensional clipping algorithms. Similarly, we
can apply three-dimensional clipping algorithms to the normalized boundaries
of the view volume. This allows the viewing pipeline and the clipping procedures
to be implemented in a highly efficient way. All device-independent transforma-
tions (geometric and viewing) are concatenated and applied before executing the
clipping routines. And each of the clipping boundaries for the normalized view
volume is a plane that is parallel to one of the Cartesian planes, regardless of the
projection type and original shape of the view volume. Depending on whether
the view volume has been normalized to a unit cube or to a symmetric cube with
edge length 2, the clipping planes have coordinate positions either at 0 and 1
or at −1 and 1. For the symmetric cube, the equations for the three-dimensional

Previously, we discussed the advantages of using the normalized boundaries
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clipping planes are

xwmin = −1, xwmax = 1
ywmin = −1, ywmax = 1 (43)

zwmin = −1, zwmax = 1

The x and y clipping boundaries are the normalized limits for the clipping win-
dow, and the z clipping boundaries are the normalized positions for the near and
far clipping planes.

Clipping algorithms for three-dimensional viewing identify and save all
object sections within the normalized view volume for display on the output
device. All parts of objects that are outside the view-volume clipping planes are
eliminated. And the algorithms are now extensions of two-dimensional meth-
ods, using the normalized boundary planes of the view volume instead of the
straight-line boundaries of the normalized clipping window.

Clipping in Three-Dimensional Homogeneous Coordinates
Computer-graphics libraries process spatial positions as four-dimensional
homogeneous coordinates so that all transformations can be represented as 4 by
4 matrices. As each coordinate position enters the viewing pipeline, it is converted
to a four-dimensional representation:

(x, y, z) → (x, y, z, 1)

After a position has passed through the geometric, viewing, and projection trans-
formations, it is now in the homogeneous form

⎡

⎢
⎢
⎣

xh

yh

zh

h

⎤

⎥
⎥
⎦

= M ·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(44)

where matrix M represents the concatenation of all the various transformations
from world coordinates to normalized, homogeneous projection coordinates, and
the homogeneous parameter h may no longer have the value 1. In fact, h can have
any real value, depending on how we represented objects in the scene and the
type of projection we used.

If the homogeneous parameter h does have the value 1, the homogeneous
coordinates are the same as the Cartesian projection coordinates. This is often
the case for a parallel-projection transformation. But a perspective projection pro-
duces a homogeneous parameter that is a function of the z coordinate for any
spatial position. The perspective-projection homogeneous parameter can even be
negative. This occurs when coordinate positions are behind the projection refer-
ence point. Also, rational spline representations for object surfaces are often for-
mulated in homogeneous coordinates, where the homogeneous parameter can be
positive or negative. Therefore, if clipping is performed in projection coordinates
after division by the homogeneous parameter h, some coordinate information can
be lost and objects may not be clipped correctly.

An effective method for dealing with all possible projection transformations
and object representations is to apply the clipping routines to the homogeneous-
coordinate representations of spatial positions. And, because all view volumes can
be converted to a normalized cube, a single clipping procedure can be imple-
mented in hardware to clip objects in homogeneous coordinates against the nor-
malized clipping planes.
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F I G U R E 4 9
A possible ordering for the view-volume clipping
boundaries corresponding to the region-code bit
positions.

Three-Dimensional Region Codes

=

−1 ≤ xh

h
≤ 1, − 1 ≤ yh

h
≤ 1, − 1 ≤ zh

h
≤ 1 (45)

Unless we have encountered an error, the value of the homogeneous parameter h is
nonzero. Before implementing region-code procedures, we can first check for the
possibility of a homogeneous parameter with either a zero value or an extremely
small magnitude. Also, the homogeneous parameter can be either positive or
negative. Therefore, assuming h �= 0, we can write the preceding inequalities in
the form

−h ≤ xh ≤ h, −h ≤ yh ≤ h, −h ≤ zh ≤ h if h > 0

h ≤ xh ≤ −h, h ≤ yh ≤ −h, h ≤ zh ≤ −h if h < 0
(46)

In most cases h > 0, and we can then assign the bit values in the region code
for a coordinate position according to the tests:

bit 1 = 1 if h + xh < 0 (left)
bit 2 = 1 if h − xh < 0 (right)
bit 3 = 1 if h + yh < 0 (bottom)
bit 4 = 1 if h − yh < 0 (top)
bit 5 = 1 if h + zh < 0 (near)
bit 6 = 1 if h − zh < 0 (far)

(47)

These bit values can be set using the same approach as in two-dimensional clip-
ping. That is, we simply use the sign bit of one of the calculations h ± xh , h ± yh ,
or h ± zh to set the corresponding region-code bit value. Figure 50 lists the
27 region codes for a view volume. In those cases where h < 0 for some point,
we could apply clipping using the second set of inequalities in 46 or we could
negate the coordinates and clip using the tests for h > 0.

Three-Dimensional Viewing

We extend the concept of a region code to three dimensions by simply adding a
couple of additional bit positions to accommodate the near and far clipping
planes. Thus, we now use a six-bit region code, as illustrated in Figure 49. Bit
positions in this region-code example are numbered from right to left, referenc-
ing the left, right, bottom, top, near, and far clipping planes, in that order.

For a three-dimensional scene, we need to apply the clipping routines to the
projection coordinates, which have been transformed to a normalized space.
After the projection transformation, each point in a scene has the four-compo-
nent representation P  (xh, yh, zh, h). Assuming that we are clipping against the
boundaries of the normalized symmetric cube (Eqs. 43), then a point is inside
this normalized view volume if the projection coordinates of the point satisfy the
following six inequalities:
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F I G U R E 5 0
Values for the three-dimensional,
six-bit region code that identifies
spatial positions relative to the
boundaries of a view volume.

011001 011000 011010

010001 010000

Region Codes
In Front of Near Plane

(a)

010010

010101 010100 010110

x

z

y

Top

Bottom

Left

Right

Near

Far

(c)

(b)

001001 001000 001010

Region Codes
Between Near and Far Planes

(b)

000101 000100 000110

101001 101000 101010

100001 100000

Region Codes
Behind Far Plane

(c)

100010

100101 100100 100110

(a)

000001 000000 000010

Three-Dimensional Point and Line Clipping
For standard point positions and straight-line segments that are defined in a scene
that is not behind the projection reference point, all homogeneous parameters are
positive and the region codes can be established using the conditions in 47.
Then, once we have set up the region code for each position in a scene, we can
easily identify a point position as outside the view volume or inside the view
volume. For instance, a region code of 101000 tells us that the point is above and
directly behind the view volume, while the region code 000000 indicates a point
within the volume (Figure 50). Thus, for point clipping, we simply eliminate
any individual point whose region code is not 000000. In other words, if any one
of the tests in 47 is negative, the point is outside the view volume.

Methods for three-dimensional line clipping are essentially the same as for
two-dimensional lines. We can first test the line endpoint region codes for trivial
acceptance or rejection of the line. If the region code for both endpoints of a line
is 000000, the line is completely inside the view volume. Equivalently, we can
trivially accept the line if the logical or operation on the two endpoint region
codes produces a value of 0. And we can trivially reject the line if the logical and
operation on the two endpoint region codes produces a value that is not 0. This
nonzero value indicates that both endpoint region codes have a 1 value in the same
bit position, and hence the line is completely outside one of the clipping planes. As
an example of this, the line from P3 to P4 in Figure 51 has the endpoint region-
code values of 010101 and 100110. So this line is completely below the bottom
clipping plane. If a line fails these two tests, we next analyze the line equation to
determine whether any part of the line should be saved.
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P1 (000010)
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Normalized
View Volume

F I G U R E 5 1
Three-dimensional region codes for
two line segments. Line P1P2
intersects the right and top clipping
boundaries of the view volume, while
line P3P4 is completely below the
bottom clipping plane.

P = P1 + (P2 − P1)u 0 ≤ u ≤ 1 (48)

When the line parameter has the value u = 0, we are at position P1. And u = 1
brings us to the other end of the line, P2. Writing the parametric line equation
explicitly, in terms of the homogeneous coordinates, we have

xh = xh1 + (xh2 − xh1)u

yh = yh1 + (yh2 − yh1)u 0 ≤ u ≤ 1 (49)
zh = zh1 + (zh2 − zh1)u

h = h1 + (h2 − h1)u

Using the endpoint region codes for a line segment, we can first determine
which clipping planes are intersected. If one of the endpoint region codes has a
0 value in a certain bit position while the other code has a 1 value in the same bit
position, then the line crosses that clipping boundary. In other words, one of the
tests in 47 generates a negative value, while the same test for the other endpoint
of the line produces a nonnegative value. To find the intersection position with this
clipping plane, we first use the appropriate equations in 49 to determine the cor-
responding value of parameter u. Then we calculate the intersection coordinates.

As an example of the intersection-calculation procedure, we consider the
line segment P1P2 in Figure 51. This line intersects the right clipping plane,
which can be described with the equation xmax = 1. Therefore, we determine the
intersection value for parameter u by setting the x-projection coordinate equal to 1:

xp = xh

h
= xh1 + (xh2 − xh1)u

h1 + (h2 − h1)u
= 1 (50)

Solving for parameter u, we obtain

u = xh1 − h1

(xh1 − h1) − (xh2 − h2)
(51)

Three-Dimensional Viewing

Equations for three-dimensional line segments are conveniently expressed in
parametric form, and the clipping methods of Cyrus-Beck or Liang-Barsky can be
extended to three-dimensional scenes. For a line segment with endpoints P1 = (xh1,
yh1, zh1, h1) and P2 = (xh2, yh2, zh2, h2), we can write the parametric equation describing
any point position along the line as
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Next, we determine the values yp and zp on this clipping plane, using the calcu-
lated value for u. In this case, the yp and zp intersection values are within the ±1
boundaries of the view volume and the line does cross into the view-volume in-
terior. So we next proceed to locate the intersection position with the top clipping
plane. That completes the processing for this line segment, because the intersec-
tion points with the top and right clipping planes identify the part of the line
that is inside the view volume and all the line sections that are outside the view
volume.

When a line intersects a clipping boundary but does not enter the view-
volume interior, we continue the line processing as in two-dimensional clipping.
The section of the line outside that clipping boundary is eliminated, and we
update the region-code information and the values for parameter u for the part
of the line inside that boundary. Then we test the remaining section of the line
against the other clipping planes for possible rejection or for further intersection
calculations.

Line segments in three-dimensional scenes are usually not isolated. They are
most often components in the description for the solid objects in the scene, and
we need to process the lines as part of the surface-clipping routines.

Three-Dimensional Polygon Clipping
Graphics packages typically deal only with scenes that contain “graphics objects.”
These are objects whose boundaries are described with linear equations, so that
each object is composed of a set of surface polygons. Therefore, to clip objects in a
three-dimensional scene, we apply the clipping routines to the polygon surfaces.
Figure 52, for example, highlights the surface sections of a pyramid that are to
be clipped, and the dashed lines show sections of the polygon surfaces that are
inside the view volume.

We can first test a polyhedron for trivial acceptance or rejection using its
coordinate extents, a bounding sphere, or some other measure of its coordinate
limits. If the coordinate limits of the object are inside all clipping boundaries, we
save the entire object. If the coordinate limits are all outside any one of the clipping
boundaries, we eliminate the entire object.

When we cannot save or eliminate the entire object, we can next process
the vertex lists for the set of polygons that define the object surfaces. Applying

F I G U R E 5 2
Three-dimensional object clipping.
Surface sections that are outside the
view-volume clipping planes are
eliminated from the object description,
and new surface facets may need to be
constructed.

Normalized
View Volume
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methods similar to those in two-dimensional polygon clipping, we can clip edges
to obtain new vertex lists for the object surfaces. We may also need to create some
new vertex lists for additional surfaces that result from the clipping operations.
And the polygon tables are updated to add any new polygon surfaces and to
revise the connectivity and shared-edge information about the surfaces.

To simplify the clipping of general polyhedra, polygon surfaces are often
divided into triangular sections and described with triangle strips. We can then
clip the triangle strips using the Sutherland-Hodgman approach. Each triangle 
strip is processed in turn against the six clipping planes to obtain the final ver-
tex list for the strip.

For concave polygons, we can apply splitting methods to obtain a set of tri-
angles, for example, and then clip the triangles. Alternatively, we could clip three-
dimensional concave polygons using the Weiler-Atherton algorithm.

Three-Dimensional Curve Clipping
As in polyhedra clipping, we first check to determine whether the coordinate
extents of a curved object, such as a sphere or a spline surface, are completely
inside the view volume. Then we can check to determine whether the object is
completely outside any one of the six clipping planes.

If the trivial rejection-acceptance tests fail, we locate the intersections with
the clipping planes. To do this, we solve the simultaneous set of surface equa-
tions and the clipping-plane equation. For this reason, most graphics packages
do not include clipping routines for curved objects. Instead, curved surfaces are
approximated as a set of polygon patches, and the objects are then clipped using
polygon-clipping routines. When surface-rendering procedures are applied to
polygon patches, they can provide a highly realistic display of a curved surface.

Arbitrary Clipping Planes
It is also possible, in some graphics packages, to clip a three-dimensional scene
using additional planes that can be specified in any spatial orientation. This option
is useful in a variety of applications. For example, we might want to isolate or
clip off an irregularly shaped object, eliminate part of a scene at an oblique angle
for a special effect, or slice off a section of an object along a selected axis to show
a cross-sectional view of its interior.

Optional clipping planes can be specified along with the description of a scene,
so that the clipping operations can be performed prior to the projection transfor-
mation. However, this also means that the clipping routines are implemented in
software.

A clipping plane can be specified with the plane parameters A, B, C , and D.
The plane then divides three-dimensional space into two parts, so that all parts
of a scene that lie on one side of the plane are clipped off. Assuming that objects
behind the plane are to be clipped, then any spatial position (x, y, z) that satisfies
the following inequality is eliminated from the scene.

Ax + By + Cz + D < 0 (52)

As an example, if the plane-parameter array has the values (A, B, C, D) =
(1.0, 0.0, 0.0, 8.0), then any coordinate position satisfying x + 8.0 < 0.0 (or,
x < −8.0) is clipped from the scene.

To clip a line segment, we can first test its two endpoints to see if the line
is completely behind the clipping plane or completely in front of the plane. We
can represent inequality 52 in a vector form using the plane normal vector
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F I G U R E 5 3
Clipping a line segment against a
plane with normal vector N.

P1

P2

P

N � (A, B, C )

N = (A, B, C). Then, for a line segment with endpoint positions P1 and P2, we
clip the entire line if both endpoints satisfy

N · Pk + D < 0, k = 1, 2 (53)

We save the entire line if both endpoints satisfy

N · Pk + D ≥ 0, k = 1, 2 (54)

Otherwise, the endpoints are on opposite sides of the clipping plane, as in
Figure 53, and we calculate the line intersection point.

To calculate the line-intersection point with the clipping plane, we can use
the following parametric representation for the line segment:

P = P1 + (P2 − P1)u, 0 ≤ u ≤ 1 (55)

Point P is on the clipping plane if it satisfies the plane equation

N · P + D = 0 (56)

Substituting the expression for P from Equation 55, we have

N · [P1 + (P2 − P1)u] + D = 0 (57)

Solving this equation for parameter u, we obtain

u = −D − N · P1

N · (P2 − P1)
(58)

We then substitute this value of u into the vector parametric line representation
55 to obtain values for the x, y, and z intersection coordinates. For the example
in Figure 53, the line segment from P1 to P is clipped and we save the section
of the line from P to P2.

For polyhedra, such as the pyramid in Figure 54, we apply similar clipping
procedures. We first test to see if the object is completely behind or completely
in front of the clipping plane. If not, we process the vertex list for each polygon
surface. Line-clipping methods are applied to each polygon edge in succession,
just as in view-volume clipping, to produce the surface vertex lists. But in this
case, we have to deal with only one clipping plane.

Clipping a curved object against a single clipping plane is easier than clipping
the object against the six planes of a view volume. However, we still need to solve
a set of nonlinear equations to locate intersections, unless we approximate the
curve boundaries with straight-line sections.
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N � (A, B, C)

F I G U R E 5 4
Clipping the surfaces of a pyramid
against a plane with normal vector N.
The surfaces in front of the plane are
saved, and the surfaces of the pyramid
behind the plane are eliminated.

12 OpenGL Optional Clipping Planes
In addition to the six clipping planes enclosing the view volume, OpenGL pro-
vides for the specification of additional clipping planes in a scene. Unlike the
view-volume clipping planes, which are each perpendicular to one of the coordi-
nate axes, these additional planes can have any orientation.

We designate an optional clipping plane and activate clipping against that
plane with the statements

glClipPlane (id, planeParameters);
glEnable (id);

Parameter id is used as an identifier for a clipping plane. This parameter is as-
signed one of the valuesGL CLIP PLANE0,GL CLIP PLANE1, and so forth, up
to a facility-defined maximum. The plane is then defined using the four-element
array planeParameters, whose elements are the double-precision, floating-
point values for the four plane-equation parameters A, B, C , and D. An activated
clipping plane that has been assigned the identifier id is turned off with

glDisable (id);

The plane parameters A, B, C , and D are transformed to viewing coordinates
and used to test viewing-coordinate positions in a scene. Subsequent changes in
viewing or geometric-transformation parameters do not affect the stored plane
parameters. Therefore, if we set up optional clipping planes before specifying
any geometric or viewing transformations, the stored plane parameters are the
same as the input parameters. Also, because the clipping routines for these planes
are applied in viewing coordinates, and not in the normalized coordinate space,
the performance of a program can be degraded when optional clipping planes
are activated.
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Any points that are “behind” an activated OpenGL clipping plane are elimi-
nated. Thus, a viewing-coordinate position (x, y, z) is clipped if it satisfies condi-
tion 52.

Six optional clipping planes are available in any OpenGL implementation,
but more might be provided. We can find out how many optional clipping planes
are possible for a particular OpenGL implementation with the inquiry

glGetIntegerv (GL_MAX_CLIP_PLANES, numPlanes);

Parameter numPlanes is the name of an integer array that is to be assigned an
integer value equal to the number of optional clipping planes that we can use.

The default for the glClipPlane function is that the clipping-plane param-
eters A, B, C , and D are each assigned a value of 0 for all optional planes. And,
initially, all optional clipping planes are disabled.

13 Summary
Viewing procedures for three-dimensional scenes follow the general approach
used in two-dimensional viewing. We first create a world-coordinate scene, either
from the definitions of objects in modeling coordinates or directly in world coor-
dinates. Then we set up a viewing-coordinate reference frame and transfer object
descriptions from world coordinates to viewing coordinates. Object descriptions
are then processed through various routines to device coordinates.

Unlike two-dimensional viewing, however, three-dimensional viewing
requires projection routines to transform object descriptions to a viewing plane
before the transformation to device coordinates. Also, three-dimensional view-
ing operations involve more spatial parameters. We can use the camera analogy
to describe three-dimensional viewing parameters. A viewing-coordinate refer-
ence frame is established with a view reference point (the camera position), a
view-plane normal vector N (the camera lens direction), and a view-up vector
V (the camera up direction). The view-plane position is then established along
the viewing z axis, and object descriptions are projected to this plane. Either
parallel-projection or perspective-projection methods can be used to transfer
object descriptions to the view plane.

Parallel projections are either orthographic or oblique, and they can be speci-
fied with a projection vector. Orthographic parallel projections that display more
than one face of an object are called axonometric projections. An isometric view
of an object is obtained with an axonometric projection that foreshortens each
principal axis by the same amount. Commonly used oblique projections are the
cavalier projection and the cabinet projection. Perspective projections of objects
are obtained with projection lines that meet at the projection reference point. Par-
allel projections maintain object proportions, but perspective projections decrease
the size of distant objects. Perspective projections cause parallel lines to appear
to converge to a vanishing point, provided the lines are not parallel to the view
plane. Engineering and architectural displays can be generated with one-point,
two-point, or three-point perspective projections, depending on the number of
principal axes that intersect the view plane. An oblique perspective projection is
obtained when the line from the projection reference point to the center of the
clipping window is not perpendicular to the view plane.

Objects in a three-dimensional scene can be clipped against a view volume
to eliminate unwanted sections of the scene. The top, bottom, and sides of the
view volume are formed with planes that are parallel to the projection lines and
that pass through the clipping-window edges. Near and far planes (also called
front and back planes) are used to create a closed view volume. For a parallel
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T A B L E 1

Summary of OpenGL Three-Dimensional Viewing Functions

Function Description

gluLookAt Specifies three-dimensional viewing parameters.

glOrtho Specifies parameters for a clipping window and the near
and far clipping planes for an orthogonal projection.

gluPerspective Specifies field-of-view angle and other parameters for
a symmetric perspective projection.

glFrustum Specifies parameters for a clipping window and near and
far clipping planes for a perspective projection
(symmetric or oblique).

glClipPlane Specifies parameters for an optional clipping plane.

projection, the view volume is a parallelepiped. For a perspective projection, the
view volume is a frustum. In either case, we can convert the view volume to a
normalized cube with boundaries either at 0 and 1 for each coordinate or at −1
and 1 for each coordinate. Efficient clipping algorithms process objects in a scene
against the bounding planes of the normalized view volume. Clipping is generally
carried out in graphics packages in four-dimensional homogeneous coordinates
following the projection and view-volume normalization transformations. Then,
homogeneous coordinates are converted to three-dimensional, Cartesian projec-
tion coordinates. Additional clipping planes, with arbitrary orientations, can also
be used to eliminate selected parts of a scene or to produce special effects.

A function is available in the OpenGL Utility library for specifying three-
dimensional viewing parameters (see Table 1). This library also includes a
function for setting up a symmetric perspective-projection transformation. Three
other viewing functions are available in the OpenGL basic library for specifying an
orthographic projection, a general perspective projection, and optional clipping
planes. Table 1 summarizes the OpenGL viewing functions discussed in this
chapter. In addition, the table lists some viewing-related functions.

REFERENCES
Discussions of three-dimensional viewing and clipping
algorithms can be found in Weiler and Atherton (1977),
Weiler (1980), Cyrus and Beck (1978), and Liang and
Barsky (1984). Homogeneous-coordinate clipping algo-
rithms are described in Blinn and Newell (1978), Riesen-
feld (1981), and Blinn (1993, 1996, and 1998). Various
programming techniques for three-dimensional viewing
are discussed in Glassner (1990), Arvo (1991), Kirk (1992),
Heckbert (1994), and Paeth (1995).

A complete listing of three-dimensional OpenGL
viewing functions is given in Shreiner (2000).
For OpenGL programming examples using three-
dimensional viewing, see Woo, et al. (1999). Addi-
tional programming examples can be found at Nate
Robins’s tutorial website: www.xmission.com/∼nate/
opengl.html.

EXERCISES
1 Write a procedure to set up the matrix that

transforms world-coordinate positions to three-
dimensional viewing coordinates, given P0, N,
and V. The view-up vector can be in any direc-
tion that is not parallel to N.

2 Write a procedure to transform the vertices of
a polyhedron to projection coordinates using a
parallel projection with any specified projection
vector.

3 Write a program to obtain different parallel-
projection views of a polyhedron by allowing the
user to rotate the polyhedron via the keyboard.

4 Write a procedure to perform a one-point perspec-
tive projection of an object.
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5 Write a procedure to perform a two-point per-
spective projection of an object.

6 Develop a routine to perform a three-point per-
spective projection of an object.

7 Write a program that uses the routines in the
previous three exercises to display a three-
dimensional cube using a one-, two-, or three-
point perspective projection according to input
taken from the keyboard, which should be used to
switch between projections. The program should
also allow the user to rotate the cube in the xz
plane around its center. Examine the visual differ-
ences of the three different types of projections.

8 Write a routine to convert a perspective projection
frustum to a regular parallelepiped.

9 Modify the two-dimensional Cohen-Sutherland
line-clipping algorithm to clip three-dimensional
lines against the normalized symmetric view vol-
ume square.

10 Write a program to generate a set of 10 ran-
dom lines, each of which has one endpoint
within a normalized symmetric view volume and
one without. Implement the three-dimensional
Cohen-Sutherland line-clipping algorithm de-
signed in the previous exercise to clip the set of
lines against the viewing volume.

11 Modify the two-dimensional Liang-Barsky line-
clipping algorithm to clip three-dimensional lines
against a specified regular parallelepiped.

12 Write a program similar to that in Exercise 10
that generates a set of 10 random lines, each par-
tially outside of a specified regular parallelepiped
viewing volume. Use the three-dimensional
Liang-Barsky line-clipping algorithm developed
in the previous exercise to clip the lines against
the viewing volume.

13 Modify the two-dimensional Liang-Barsky line-
clipping algorithm to clip a given polyhedron
against a specified regular parallelepiped.

14 Write a program to display a cube in a regular par-
allelepiped viewing volume and allow the user to
translate the cube along each axis using keyboard
input. Implement the algorithm in the previous
exercise to clip the cube when it extends over any
of the edges of the viewing volume.

15 Write a routine to perform line clipping in homo-
geneous coordinates.

16 Devise an algorithm to clip a polyhedron against a
defined frustum. Compare the operations needed
in this algorithm to those needed in an algorithm
that clips against a regular parallelepiped.

17 Extend the Sutherland-Hodgman polygon-
clipping algorithm to clip a convex polyhedron
against a normalized symmetric view volume.

18 Write a routine to implement the preceding
exercise.

19 Write a program similar to the one in Exercise
14 to display a cube in a normalized symmet-
ric view volume that can be translated around the
viewing volume via keyboard input. Use the im-
plementation of the polygon-clipping algorithm
developed in the previous exercise to clip the cube
when it extends over the edge of the viewing
volume.

20 Write a routine to perform polyhedron clipping
in homogeneous coordinates.

21 Modify the program example in Section 10 to
allow a user to specify a view for either the front
or the back of the square.

22 Modify the program example in Section 10 to
allow the perspective viewing parameters to be
specified as user input.

23 Modify the program example in Section 10 to
produce a view of any input polyhedron.

24 Modify the program in the preceding exercise
to generate a view of the polyhedron using an
orthographic projection.

25 Modify the program in the preceding exercise
to generate a view of the polyhedron using an
oblique parallel projection.

IN MORE DEPTH
1 In this exercise, you will give “depth” to the

polygons that represent the objects in your scene
and clip them against a normalized view vol-
ume. First, choose new z-coordinates and three-
dimensional orientations for the polygons in your
scene that are appropriate to the snapshot of your
application. That is, they should be taken out
of the xy plane in which they have been con-
strained so far and given appropriate depth. Once
you have done this, implement an extension of
the Sutherland-Hodgman polygon-clipping algo-
rithm that allows clipping of convex polygons
against a normalized symmetric view volume.
You will use this algorithm in the next exercise
to produce a view of some portion of your three-
dimensional scene.

2 Choose a view of the scene from the previous
exercise that produces a view volume in which
all objects are not fully contained. Apply the
algorithm for polygon clipping that you devel-
oped in the previous exercise against the view
volume. Write routines to display the scene using
a parallel projection and a perspective projection.
Use the OpenGL three-dimensional viewing func-
tions to do this, choosing appropriate parameters
to specify the viewing volume in each case. Allow
the user to switch between the two projections via
keyboard input and note the differences in the
visual appearance of the scene in the two cases.
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Visible-Surface Detection Methods

1 Classification of Visible-Surface
Detection Algorithms

2 Back-Face Detection

3 Depth-Buffer Method

4 A-Buffer Method

5 Scan-Line Method

6 Depth-Sorting Method

7 BSP-Tree Method

8 Area-Subdivision Method

9 Octree Methods

10 Ray-Casting Method

11 Comparison of Visibility-Detection
Methods

12 Curved Surfaces

13 Wire-Frame Visibility Methods

14 OpenGL Visibility-Detection
Functions

15 Summary A major consideration in the generation of realistic graphics

displays is determining what is visible within a scene from a

chosen viewing position. There are a number of approaches

we can take to accomplish this, and numerous algorithms have been

devised for efficient identification and display of visible objects for

different types of applications. Some methods require more memory,

some involve more processing time, and some apply only to special

types of objects. Which method we select for a particular application

can depend on such factors as the complexity of the scene, type of

objects to be displayed, available equipment, and whether static or

animated displays are to be generated. The various algorithms are

referred to as visible-surface detection methods. Sometimes these

methods are also referred to as hidden-surface elimination meth-

ods, although there can be subtle differences between identifying

visible surfaces and eliminating hidden surfaces. With a wire-frame

display, for example, we may not want to eliminate the hidden sur-

faces, but rather to display them with dashed boundaries or in some

other way to retain information about their shape.

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson 
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1 Classification of Visible-Surface
Detection Algorithms

We can broadly classify visible-surface detection algorithms according to whether
they deal with the object definitions or with their projected images. These two
approaches are called object-space methods and image-space methods, respec-
tively. An object-space method compares objects and parts of objects to each other
within the scene definition to determine which surfaces, as a whole, we should
label as visible. In an image-space algorithm, visibility is decided point by point
at each pixel position on the projection plane. Most visible-surface algorithms use
image-space methods, although object-space methods can be used effectively to
locate visible surfaces in some cases. Line-display algorithms, for instance, gener-
ally use object-space methods to identify visible lines in wire-frame displays, but
many image-space visible-surface algorithms can be adapted easily to visible-line
detection.

Although there are major differences in the basic approaches taken by the vari-
ous visible-surface detection algorithms, most use sorting and coherence methods
to improve performance. Sorting is used to facilitate depth comparisons by order-
ing the individual surfaces in a scene according to their distance from the view
plane. Coherence methods are used to take advantage of regularities in a scene.
An individual scan line can be expected to contain intervals (runs) of constant
pixel intensities, and scan-line patterns often change little from one line to the
next. Animation frames contain changes only in the vicinity of moving objects.
And constant relationships can often be established between the objects in a scene.

2 Back-Face Detection
A fast and simple object-space method for locating the back faces of a polyhedron

Ax + By + Cz + D < 0 (1)

where A, B, C , and D are the plane parameters for the polygon. When this position
is along the line of sight to the surface, we must be looking at the back of the
polygon. Therefore, we could use the viewing position to test for back faces.

We can simplify the back-face test by considering the direction of the normal
vector N for a polygon surface. If Vview is a vector in the viewing direction from
our camera position, as shown in Figure 1, then a polygon is a back face if

Vview ·N > 0 (2)

Furthermore, if object descriptions have been converted to projection coordinates
and our viewing direction is parallel to the viewing zv axis, then we need to
consider only the z component of the normal vector N.

In a right-handed viewing system with the viewing direction along the neg-
ative zv axis (Figure 2), a polygon is a back face if the z component, C , of its
normal vector N satisfies C < 0. Also, we cannot see any face whose normal has
z component C = 0, because our viewing direction is grazing that polygon. Thus,
in general, we can label any polygon as a back face if its normal vector has a z
component value that satisfies the inequality

C ≤ 0 (3)

is based on front-back tests. A point (x, y, z) is behind a polygon surface if
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Vview

N � (A, B, C)

F I G U R E 1
A surface normal vector N and the viewing-direction
vector Vview.

Vview

yv

xv

zv

N � (A, B, C)

F I G U R E 2
A polygon surface with plane parameter C < 0 in a
right-handed viewing coordinate system is identified as
a back face when the viewing direction is along the
negative zv axis.

Similar methods can be used in packages that employ a left-handed viewing
system. In these packages, plane parameters A, B, C , and D can be calculated
from polygon vertex coordinates specified in a clockwise direction (instead of the
counterclockwise direction used in a right-handed system). Inequality 1 then
remains a valid test for points behind the polygon. Also, back faces have normal
vectors that point away from the viewing position and are identified by C ≥ 0
when the viewing direction is along the positive zv axis.

By examining parameter C for the different plane surfaces describing an
object, we can immediately identify all the back faces. For a single convex polyhe-
dron, such as the pyramid in Figure 2, this test identifies all the hidden surfaces
in the scene, because each surface is either completely visible or completely hid-
den. Also, if a scene contains only nonoverlapping convex polyhedra, then again
all hidden surfaces are identified with the back-face method.

F I G U R E 3
View of a concave polyhedron with
one face partially hidden by other
faces of the object.

For other objects, such as the concave polyhedron in Figure 3, more tests
must be carried out to determine whether there are additional faces that are totally
or partially obscured by other faces. A general scene can be expected to contain
overlapping objects along the line of sight, and we then need to determine where
the obscured objects are partly or completely hidden by other objects. In general,
back-face removal can be expected to eliminate about half of the polygon surfaces
in a scene from further visibility tests.

3 Depth-Buffer Method
A commonly used image-space approach for detecting visible surfaces is the
depth-buffer method, which compares surface depth values throughout a scene
for each pixel position on the projection plane. Each surface of a scene is processed
separately, one pixel position at a time, across the surface. The algorithm is usually
applied to scenes containing only polygon surfaces, because depth values can
be computed very quickly and the method is easy to implement. But we could
also apply the same procedures to nonplanar surfaces. This visibility-detection
approach is also frequently alluded to as the z-buffer method, because object depth is
usually measured along the z axis of a viewing system. However, rather than using
actual z coordinates within the scene, depth-buffer algorithms often compute a
distance from the view plane along the z axis.

Figure 4 shows three surfaces at varying distances along the orthographic
projection line from position (x, y) on a view plane. These surfaces can be pro-
cessed in any order. As each surface is processed, its depth from the view plane is
compared to previously processed surfaces. If a surface is closer than any previ-
ously processed surfaces, its surface color is calculated and saved, along with its
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F I G U R E 4
Three surfaces overlapping pixel
position ( x , y ) on the view plane. The
visible surface, S1, has the smallest
depth value.

S3

S2

S1

yv

xv

zv

(x, y)

View Plane

depth. The visible surfaces in a scene are represented by the set of surface colors
that have been saved after all surface processing is completed. Implementation
of the depth-buffer algorithm is typically carried out in normalized coordinates,
so that depth values range from 0 at the near clipping plane (the view plane) to
1.0 at the far clipping plane.

As implied by the name of this method, two buffer areas are required. A
depth buffer is used to store depth values for each (x, y) position as surfaces
are processed, and the frame buffer stores the surface-color values for each pixel
position. Initially, all positions in the depth buffer are set to 1.0 (maximum depth),
and the frame buffer (refresh buffer) is initialized to the background color. Each
surface listed in the polygon tables is then processed, one scan line at a time, by
calculating the depth value at each (x, y) pixel position. This calculated depth is
compared to the value previously stored in the depth buffer for that pixel position.
If the calculated depth is less than the value stored in the depth buffer, the new
depth value is stored. Then the surface color at that position is computed and
placed in the corresponding pixel location in the frame buffer.

The depth-buffer processing steps are summarized in the following algorithm.
This algorithm assumes that depth values are normalized on the range from 0.0 to
1.0 with the view plane at depth = 0 and the farthest depth = 1. We can also apply
this algorithm for any other depth range, and some graphics packages allow the
user to specify the depth range over which the depth-buffer algorithm is to be
applied. Within the algorithm, the variable z represents the depth of the polygon
(that is, its distance from the view plane along the negative z axis).

Depth-Buffer Algorithm

1. Initialize the depth buffer and frame buffer so that for all buffer posi-
tions (x, y),

depthBuff (x, y) = 1.0, frameBuff (x, y) = backgndColor
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2. Process each polygon in a scene, one at a time, as follows:

• For each projected (x, y) pixel position of a polygon, calculate the
depth z (if not already known).

• If z < depthBuff (x, y), compute the surface color at that
position and set

depthBuff (x, y) = z, frameBuff (x, y) = surfColor (x, y)

After all surfaces have been processed, the depth buffer contains depth
values for the visible surfaces and the frame buffer contains the corre-
sponding color values for those surfaces.

Given the depth values for the vertex positions of any polygon in a scene, we
can calculate the depth at any other point on the plane containing the polygon.
At surface position (x, y), the depth is calculated from the plane equation as

z = −Ax − By − D
C

(4)

For any scan line (Figure 5), adjacent horizontal x positions across the line differ
by ±1, and vertical y values on adjacent scan lines differ by ±1. If the depth of
position (x, y) has been determined to be z, then the depth z′ of the next position
(x + 1, y) along the scan line is obtained from Eq. 4 as

z′ = −A(x + 1) − By − D
C

(5)

or

z′ = z − A
C

(6)

The ratio −A/C is constant for each surface, so succeeding depth values across a
scan line are obtained from preceding values with a single addition.

y
y � 1

x x � 1

F I G U R E 5
From position ( x , y ) on a scan line,
the next position across the line has
coordinates ( x + 1, y ) , and the
position immediately below on the
next line has coordinates ( x , y − 1) .

Processing pixel positions from left to right across each scan line, we start
by calculating the depth on a left polygon edge that intersects that scan line
(Figure 6). For each successive position across the scan line, we then calculate
the depth value using Eq. 6.

We can implement the depth-buffer algorithm by starting at a top vertex of
the polygon. Then, we could recursively calculate the x-coordinate values down
a left edge of the polygon. The x value for the beginning position on each scan line
can be calculated from the beginning (edge) x value of the previous scan line as

x′ = x − 1
m

left-edge
intersection

top scan line

bottom scan line

y scan line

F I G U R E 6
Scan lines intersecting a polygon
surface.
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F I G U R E 7
Intersection positions on successive
scan lines along a left polygon edge.

y scan line
y – 1 scan line

x x�

where m is the slope of the edge (Figure 7). Depth values down this edge are
obtained recursively as

z′ = z + A/m + B
C

(7)

If we are processing down a vertical edge, the slope is infinite and the recursive
calculations reduce to

z′ = z + B
C

One slight complication with this approach is that while pixel positions are
at integer (x, y) coordinates, the actual point of intersection of a scan line with
the edge of a polygon may not be. As a result, it may be necessary to adjust
the intersection point by rounding its fractional part up or down, as is done in
scan-line polygon fill algorithms.

An alternative approach is to use a midpoint method or Bresenham-type
algorithm for determining the starting x values along edges for each scan line.
The method can be applied to curved surfaces by determining depth and color
values at each surface projection point.

For polygon surfaces, the depth-buffer method is very easy to implement, and
it requires no sorting of the surfaces in a scene. But it does require the availability
of a second buffer in addition to the refresh buffer. A system with a resolution of
1280 × 1024, for example, would require over 1.3 million positions in the depth
buffer, with each position containing enough bits to represent the number of
depth increments needed. One way to reduce storage requirements is to process
one section of the scene at a time, using a smaller depth buffer. After each view
section is processed, the buffer is reused for the next section.

In addition, the basic depth-buffer algorithm often performs needless calcula-
tions. Objects are processed in an arbitrary order, so that a color can be computed
for a surface point that is later replaced by a closer surface. To alleviate this prob-
lem, some graphics packages provide options that allow a user to adjust the depth
range for surface testing. This allows distant objects, for example, to be excluded
from the depth tests. Using this option, we could even exclude objects that are
very close to the projection plane. Hardware implementations of the depth-buffer
algorithm are typically an integral component of sophisticated computer-graphics
systems.

4 A-Buffer Method
An extension of the depth-buffer ideas is the A-buffer procedure (at the other
end of the alphabet from “z-buffer,” where z represents depth). This depth-buffer
extension is an antialiasing, area-averaging, visibility-detection method devel-
oped at Lucasfilm Studios for inclusion in the surface-rendering system called
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foreground
transparent
surface

background
opaque
surface

F I G U R E 8
Viewing an opaque surface through a
transparent surface requires multiple color inputs
and the application of color-blending operations.

REYES (an acronym for “Renders Everything You Ever Saw”). The buffer region
for this procedure is referred to as the accumulation buffer, because it is used to
store a variety of surface data, in addition to depth values.

A drawback of the depth-buffer method is that it identifies only one visible
surface at each pixel position. In other words, it deals only with opaque surfaces
and cannot accumulate color values for more than one surface, as is necessary
if transparent surfaces are to be displayed (Figure 8). The A-buffer method
expands the depth-buffer algorithm so that each position in the buffer can ref-
erence a linked list of surfaces. This allows a pixel color to be computed as a
combination of different surface colors for transparency or antialiasing effects.

Each position in the A-buffer has two fields:

• Depth field: Stores a real-number value (positive, negative, or zero).
• Surface data field: Stores surface data or a pointer.

If the depth field is nonnegative, the number stored at that position is the depth of
a surface that overlaps the corresponding pixel area. The surface data field then
stores various surface information, such as the surface color for that position and
the percent of pixel coverage, as illustrated in Figure 9(a). If the depth field for
a position in the A-buffer is negative, this indicates multiple-surface contributions
to the pixel color. The color field then stores a pointer to a linked list of surface
data, as in Figure 9(b). Surface information in the A-buffer includes

• RGB intensity components
• Opacity parameter (percent of transparency)
• Depth
• Percent of area coverage
• Surface identifier
• Other surface-rendering parameters

The A-buffer visibility-detection scheme can be implemented using meth-
ods similar to those in the depth-buffer algorithm. Scan lines are processed to

depth � 0 RGB and
other info

depth � 0 Surf1
info

Surf 2
info

(a)

(b)

���

F I G U R E 9
Two possible organizations for surface information in an A-buffer representation for a pixel position.
When a single surface overlaps the pixel, the surface depth, color, and other information are stored
as in (a). When more than one surface overlaps the pixel, a linked list of surface data is stored
as in (b).
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determine how much of each surface covers each pixel position across the indi-
vidual scan lines. Surfaces are subdivided into a polygon mesh and clipped against
the pixel boundaries. Using the opacity factors and percent of surface coverage,
the rendering algorithms calculate the color for each pixel as an average of the
contributions from the overlapping surfaces.

5 Scan-Line Method
This image-space method for identifying visible surfaces computes and compares
depth values along the various scan lines for a scene. As each scan line is processed,
all polygon surface projections intersecting that line are examined to determine
which are visible. Across each scan line, depth calculations are performed to
determine which surface is nearest to the view plane at each pixel position. When
the visible surface has been determined for a pixel, the surface color for that
position is entered into the frame buffer.

“on” or “off” to indicate whether a position along a scan line is inside or outside
the surface. Pixel positions across each scan line are processed from left to right.
At the left intersection with the surface projection of a convex polygon, the surface
flag is turned on; at the right intersection point along the scan line, it is turned
off. For a concave polygon, scan-line intersections can be sorted from left to right,
with the surface flag set to “on” between each intersection pair.

Figure 10 illustrates the scan-line method for locating visible portions of
surfaces for pixel positions along a scan line. The active list for scan line 1 contains
information from the edge table for edges AB, BC, EH, and FG. For positions along
this scan line between edges AB and BC, only the flag for surface S1 is on. Therefore,
no depth calculations are necessary, and color values are calculated from the
surface properties and lighting conditions for surface S1. Similarly, between edges

F I G U R E 1 0
Scan lines crossing the view-plane
projection of two surfaces, S1 and S2.
Dashed lines indicate the boundaries
of hidden surface sections.

Scan Line 2

Scan Line 1

Scan Line 3

yv

xv

A

H

D

C

F
E

G

B

S1 S2

Surfaces are processed using the information stored in the polygon tables.
The edge table contains coordinate endpoints for each line in the scene, the
inverse slope of each line, and pointers into the surface-facet table to identify the
surfaces bounded by each line. The surface-facet table contains the plane coeffi-
cients, surface material properties, other surface data, and possibly pointers into
the edge table. To facilitate the search for surfaces crossing a given scan line, 
an active list of edges is formed for each scan line as it is processed. The active
edge list contains only those edges that cross the current scan line, sorted in order 
of increasing x. In addition, we define a flag for each surface that is set to
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F I G U R E 1 1
Intersecting and cyclically overlapping surfaces that alternately obscure one another.

EH and FG, only the flag for surface S2 is on. No other positions along scan line
1 intersect surfaces, so the color for those pixels is the background color, which
could be loaded into the frame buffer as part of the initialization routine.

For scan lines 2 and 3 in Figure 10, the active edge list contains edges AD,
EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the flag for
surface S1 is on. But between edges EH and BC, the flags for both surfaces are on.
Therefore, a depth calculation is necessary, using the plane coefficients for the two
surfaces, when we encounter edge EH. For this example, the depth of surface S1
is assumed to be less than that of S2, so the color values for surface S1 are assigned
to the pixels across the scan line until boundary BC is encountered. Then the
surface flag for S1 goes off, and the colors for surface S2 are stored up to edge
FG. No other depth calculations are necessary, because we assume that surface S2
remains behind S1 once we have determined the depth relationship at edge EH.

We can take advantage of coherence along the scan lines as we pass from
one scan line to the next. In Figure 10, scan line 3 has the same active list
of edges as scan line 2. No changes have occurred in line intersections, so it is
again unnecessary to make depth calculations between edges EH and BC. The
two surfaces must be in the same orientation as determined on scan line 2, so the
colors for surface S1 can be entered without further depth calculations.

Any number of overlapping polygon surfaces can be processed with this scan-
line method. Flags for the surfaces are set to indicate whether a position is inside
or outside, and depth calculations are performed only at the edges of overlapping
surfaces. This procedure works correctly only if surfaces do not cut through or
otherwise cyclically overlap each other (Figure 11). If any kind of cyclic overlap
is present in a scene, we can divide the surfaces to eliminate the overlaps. The
dashed lines in this figure indicate where planes could be subdivided to form two
distinct surfaces, so that the cyclic overlaps are eliminated.

6 Depth-Sorting Method
Using both image-space and object-space operations, the depth-sorting method
performs the following basic functions:

1. Surfaces are sorted in order of decreasing depth.
2. Surfaces are scan-converted in order, starting with the surface of greatest

depth.
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F I G U R E 1 2
Two surfaces with no depth overlap. zv

xv
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zmin

z�max
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S
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Sorting operations are carried out in both image and object space, and the scan
conversion of the polygon surfaces is performed in image space.

This visibility-detection method is often referred to as the painter’s algorithm.
In creating an oil painting, an artist first paints the background colors. Next, the
most distant objects are added, then the nearer objects, and so forth. At the final
step, the foreground is painted on the canvas over the background and the more
distant objects. Each color layer covers up the previous layer. Using a similar
technique, we first sort surfaces according to their distance from the view plane.
The color values for the farthest surface can then be entered into the refresh buffer.
Taking each succeeding surface in turn (in decreasing depth order), we “paint”
the surface onto the frame buffer over the colors of the previously processed
surfaces.

Painting polygon surfaces into the frame buffer according to depth is carried
out in several steps. Assuming we are viewing along the z direction, surfaces are
ordered on the first pass according to the smallest z value on each surface. The
surface S at the end of the list (with the greatest depth) is then compared to the
other surfaces in the list to determine whether there are any depth overlaps. If
no depth overlaps occur, S is the most distant surface and it is scan-converted.
Figure 12 shows two surfaces that overlap in the xy plane but have no depth
overlap. This process is then repeated for the next surface in the list. So long as
no overlaps occur, each surface is processed in depth order until all have been
scan-converted. If a depth overlap is detected at any point in the list, we need
to make some additional comparisons to determine whether any of the surfaces
should be reordered.

We make the following tests for each surface that has a depth overlap with S.
If any one of these tests is true, no reordering is necessary for S and the surface
being tested. The tests are listed in order of increasing difficulty:

1. The bounding rectangles (coordinate extents) in the xy directions for the
two surfaces do not overlap.

2. Surface S is completely behind the overlapping surface relative to the
viewing position.

3. The overlapping surface is completely in front of S relative to the viewing
position.

4. The boundary-edge projections of the two surfaces onto the view plane
do not overlap.

We perform these tests in the order listed and proceed to the next overlapping
surface as soon as we find that one of the tests is true. If all the overlapping surfaces
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F I G U R E 1 3
Two surfaces with depth overlap but
no overlap in the x direction.
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F I G U R E 1 4
Surface S is completely behind the
overlapping surface S ′.

xv

zv
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F I G U R E 1 5
Overlapping surface S ′ is completely
in front of surface S , but S is not
completely behind S ′.

(a) (b)

F I G U R E 1 6
Two polygon surfaces with overlapping bounding rectangles in the x y plane.

pass at least one of these tests, then S is the most distant surface. No reordering
is then necessary, therefore, and S is scan-converted.

Test 1 is performed in two parts. We check for overlap first in the x direction,
then in the y direction. If there is no surface overlap in either of these directions,
the two planes cannot obscure one other. An example of two surfaces that overlap
in the z direction but not in the x direction is shown in Figure 13.

We can perform tests 2 and 3 using back-front polygon tests. That is, we
substitute the coordinates for all vertices of S into the plane equation for the
overlapping surface and check the sign of the result. If the plane equations are set
up so that the front of the surface is toward the viewing position, then S is behind
S′ if all vertices of S are in back of S′ (Figure 14). Similarly, S ′ is completely
ahead of S if all vertices of S are in front of S′ . Figure 15 shows an overlapping
surface S′ that is completely in front of S, but surface S is not completely behind
S′ (test 2 is not true).

If tests 1 through 3 have all failed, we perform test 4 to determine whether the
two surface projections overlap. As demonstrated in Figure 16, two surfaces
may or may not intersect even though their coordinate extents overlap.

xv
zv

S�
S

F I G U R E 1 7
Surface S extends to a greater depth,
but it obscures surface S ′.

xv

zv

S�
S	

S

F I G U R E 1 8
Three surfaces that have been entered
into the sorted surface list in the order
S , S ′, S ′′ should be reordered as
S ′, S ′′, S .

Should all four tests fail for an overlapping surface S′, we interchange surfaces
S and S′ in the sorted list. An example of two surfaces that would be reordered
with this procedure is given in Figure 17. At this point, we still do not know for
certain that we have found the farthest surface from the view plane. Figure 18
illustrates a situation in which we would first interchange S and S′′. However, S′′

obscures part of S′, so we need to interchange S′′ and S′ to get the three surfaces
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into the correct depth order. Therefore, we need to repeat the testing process for
each surface that is reordered in the list.

It is possible for the algorithm just outlined to get into an infinite loop if two
or more surfaces alternately obscure each other, as in Figure 11. In such situa-
tions, the algorithm would continually rearrange the ordering of the overlapping
surfaces. To avoid such loops, we can flag any surface that has been reordered to
a farther depth position so that it cannot be moved again. If an attempt is made
to switch the surface a second time, we divide it into two parts to eliminate the
cyclic overlap. The original surface is then replaced by the two new surfaces, and
we continue processing as before.

7 BSP-Tree Method
A binary space-partitioning (BSP) tree is an efficient method for determining
object visibility by painting surfaces into the frame buffer from back to front,
as in the painter’s algorithm. The BSP tree is particularly useful when the view
reference point changes, but the objects in a scene are at fixed positions.

Applying a BSP tree to visibility testing involves identifying surfaces that are
behind or in front of the partitioning plane at each step of the space subdivision,
relative to the viewing direction. Figure 19 illustrates the basic concept in this
algorithm. With plane P1, we first partition the space into two sets of objects.
One set of objects is in back of plane P1 relative to the viewing direction, and
the other set is in front of P1. Because one object is intersected by plane P1, we
divide that object into two separate objects, labeled A and B. Objects A and C are
in front of P1, and objects B and D are behind P1. Because each object list contains
more than one object, we partition the space again with plane P2, recursively

F I G U R E 1 9
A region of space (a) is partitioned with two planes P1
and P2 to form the BSP tree representation shown
in (b).
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(b)
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processing the front and back object lists. This process continues until all object
lists contain no more than one object. This partitioning can be easily represented
using a binary tree such as the one shown in Figure 19(b). In this tree, the objects
are represented as terminal nodes, with front objects occupying the left branches
and back objects occupying the right branches. The location of an object in the
tree exactly represents its position relative to each of the partitioning planes.

For objects described with polygon facets, we often choose the partitioning
planes to coincide with polygon-surface planes. The polygon equations are then
used to identify back and front polygons, and the tree is constructed with one par-
titioning plane for each polygon face. Any polygon intersected by a partitioning
plane is split into two parts.

When the BSP tree is complete, we interpret the tree relative to the posi-
tion of our viewpoint, beginning at the root node. If the viewpoint is in front of
that partitioning plane, we recursively process the back subtree, then recursively
process the front subtree. If the viewpoint is behind the partitioning plane, we
reverse this, and process the front subtree followed by the back subtree. Thus, the
surfaces are generated for display in the order back to front, so that foreground
objects are painted over the background objects. Fast hardware implementations
for constructing and processing BSP trees are used in some systems.

8 Area-Subdivision Method
This technique for hidden-surface removal is essentially an image-space method,
but object-space operations can be used to accomplish depth ordering of surfaces.
The area-subdivision method takes advantage of area coherence in a scene by
locating those projection areas that represent part of a single surface. We apply
this method by successively dividing the total view-plane area into smaller and
smaller rectangles until each rectangular area contains the projection of part of a
single visible surface, contains no surface projections, or the area has been reduced
to the size of a pixel.

To implement this method, we need to establish tests that can quickly identify
the area as part of a single surface or tell us that the area is too complex to analyze
easily. Starting with the total view, we apply the tests to determine whether we
should subdivide the total area into smaller rectangles. If the tests indicate that
the view is sufficiently complex, we subdivide it. Next, we apply the tests to each
of the smaller areas, subdividing these if the tests indicate that visibility of a single
surface is still uncertain. We continue this process until the subdivisions are easily
analyzed as belonging to a single surface or until we have reached the resolution
limit. An easy way to do this is to successively divide the area into four equal
parts at each step, as shown in Figure 20. This approach is similar to that used
in constructing a quadtree. A viewing area with a pixel resolution of 1024 × 1024
could be subdivided ten times in this way before a subarea is reduced to the size
of a single pixel.

F I G U R E 2 0
Dividing a square area into equal-sized
quadrants at each step.

There are four possible relationships that a surface can have with an area of
the subdivided view plane. We can describe these relative surface positions using
the following classifications (Figure 21).

Surrounding Surface: A surface that completely encloses the area.
Overlapping Surface: A surface that is partly inside and partly outside the

area.
Inside Surface: A surface that is completely inside the area.
Outside Surface: A surface that is completely outside the area.
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F I G U R E 2 1
Possible relationships between
polygon surfaces and a rectangular
section of the viewing plane.

Surrounding
Surface

Overlapping
Surface

Inside
Surface

Outside
Surface

The tests for determining surface visibility within a rectangular area can be
stated in terms of the four surface classifications illustrated in Figure 21. No fur-
ther subdivisions of a specified area are needed if one of the following conditions
is true.

Condition 1: An area has no inside, overlapping, or surrounding surfaces
(all surfaces are outside the area).

Condition 2: An area has only one inside, overlapping, or surrounding
surface.

Condition 3: An area has one surrounding surface that obscures all other
surfaces within the area boundaries.

Initially, we can compare the coordinate extents of each surface with the area
boundaries. This will identify the inside and surrounding surfaces, but overlap-
ping and outside surfaces usually require intersection tests. If a single bounding
rectangle intersects the area in some way, additional checks are used to determine
whether the surface is surrounding, overlapping, or outside. Once a single inside,
overlapping, or surrounding surface has been identified, the surface color values
are stored in the frame buffer.

One method for testing condition 3 is to sort the surfaces according to mini-
mum depth from the view plane. For each surrounding surface, we then compute
the maximum depth within the area under consideration. If the maximum depth
of one of these surrounding surfaces is closer to the view plane than the minimum
depth of all other surfaces within the area, condition 3 is satisfied. Figure 22
illustrates this situation.

(Surrounding
Surface)

Area
xv

zmax

zv

F I G U R E 2 2
Within a specified area, a surrounding
surface with a maximum depth of
zmax obscures all surfaces that have a
minimum depth beyond zmax.

Another method for testing condition 3 that does not require depth sorting
is to use plane equations to calculate depth values at the four vertices of the area
for all surrounding, overlapping, and inside surfaces. If all four depths for one of
the surrounding surfaces are less than the calculated depths for all other surfaces,
condition 3 is satisfied. Then the area can be displayed with the colors for that
surrounding surface.

For some situations, the previous two testing methods may fail to identify cor-
rectly a surrounding surface that obscures all the other surfaces. Further testing
could be carried out to identify the single surface that covers the area, but it is faster
to subdivide the area than to continue with more complex testing. Once a surface
has been identified as an outside or surrounding surface for an area, it will remain
in that category for all subdivisions of the area. Furthermore, we can expect to elim-
inate some inside and overlapping surfaces as the subdivision process continues,
so that the areas become easier to analyze. In the limiting case, when a subdivi-
sion the size of a pixel is produced, we simply calculate the depth of each relevant
surface at that point and assign the color of the nearest surface to that pixel.

As a variation on the basic subdivision process, we could subdivide areas
along surface boundaries instead of dividing them in half. If the surfaces have

Visible-Surface Detection Methods

478



Area A

S

xvA1

A2

zv

yv

F I G U R E 2 3
Area A is subdivided into A1 and A2
using the boundary of surface S on the
view plane.

been sorted according to minimum depth, we can use the surface of smallest
depth value to subdivide a given area. Figure 23 illustrates this method for
subdividing areas. The projection of the boundary of surface S is used to partition
the original area into the subdivisions A1 and A2. Surface S is then a surrounding
surface for A1, and visibility conditions 2 and 3 can be tested to determine whether
further subdividing is necessary. In general, fewer subdivisions are required using
this approach, but more processing is needed to subdivide areas and to analyze
the relation of surfaces to the subdivision boundaries.

9 Octree Methods
When an octree representation is used for the viewing volume, visible-surface
identification is accomplished by searching octree nodes in a front-to-back order.
In Figure 24, the foreground of a scene is contained in octants 0, 1, 2, and 3.
Surfaces in the front of these octants are visible to the viewer. Any surfaces toward
the rear of the front octants or in the back octants (4, 5, 6, and 7) may be hidden
by the front surfaces.

We can process the octree nodes of Figure 24 in the order 0, 1, 2, 3, 4, 5,
6, 7. This results in a depth-first traversal of the octree, where the nodes for the
four front suboctants of octant 0 are visited before the nodes for the four back

7
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0
1

4
5

6

Numbered
Octants

of a Region

Viewing
Direction

F I G U R E 2 4
Objects in octants 0, 1, 2, and 3 obscure objects in the back
octants (4, 5, 6, 7) when the viewing direction is as shown.
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suboctants. The traversal of the octree continues in this order for each octant
subdivision.
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F I G U R E 2 5
Octant divisions for a region of space
and the corresponding quadrant plane.

When a color value is encountered in an octree node, that color is saved in the
quadtree only if no values have previously been saved for the same area. In this
way, only the front colors are saved. Nodes that have the value “void” are ignored.
Any node that is completely obscured is eliminated from further processing, so
that its subtrees are not accessed. Figure 25 depicts the octants in a region
of space and the corresponding quadrants on the view plane. Contributions to
quadrant 0 come from octants 0 and 4. Color values in quadrant 1 are obtained
from surfaces in octants 1 and 5, and values in each of the other two quadrants
are generated from the pairs of octants aligned with each of these quadrants.

Effective octree visibility testing is carried out with recursive processing of
octree nodes and the creation of a quadtree representation for the visible surfaces.
In most cases, both a front and a back octant must be considered in determining
the correct color values for a quadrant. But if the front octant is homogeneously
filled with some color, we do not process the back octant. For heterogeneous
regions, a recursive procedure is called, passing as new arguments the child of
the heterogeneous octant and a newly created quadtree node. If the front is empty,
it is necessary only to process the child of the rear octant. Otherwise, two recursive
calls are made: one for the rear octant and one for the front octant.

Different views of objects represented as octrees can be obtained by applying
transformations to the octree representation that reorient the object according to
the view selected. Octants can then be renumbered so that the octree representa-
tion is always organized with octants 0, 1, 2, and 3 as the front face.

10 Ray-Casting Method

F I G U R E 2 6
A ray along the line of sight from a pixel position
through a scene.

pixel

If we consider the line of sight from a pixel position on the view plane through
a scene, as in Figure 26, we can determine which objects in the scene (if any)
intersect this line. After calculating all ray-surface intersections, we identify the
visible surface as the one whose intersection point is closest to the pixel. This
visibility-detection scheme uses ray casting procedures. Ray casting, as a visibil-
ity-detection tool, is based on geometricoptics methods, which trace the paths
of light rays. Because there are an infinite number of light rays in a scene and we
are interested only in those rays that pass through pixel positions, we can trace

Visible-Surface Detection Methods

480



We can think of ray casting as a variation on the depth-buffer method (Sec-
tion 3). In the depth-buffer algorithm, we process surfaces one at a time and
calculate depth values for all projection points over the surface. The calculated
surface depths are then compared to previously stored depths to determine vis-
ible surfaces at each pixel. In ray casting, we process pixels one at a time and
calculate depths for all surfaces along the projection path to that pixel.

11 Comparison of Visibility-Detection
Methods

The effectiveness of a visible-surface detection method depends on the character-
istics of a particular application. If the surfaces in a scene are widely distributed
along the viewing direction so that there is very little depth overlap, a depth-
sorting or BSP-tree method is often most efficient. When there are few overlaps of
the surface projections on the view plane, a scan-line or area-subdivision approach
is a fast way to locate visible surfaces.

As a general rule, either the depth-sorting algorithm or the BSP-tree method
is a highly effective approach for scenes with only a few surfaces. This is because
these scenes usually have few surfaces that overlap in depth. The scan-line method
also performs well when a scene contains a small number of surfaces. We can
use the scan-line, depth-sorting, or BSP-tree method to identify visible surfaces
effectively for scenes with up to several thousand polygon surfaces. With scenes
that contain more than a few thousand surfaces, the depth-buffer method or
octree approach performs best. The depth-buffer method has a nearly constant
processing time, independent of the number of surfaces in a scene. This is because
the size of the surface areas decreases as the number of surfaces in the scene
increases. Therefore, the depth-buffer method exhibits relatively low performance
with simple scenes and relatively high performance with complex scenes. BSP
trees are useful when multiple views are to be generated using different view
reference points. If a scene contains curved-surface representations, we can use
octree or ray-casting methods to identify visible parts of the scene.

When octree representations are used in a system, the visibility-detection pro-
cess is fast and simple. Only integer additions and subtractions are used in the pro-
cess, and there is no need to perform sorting or intersection calculations. Another
advantage of octrees is that they store more than just the surface geometry. The
entire solid region of an object is available for display, which makes the octree rep-
resentation useful for obtaining cross-sectional slices of three-dimensional objects.

It is possible to combine and implement the different visible-surface detection
methods in various ways. In addition, visibility-detection algorithms are often
implemented in hardware, and special systems utilizing parallel processing are
employed to increase the efficiency of these methods. Special hardware systems
are used when processing speed is an especially important consideration, as in
the generation of animated views for flight simulators.

the light-ray paths backward from the pixels through the scene. The ray-casting
approach is an effective visibility-detection method for scenes with curved sur-
faces, particularly spheres.

Ray casting is a special case of ray-tracing algorithms that trace multiple ray
paths to pick up global reflection and refraction contributions from multiple
objects in a scene. With ray casting, we only follow a ray out from each pixel to
the nearest object. Efficient ray-surface intersection calculations have been devel-
oped for common objects, particularly spheres.
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12 Curved Surfaces
Effective methods for determining the visibility of objects with curved surfaces
include ray casting and octree methods. With ray casting, we calculate ray-surface
intersections and locate the smallest intersection distance along the pixel ray.
With octrees, we simply search the nodes from front to back to locate the surface
color values. Once an octree representation has been established from the input
definition of the objects, all visible surfaces are identified with the same processing
procedures. No special considerations need be given to different kinds of surfaces,
curved or otherwise.

A curved surface can also be approximated as a polygon mesh, and we can
then use one of the visible-surface identification methods previously discussed.
But for some objects, such as spheres, it could be more efficient as well as more
accurate to use ray casting and the equations describing the curved surface.

Curved-Surface Representations
We can represent a surface with an implicit equation of the form f (x, y, z) = 0 or

z = f (x, y)

Many objects of interest, such as spheres, ellipsoids, cylinders, and cones, have
quadratic representations. These surfaces are commonly used to model molecular
structures, roller bearings, rings, and shafts.

Scan-line and ray-casting algorithms often involve numerical approximation
techniques to solve the surface equation at the intersection point with a scan line
or with a pixel ray. Various techniques, including parallel calculations and fast
hardware implementations, have been developed for solving the curved-surface
intersection equations for commonly used objects.

Surface Contour Plots
For many applications in mathematics, physical sciences, engineering, and other
fields, it is useful to display a surface function with a set of contour lines that
show the surface shape. The surface may be described with an equation or with
data tables, such as topographic data on elevations or population density. With
an explicit functional representation, we can plot the visible surface contour lines
and eliminate those contour sections that are hidden by the visible parts of the
surface.

To obtain an xy plot of a functional surface, we can write the surface repre-
sentation in the form

y = f (x, z) (8)

A curve in the xy plane can then be plotted for values of z within some selected
range, using a specified interval �z. Starting with the largest value of z, we plot
the curves from “front” to “back” and eliminate hidden sections. We draw the
curve sections on the screen by mapping an xy range for the function into an
xy pixel screen range. Then, unit steps are taken in x and the corresponding
y value for each x value is determined from Eq. 8 for a given value of z.

One way to identify the visible curve sections on the surface is to maintain a
list of ymin and ymax values previously calculated for the pixel x coordinates on the
screen. As we step from one pixel x position to the next, we check the calculated

with a parametric representation. Spline surfaces, for example, are normally
described with parametric equations. In some cases, it is useful to obtain an
explicit surface equation, such as with a height function over an xy ground plane:
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y value against the stored range, ymin and ymax, for the next pixel. If ymin ≤ y ≤ ymax,
that point on the surface is not visible and we do not plot it. But if the calculated
y value is outside the stored y bounds for that pixel, the point is visible. We then
plot the point and reset the bounds for that pixel. Similar procedures can be used
to project the contour plot onto the xz or yz plane.

We can apply the same methods to a discrete set of data points by determining
isosurface lines. For example, if we have a discrete set of z values for an nx ×ny grid
of xy values, we can determine the path for a line of constant z over the surface

13 Wire-Frame Visibility Methods
Scenes usually do not contain isolated line sections, unless we are displaying a
graph, diagram, or network layout. But often we want to view a three-dimensional
scene in an outline form to obtain a quick display of the object features. The
fastest way to generate a wire-frame view of a scene is to display all object edges.
However, it may be difficult to determine the front and back features of the objects
in such a display. One solution to this problem is to apply depth cueing, so that
the displayed intensity of a line is a function of its distance from the viewer.
Alternatively, we can apply visibility tests, so that hidden line sections can be
either eliminated or displayed differently from the visible edges. Procedures for
determining visibility of object edges are referred to as wire-frame visibility
methods. They are also called visible-line detection methods or hidden-line
detection methods. In addition, some of the visible-surface methods discussed in
preceding sections can be used to test for edge visibility.

Wire-Frame Surface-Visibility Algorithms
A direct approach to identifying visible line sections is to compare edge posi-
tions with the positions of the surfaces in a scene. This process involves the same
methods used in line-clipping algorithms. That is, we test the position of line end-
points with respect to the boundaries of a specified area, but, for visibility testing,
we also need to compare edge and surface depth values. When the projected edge
endpoints of a line segment are both within the projected area of a surface, we
compare the depth of the endpoints to the surface depth at those (x, y) positions.
If both endpoints are behind the surface, we have a hidden edge. If both end-
points are in front of the surface, the edge is visible with respect to that surface.
Otherwise, we must calculate intersection positions and determine the depth val-
ues at those intersection points. If the edge has greater depth than the surface at
the perimeter intersections, part of the edge is hidden by the surface, as in Fig-
ure 27(a). Another possibility is that an edge has greater depth at one bound-
ary intersection and less depth than the surface at the other boundary intersection
(assuming surfaces are convex). In that case, we need to determine where the edge
penetrates the surface interior, as in Figure 27(b). Once we have identified a
hidden section of an edge, we could eliminate it, display it as a dashed line, or
display it in some other way to distinguish it from the visible sections.

Some of the visible-surface detection methods are readily adapted to wire-
frame visibility testing of object edges. Using a back-face method, we could

using contour plotting methods. Each selected contour line can then be project-
ed onto a view plane and displayed with straight-line segments. Again, lines can
be drawn on the display device in a front-to-back depth order, and we eliminate
contour sections that pass behind previously drawn (visible) contour lines.
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F I G U R E 2 7
Hidden-line sections (dashed) for a line (a)
that has greater depth than a surface and a
line (b) that is partially behind a surface and
partially in front of the surface.

(a)

(b)

identify all the back surfaces of an object and display only the boundaries for
the visible surfaces. With depth sorting, surfaces can be painted into the refresh
buffer so that surface interiors are in the background color while boundaries are in
the foreground color. By processing the surfaces from back to front, hidden lines
are erased by the nearer surfaces. An area-subdivision method can be adapted to
hidden-line removal by displaying only the boundaries of visible surfaces. And
scan-line methods can be used to display the scan-line intersection positions at
the boundaries of visible surfaces.

Wire-Frame Depth-Cueing Algorithm
Another method for displaying visibility information is to vary the brightness
of objects in a scene as a function of distance from the viewing position. This
depth-cueing method is typically applied using the linear function

fdepth(d) = dmax − d
dmax − dmin

(9)

where d is the distance of a point from the viewing position. Values for minimum
and maximum depth, dmin and dmax, can be set to convenient values for a particular
application, or the minimum and maximum depths can be set to the normaliza-
tion depth range: dmin = 0.0 and dmax = 1.0. As each pixel position is processed,
its color is multiplied by fdepth(d). Thus, nearer points are displayed with higher
intensities, and the points at the maximum depth have an intensity equal to 0.

The depth-cueing function can be implemented with various options. In some
graphics libraries, a general atmosphere function is available, which can combine
depth cueing with atmospheric effects to simulate smoke or haze, for example.
Thus, an object s color could be modified by the depth-cueing function and then
combined with the atmosphere color.
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14 OpenGL Visibility-Detection Functions
We can apply both back-face removal and the depth-buffer visibility-testing
method to our scenes using functions that are provided in the basic library of
OpenGL. In addition, we can use OpenGL functions to construct a wire-frame
display of a scene with the hidden lines removed, and we can display scenes with
depth cueing.

OpenGL Polygon-Culling Functions
Back-face removal is accomplished with the functions

glEnable (GL_CULL_FACE);
glCullFace (mode);

where parameter mode is assigned the value GL BACK. In fact, we could use this
function to remove the front faces instead, or we could even remove both front
and back faces. If our viewing position is inside a building, for example, then
we want to see only the back faces (the inside of the rooms). In this case, we could
either set parameter mode to GL FRONT, or we could change the definition of
front-facing polygons using theglFrontFace functio .
tion moves outside the building, we can cull the back faces
n some applications, we might want to view only other

such as point sets and individual straight-line segments.
surfaces in a scene, we set parameter mode to the
GL FRONT AND BACK.

By default, parameter mode in the glCullFace function has the value
GL BACK. Therefore, if we activate culling with the glEnable function with-
out explicitly invoking function glCullFace, the back faces in a scene will be
removed. The culling routine is turned off with

glDisable (GL_CULL_FACE);

OpenGL Depth-Buffer Functions
To use the OpenGL depth-buffer visibility-detection routines, we first need to
modify the GL Utility Toolkit (GLUT) initialization function for the display mode
to include a request for the depth buffer, as well as for the refresh buffer. We do
this, for example, with the statement

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

Depth buffer values can then be initialized with

glClear (GL_DEPTH_BUFFER_BIT);

Normally, the depth buffer is initialized with the same statement that initializes
the refresh buffer to the background color. But we do need to clear the depth
buffer each time we want to display a new frame. In OpenGL, depth values are
normalized in the range from 0.0 to 1.0, so that the preceding initialization sets
all depth-buffer values to the maximum value 1.0 by default.

The OpenGL depth-buffer visibility-detection routines are activated with the
following function:

glEnable (GL_DEPTH_TEST);

n Then, if the viewing posi-
from the display; and

i primitives in a scene,
So, to eliminate all

OpenGL symbolic constant
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And we deactivate the depth-buffer routines with

glDisable (GL_DEPTH_TEST);

We can also apply depth-buffer visibility testing using some other initial value
for the maximum depth, and this initial value is chosen with the OpenGL function:

glClearDepth (maxDepth);

Parameter maxDepth can be set to any value between 0.0 and 1.0. To load this
initialization value into the depth buffer, we next must invoke the glClear
(GL DEPTH BUFFER BIT) function. Otherwise, the depth buffer is initialized
with the default value (1.0). Because surface-color calculations and other process-
ing are not performed for objects that are beyond the specified maximum depth,
this function can be used to speed up the depth-buffer routines when a scene
contains many distant objects that are behind the foreground objects.

Projection coordinates in OpenGL are normalized to the range from −1.0 to
1.0, and the depth values between the near and far clipping planes are further
normalized to the range from 0.0 to 1.0. The value 0.0 corresponds to the near
clipping plane (the projection plane), and the value 1.0 corresponds to the far
clipping plane. As an option, we can adjust these normalization values with

glDepthRange (nearNormDepth, farNormDepth);

By default, nearNormDepth = 0.0 and farNormDepth = 1.0. But with the
glDepthRange function, we can set these two parameters to any values within
the range from 0.0 to 1.0, including nearNormDepth > farNormDepth. Using the
glDepthRange function, we can restrict the depth-buffer testing to any region of
the view volume, and we can even reverse the positions of the near and far planes.

Another option available in OpenGL is the test condition that is to be used for
the depth-buffer routines. We specify a test condition with the following function:

glDepthFunc (testCondition);

Parameter testCondition can be assigned any one of the following
eight symbolic constants: GL LESS, GL GREATER, GL EQUAL, GL NOTEQUAL,
GL LEQUAL,GL GEQUAL,GL NEVER (no points are processed), andGL ALWAYS
(all points are processed). These different tests can be useful in various applica-
tions to reduce calculations in depth-buffer processing. The default value for
parameter testCondition is GL LESS, so that a depth value is processed if it
has a value that is less than the current value in the depth buffer for that pixel
position.

We can also set the status of the depth buffer so that it is in a read-only state
or in a read-write state. This is accomplished with

glDepthMask (writeStatus);

When writeStatus = GL TRUE (the default value), we can both read from
and write to the depth buffer. With writeStatus= GL FALSE, the write mode
for the depth buffer is disabled and we can retrieve values only for comparison
in depth testing. This feature is useful when we want to use the same compli-
cated background with displays of different foreground objects. After storing the
background in the depth buffer, we disable the write mode and process the fore-
ground. This allows us to generate a series of frames with different foreground
objects or with one object in different positions for an animation sequence. Thus,
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only the depth values for the background are saved. Another application of the

OpenGL Wire-Frame Surface-Visibility Methods
A wire-frame display of a standard graphics object can be obtained in OpenGL
by requesting that only its edges are to be generated. We do this by setting the
polygon-mode function as, for example:

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

But this displays both visible and hidden edges.
To eliminate the hidden lines in a wire-frame display, we can employ the

glEnable (GL_DEPTH_TEST);
glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
glColor3f (1.0, 1.0, 1.0);
/* Invoke the object-description routine. */

glPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (1.0, 1.0);
glColor3f (0.0, 0.0, 0.0);
/* Invoke the object-description routine again. */

glDisable (GL_POLYGON_OFFSET_FILL);

OpenGL Depth-Cueing Function
We can vary the brightness of an object as a function of its distance from the
viewing position with

glEnable (GL_FOG);

glFogi (GL_FOG_MODE, GL_ LINEAR);

This applies the linear depth function in Eq. 9 to object colors using dmin = 0.0
and dmax = 1.0. But we can set different values for dmin and dmax with the following
function calls:

glFogf (GL_FOG_START, minDepth);
glFogf (GL_FOG_END, maxDepth);

glDepthMask function is in displaying transparency effects. In this case, we want
to save only the depths of opaque objects for visibility testing, not the depths of
the transparent-surface positions. So the write mode for the depth buffer is turned
off when a transparent surface is processed. Similar commands are available for
setting the write status for the other buffers (color, index, and stencil).

depth-offset method  That is, we first specify the wireframe version of the object
using the foreground color, then we specify an interior fill version using a depth
offset and the background color for the interior fill. The depth offset ensures that
the background-color fill will not interfere with the display of the visible edges. As
an example, the following code segment generates a wire-frame display of an
object using a white foreground color and a black background color:
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In these two functions, parameters minDepth and maxDepth are assigned
floating-point values, although integer values can be used if we change the func-
tion suffix to i.

In addition, we can use the glFog function to set an atmosphere color that
is to be combined with the color of an object after applying the linear depth-
cueing function.

15 Summary
The simplest visibility test is the back-face detection algorithm, which is fast and
effective as an initial screening to eliminate many polygons from further visibility
tests. For a single convex polyhedron, back-face detection eliminates all hidden
surfaces but, in general, back-face detection cannot completely identify all hidden
surfaces.

A commonly used method for identifying all visible surfaces in a scene is the
depth-buffer algorithm. When applied to standard graphics objects, this proce-
dure is highly efficient, but it does have extra storage requirements. Two buffers
are needed: one to store pixel colors and one to store the depth values for the pixel
positions. Fast, incremental, scan-line methods are used to process each poly-
gon in a scene to calculate surface depths. As each surface is processed, the two
buffers are updated. An extension of the depth-buffer approach is the A-buffer,
which provides additional information for displaying antialiased and transparent
surfaces.

Several other visibility-detection methods have been devised. The scan-
line method processes all surfaces at once for each scan line. With the depth-
sorting method (painter’s algorithm), objects are “painted” into the refresh buffer
according to their distances from the viewing position. Subdivision schemes for
identifying visible parts of a scene include the BSP-tree method, area subdivi-
sion, and octree representations. Visible surfaces can also be detected using ray-
casting methods, which project lines from the pixel plane into a scene to determine
object intersection positions along these projected lines. Ray-casting methods are
an integral part of ray-tracing algorithms, which allow scenes to be displayed
with global-illumination effects.

Visibility-detection methods are also used in displaying three-dimensional
line drawings. With curved surfaces, we can display contour plots. For wire-frame
displays of polyhedrons, we search for the various edge sections of the surfaces
in a scene that are visible from the viewing position.

We can implement any visibility-detection scheme in an application program
by creating our own routines, but graphics libraries commonly provide functions
only for back-face removal and the depth-buffer method. In high-end computer-
graphics systems, the depth-buffer routines are hardware-implemented.

Functions for polygon culling and for depth-buffer visibility determinations
are available in the OpenGL core library. With the polygon-culling routines, we
can remove the back faces of standard graphics objects, their front faces, or both.
With the depth-buffer routines, we can set the range for the depth tests and the
type of depth testing that is to be performed. Wire-frame displays are obtained
using the OpenGL polygon-mode and polygon-offset operations. And we can also
generate OpenGL scenes using depth-cueing effects. In Table 1, we summarize
the OpenGL functions for visibility testing.
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T A B L E 1

Summary of OpenGL Visibility-Detection Functions

Function Description

glCullFace Specifies front or back planes of polygons for
culling operations when activated with
glEnable (GL CULL FACE).

glutInitDisplayMode Specifies depth-buffer operations using
argument GLUT DEPTH.

glClear (GL DEPTH BUFFER BIT) Initializes depth-buffer values to
the default (1.0) or a value specified
by the glClearDepth function.

glClearDepth Specifies an initial depth-buffer value.

glEnable (GL DEPTH TEST) Activates depth-testing operations.

glDepthRange Specifies a range for normalizing depth values.

glDepthFunc Specifies a depth-testing condition.

glDepthMask Sets write status for the depth buffer.

glPolygonOffset Specifies an offset to eliminate hidden lines in
a wire-frame display when a background fill
color is applied.

glFog Specifies linear depth-cueing operations and
values for minimum and maximum depth in the
depth-cueing calculations.

REFERENCES
Additional sources of information on visibility
algorithms include Elber and Cohen (1990), Franklin
and Kankanhalli (1990), Segal (1990), and Naylor,
Amanatides, and Thibault (1990). A-buffer methods
are presented in Cook, Carpenter, and Catmull (1987),
Haeberli and Akeley (1990), and Shilling and Strasser
(1993). A summary of contouring methods is given in
Earnshaw (1985).

Various programming techniques for visibility test-
ing can be found in Glassner (1990), Arvo (1991), Kirk
(1992), Heckbert (1994), and Paeth (1995). Woo, et al.
(1999) provide additional discussions of the OpenGL
visibility-detection functions. A complete listing of the
OpenGL functions in the core library and in GLU is pre-
sented in Shreiner (2000).

EXERCISES
1 Set up a back-face detection procedure that will

identify all the visible faces of any input convex
polyhedron that has different-colored surfaces.
The polyhedron is to be defined in a right-handed
viewing system, and the viewing direction is spec-
ified as user input.

2 Implement the procedure in the preceding exer-
cise using an orthographic parallel projection to
view visible faces of the input convex polyhedron.
Assume that all parts of the object are in front of
the view plane.
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3 Implement the procedure in Exercise 1 using a
perspective projection to view visible faces of the
input convex polyhedron. Assume that all parts
of the object are in front of the view plane.

4 Write a program to produce an animation of a
convex polyhedron. The object is to be rotated
incrementally about an axis that passes through
the object and is parallel to the view plane.
Assume that the object lies completely in front
of the view plane. Use an orthographic parallel
projection to map the views successively onto the
view plane.

5 Modify the program in the preceding exercise to
allow the user to switch between an orthographic
parallel projection and a perspective projection
using keyboard input.

6 Write a routine to implement the depth-buffer
method for the display of the visible surfaces of
any input polyhedron. The array for the depth-
buffer can be set to any convenient size on your
system, such as 500 × 500. How can the storage
requirements for the depth buffer be determined
from the definition of the objects to be displayed?

7 Modify the procedure in the preceding exercise
to display the visible surfaces in a scene contain-
ing any number of polyhedrons. Set up efficient
methods for storing and processing the various
objects in the scene.

8 Write a program using the procedure in the pre-
vious exercise that takes as input a set of polyhe-
drons contained within a (conceptual) sphere of
a given radius centered at the origin. Each time a
certain key is pressed, the program should gener-
ate a new random camera position outside of the
sphere and a random look-at point somewhere
inside the sphere. The view up vector should al-
ways be the positive y unit vector. The program
should then display the visible surfaces of the
objects in the scene from that viewpoint.

9 Modify the procedure of the preceding exercise to
implement the A-buffer algorithm for the display
of a scene containing both opaque and transpar-
ent surfaces.

10 Extend the procedure developed in the preceding
exercise to include antialiasing.

11 Write a program using the procedure in the pre-
vious exercise that takes as input a set of polyhe-
drons contained within a (conceptual) sphere of a
given radius centered at the origin, each of which
have randomized transparency values. Each
time a key is pressed, the program should gener-
ate a new random camera position outside of the
sphere and a random look-at point somewhere
inside the sphere. The view up vector should
always be the positive y unit vector. The program

should then display the visible surfaces of the
objects in the scene from that viewpoint.

12 Develop a program to implement the scan-line
algorithm for displaying the visible surfaces of a
given polyhedron. Use polygon tables to store the
definition of the object, and use coherence tech-
niques to evaluate points along and between scan
lines.

13 Write a program to implement the scan-line algo-
rithm for a scene containing several polyhedrons.
Use polygon tables to store the definition of the
object, and use coherence techniques to evaluate
points along and between scan lines.

14 Set up a program to display the visible surfaces
of a convex polyhedron using the painter’s algo-
rithm. That is, surfaces are to be sorted on depth
and painted on the screen from back to front.

15 Write a program that uses the depth-sorting
method to display the visible surfaces of any
given object with plane faces.

16 Develop a depth-sorting program to display the
visible surfaces in a scene containing several poly-
hedrons.

17 Write a program to display the visible surfaces of
a convex polyhedron using the BSP-tree method.

18 Give examples of situations where the two
methods discussed for condition 3 in the area-
subdivision algorithm will fail to identify cor-
rectly a surrounding surface that obscures all
other surfaces.

19 Develop an algorithm that would test a given
plane surface against a rectangular area to decide
whether it is a surrounding, overlapping, inside,
or outside surface.

20 Develop an algorithm for generating a quadtree
representation for the visible surfaces of an object
by applying the area-subdivision tests to deter-
mine the values of the quadtree elements.

21 Set up an algorithm to store a quadtree represen-
tation of an object in a frame buffer.

22 Set up a procedure to display the visible surfaces
of an object that is described with an octree rep-
resentation.

23 Use the procedure developed in the previous
exercise to write a program that displays the vis-
ible surfaces of a set of objects represented as
octree structures. The viewing parameters should
be taken in as input.

24 Devise an algorithm for viewing a single sphere
using the ray-casting method.

25 Discuss how antialiasing methods can be incorpo-
rated into the various hidden-surface elimination
algorithms.
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26 Write a routine to produce a surface contour plot
for a given surface function f (x, y).

27 Develop an algorithm for detecting visible line
sections in a scene by comparing each line in the
scene to each polygon surface facet.

28 Discuss how wire-frame displays might be gen-
erated with the various visible-surface detection
methods discussed in this chapter.

29 Set up a procedure for generating a wire-frame
display of a polyhedron with the hidden edges of
the object shown as dashed lines.

30 Write a program using the procedure devel-
oped in the previous exercise that takes a set
of polyhedrons contained within a (conceptual)
sphere of a given radius centered at the origin as
input and displays them as wireframe objects
with the hidden edges of each object shown as
dashed lines. Each time a key is pressed, the
program should generate a new random camera
position outside of the sphere and a random look-
at point somewhere inside the sphere. The view
up vector should always be the positive y unit
vector.

31 Write a program to display a polyhedron with
selected faces removed, using the OpenGL
polygon-culling functions. Each face of the poly-
gon is to be given a different color, and a face is
to be selected for removal with user input. Also,
a viewing position and other viewing parameters
are to be specified as input values.

32 Modify the program in the preceding exercise to
view the polyhedron from any position, using
the depth-buffer routines instead of the polygon-
culling routines.

33 Modify the program in the preceding exercise so
that the depth range and the depth test condition
can also be specified as user input.

34 Generate a wire-frame display of a poly-
hedron using the glPolygonMode and

glPolygonOffset functions as discussed in
Section 14.

35 Modify the program of the preceding exercise to
display the polyhedron using the depth-cueing
function glFogi.

36 Modify the program of the preceding exercise to
display several polyhedrons that are distributed
in depth. The depth-cueing range is to be set with
user input.

37 Modify the program in the previous exercise to
allow the change the camera position by mov-
ing it around the surface of a sphere whose
radius is defined as the distance from the camera
position to the look-at point, which is assumed
to be a point within the coordinate extents of
the set of objects in the scene. The distance from
the camera to the look-at point is assumed to be
large enough to make all objects lie in front of
the view plane for any camera position on the
sphere.

IN MORE DEPTH
1 Choose a visible surface algorithm in this chapter

based on the properties of your application and
the strengths and weaknesses of each of the algo-
rithms in terms of their computational complex-
ity. Implement the algorithm and use it to render
the visible surfaces of the objects in your scene.

2 Compare the rendering times for your scene with
and without visible surface detection using the
algorithm that you developed in the previous
exercise. Then, do the same using the built-in
back-face culling routines provided in OpenGL.
Is there any improvement over the built-in rou-
tines that you obtain by tailoring the detection
algorithm to your specific application? Discuss
any further improvements you could implement
in the algorithm or modifications that you could
make to the object representations to increase ren-
dering performance.
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