
Table of Contents

P E A R S O N C U S T O M L I B R A R Y

I

1. Computer Graphics Hardware

1

1Donald D. Hearn/M. Pauline Baker, Warren Carithers

Computer Graphics Hardware Color Plates

27

27Donald D. Hearn/M. Pauline Baker, Warren Carithers

2. Computer Graphics Software

29

29Donald D. Hearn/M. Pauline Baker, Warren Carithers

3. Graphics Output Primitives

45

45Donald D. Hearn/M. Pauline Baker, Warren Carithers

4. Attributes of Graphics Primitives

99

99Donald D. Hearn/M. Pauline Baker, Warren Carithers

5. Implementation Algorithms for Graphics Primitives and Attributes

131

131Donald D. Hearn/M. Pauline Baker, Warren Carithers

6. Two-Dimensional Geometric Transformations

189

189Donald D. Hearn/M. Pauline Baker, Warren Carithers

7. Two-Dimensional Viewing

227

227Donald D. Hearn/M. Pauline Baker, Warren Carithers

8. Three-Dimensional Geometric Transformations

273

273Donald D. Hearn/M. Pauline Baker, Warren Carithers

9. Three-Dimensional Viewing

301

301Donald D. Hearn/M. Pauline Baker, Warren Carithers

Three-Dimensional Viewing Color Plate

353

353Donald D. Hearn/M. Pauline Baker, Warren Carithers

10. Hierarchical Modeling

355

355Donald D. Hearn/M. Pauline Baker, Warren Carithers

11. Computer Animation

365

365Donald D. Hearn/M. Pauline Baker, Warren Carithers

II

12. Three-Dimensional Object Representations

389

389Donald D. Hearn/M. Pauline Baker, Warren Carithers

Three-Dimensional Object Representations Color Plate

407

407Donald D. Hearn/M. Pauline Baker, Warren Carithers

13. Spline Representations

409

409Donald D. Hearn/M. Pauline Baker, Warren Carithers

14. Visible-Surface Detection Methods

465

465Donald D. Hearn/M. Pauline Baker, Warren Carithers

15. Illumination Models and Surface-Rendering Methods

493

493Donald D. Hearn/M. Pauline Baker, Warren Carithers

Illumination Models and Surface-Rendering Methods Color Plates

541

541Donald D. Hearn/M. Pauline Baker, Warren Carithers

16. Texturing and Surface-Detail Methods

543

543Donald D. Hearn/M. Pauline Baker, Warren Carithers

Texturing and Surface-Detail Methods Color Plates

567

567Donald D. Hearn/M. Pauline Baker, Warren Carithers

17. Color Models and Color Applications

569

569Donald D. Hearn/M. Pauline Baker, Warren Carithers

Color Models and Color Applications Color Plate

589

589Donald D. Hearn/M. Pauline Baker, Warren Carithers

18. Interactive Input Methods and Graphical User Interfaces

591

591Donald D. Hearn/M. Pauline Baker, Warren Carithers

Interactive Input Methods and Graphical User Interfaces Color Plates

631

631Donald D. Hearn/M. Pauline Baker, Warren Carithers

19. Global Illumination

633

633Donald D. Hearn/M. Pauline Baker, Warren Carithers

Global Illumination Color Plates

659

659Donald D. Hearn/M. Pauline Baker, Warren Carithers

20. Programmable Shaders

663

663Donald D. Hearn/M. Pauline Baker, Warren Carithers

Programmable Shaders Color Plates

693

693Donald D. Hearn/M. Pauline Baker, Warren Carithers

21. Algorithmic Modeling

695

695Donald D. Hearn/M. Pauline Baker, Warren Carithers

Algorithmic Modeling Color Plates

725

725Donald D. Hearn/M. Pauline Baker, Warren Carithers

Two-Dimensional Viewing

1 The Two-Dimensional Viewing
Pipeline

2 The Clipping Window

3 Normalization and Viewport
Transformations

4 OpenGL Two-Dimensional
Viewing Functions

5 Clipping Algorithms

6 Two-Dimensional Point Clipping

7 Two-Dimensional Line Clipping

8 Polygon Fill-Area Clipping

9 Curve Clipping

10 Text Clipping

11 Summary

e now examine in more detail the procedures for displa-

ying views of a two-dimensional picture on an output de-

vice. Typically, a graphics package allows a user to specify

From Chapter 8 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

W
which part of a defined picture is to be displayed and where

that part is to be placed on the display device. Any convenient Cartesian

coordinate system, referred to as the world-coordinate reference

frame, can be used to define the picture. For a two-dimensional picture,

a view is selected by specifying a region of the xy plane that

contains the total picture or any part of it. A user can select a single

area for display, or several areas could be selected for simultaneous

display or for an animated panning sequence across a scene.

The picture parts within the selected areas are then mapped onto

specified areas of the device coordinates. When multiple view areas

are selected, these areas can be placed in separate display locations,

or some areas could be inserted into other, larger display areas.

227

Two-dimensional viewing transformations from world to device coordinates involve trans-

lation, rotation, and scaling operations, as well as procedures for deleting those parts of

the picture that are outside the limits of a selected scene area.

1 The Two-Dimensional Viewing Pipeline
A section of a two-dimensional scene that is selected for display is called a clipping
window because all parts of the scene outside the selected section are “clipped”
off. The only part of the scene that shows up on the screen is what is inside
the clipping window. Sometimes the clipping window is alluded to as the world
window or the viewing window. And, at one time, graphics systems referred to the
clipping window simply as “the window,” but there are now so many windows
in use on computers that we need to distinguish between them. For example, a
window-management system can create and manipulate several areas on a video
screen, each of which is called “a window,” for the display of graphics and text.
So we will always use the term clipping window to refer to a selected section of
a scene that is eventually converted to pixel patterns within a display window
on the video monitor. Graphics packages allow us also to control the placement
within the display window using another “window” called the viewport. Objects
inside the clipping window are mapped to the viewport, and it is the viewport
that is then positioned within the display window. The clipping window selects
what we want to see; the viewport indicates where it is to be viewed on the output
device.

By changing the position of a viewport, we can view objects at different posi-
tions on the display area of an output device. Multiple viewports can be used to
display different sections of a scene at different screen positions. Also, by vary-
ing the size of viewports, we can change the size and proportions of displayed
objects. We achieve zooming effects by successively mapping different-sized clip-
ping windows onto a fixed-size viewport. As the clipping windows are made
smaller, we zoom in on some part of a scene to view details that are not shown
with the larger clipping windows. Similarly, more overview is obtained by zoom-
ing out from a section of a scene with successively larger clipping windows. And
panning effects are achieved by moving a fixed-size clipping window across the
various objects in a scene.

Usually, clipping windows and viewports are rectangles in standard posi-
tion, with the rectangle edges parallel to the coordinate axes. Other window or
viewport geometries, such as general polygon shapes and circles, are used in
some applications, but these shapes take longer to process. We first consider only
rectangular viewports and clipping windows, as illustrated in Figure 1.

F I G U R E 1
A clipping window and associated
viewport, specified as rectangles
aligned with the coordinate axes.

ywmax

xwmin

World Coordinates

Clipping Window

ywmin

Viewport
yvmax

xvminxwmax

Viewport Coordinates

xvmax

yvmin

Two-Dimensional Viewing

228

Construct
World-Coordinate

Scene Using
Modeling-Coordinate

Transformations

MC

Convert
World

Coordinates
to

Viewing
Coordinates

Transform Viewing
Coordinates to

Normalized
Coordinates

WC VC NC
Map Normalized
Coordinates to

Device
Coordinates

DC

F I G U R E 2
Two-dimensional viewing-transformation pipeline.

The mapping of a two-dimensional, world-coordinate scene description to
device coordinates is called a two-dimensional viewing transformation. Some-
times this transformation is simply referred to as the window-to-viewport transfor-
mation or the windowing transformation. But, in general, viewing involves more
than just the transformation from clipping-window coordinates to viewport
coordinates. In analogy with three-dimensional viewing, we can describe the steps
for two-dimensional viewing as indicated in Figure 2. Once a world-coordinate
scene has been constructed, we could set up a separate two-dimensional, viewing-
coordinate reference frame for specifying the clipping window. But the clipping
window is often just defined in world coordinates, so viewing coordinates for
two-dimensional applications are the same as world coordinates. (For a three-
dimensional scene, however, we need a separate viewing frame to specify the
parameters for the viewing position, direction, and orientation.)

To make the viewing process independent of the requirements of any output
device, graphics systems convert object descriptions to normalized coordinates
and apply the clipping routines. Some systems use normalized coordinates in the
range from 0 to 1, and others use a normalized range from −1 to 1. Depending
upon the graphics library in use, the viewport is defined either in normalized
coordinates or in screen coordinates after the normalization process. At the final
step of the viewing transformation, the contents of the viewport are transferred
to positions within the display window.

Clipping is usually performed in normalized coordinates. This allows us to
reduce computations by first concatenating the various transformation matrices.
Clipping procedures are of fundamental importance in computer graphics. They
are used not only in viewing transformations, but also in window-manager sys-
tems, in painting and drawing packages to erase picture sections, and in many
other applications.

2 The Clipping Window
To achieve a particular viewing effect in an application program, we could design
our own clipping window with any shape, size, and orientation we choose. For
example, we might like to use a star pattern, an ellipse, or a figure with spline
boundaries as a clipping window. But clipping a scene using a concave polygon
or a clipping window with nonlinear boundaries requires more processing than
clipping against a rectangle. We need to perform more computations to determine
where an object intersects a circle than to find out where it intersects a straight line.
The simplest window edges to clip against are straight lines that are parallel to the
coordinate axes. Therefore, graphics packages commonly allow only rectangular
clipping windows aligned with the x and y axes.

If we want some other shape for a clipping window, then we must implement
our own clipping and coordinate-transformation algorithms, or we could just edit

Two-Dimensional Viewing

229

the picture to produce a certain shape for the display frame around the scene.
For example, we could trim the edges of a picture with any desired pattern by
overlaying polygons that are filled with the background color. In this way, we
could generate any desired border effects or even put interior holes in the picture.

Rectangular clipping windows in standard position are easily defined by
giving the coordinates of two opposite corners of each rectangle. If we would
like to get a rotated view of a scene, we could either define a rectangular clip-
ping window in a rotated viewing-coordinate frame or, equivalently, we could
rotate the world-coordinate scene. Some systems provide options for selecting a
rotated, two-dimensional viewing frame, but usually the clipping window must
be specified in world coordinates.

Viewing-Coordinate Clipping Window
A general approach to the two-dimensional viewing transformation is to set up a
viewing-coordinate system within the world-coordinate frame. This viewing frame
provides a reference for specifying a rectangular clipping window with any
selected orientation and position, as in Figure 3. To obtain a view of the world-
coordinate scene as determined by the clipping window of Figure 3, we just
need to transfer the scene description to viewing coordinates. Although many
graphics packages do not provide functions for specifying a clipping window in
a two-dimensional viewing-coordinate system, this is the standard approach for
defining a clipping region for a three-dimensional scene.

World Coordinates

y world

y view

x view

y0

x0 x world

Clipping
Window

F I G U R E 3
A rotated clipping window defined in
viewing coordinates.

We choose an origin for a two-dimensional viewing-coordinate frame at some
world position P0 = (x0, y0), and we can establish the orientation using a world
vector V that defines the yview direction. Vector V is called the two-dimensional
view up vector. An alternative method for specifying the orientation of the view-
ing frame is to give a rotation angle relative to either the x or y axis in the world
frame. From this rotation angle, we can then obtain the view up vector. Once we

The first step in the transformation sequence is to translate the viewing origin
to the world origin. Next, we rotate the viewing system to align it with the world
frame. Given the orientation vector V, we can calculate the components of unit
vectors v = (vx, vy) and u = (ux, uy) for the yview and xview axes, respectively.
These unit vectors are used to form the first and second rows of the rotation
matrix R that aligns the viewing xview yview axes with the world xw yw axes.

Object positions in world coordinates are then converted to viewing coordi-
nates with the composite two-dimensional transformation matrix

MWC,VC = R · T (1)

where T is the translation matrix that takes the viewing origin P0 to the world
origin, and R is the rotation matrix that rotates the viewing frame of reference into
coincidence with the world-coordinate system. Figure 4 illustrates the steps in
this coordinate transformation.

World-Coordinate Clipping Window
A routine for defining a standard, rectangular clipping window in world coordi-
nates is typically provided in a graphics-programming library. We simply specify
two world-coordinate positions, which are then assigned to the two opposite

have established the parameters that define the viewing-coordinate frame, we
transform the scene description to the viewing system. This involves a sequence
of transformations equivalent to superimposing the viewing frame on the world
frame.

Two-Dimensional Viewing

230

(a)

x0 x world

y
world

y0

y view

x view

T

(b)

x world
x view

y
view

R

y
world

F I G U R E 4
A viewing-coordinate frame is moved
into coincidence with the world frame
by (a) applying a translation matrix T
to move the viewing origin to the
world origin, then (b) applying a
rotation matrix R to align the axes of
the two systems.

corners of a standard rectangle. Once the clipping window has been established,
the scene description is processed through the viewing routines to the output
device.

(a)

y0

x0

y world

x world

V

(b)

Clipping Window

y world

x world

F I G U R E 5
A triangle (a), with a selected
reference point and orientation vector,
is translated and rotated to position (b)
within a clipping window.

If we want to obtain a rotated view of a two-dimensional scene, as discussed
in the previous section, we perform exactly the same steps as described there, but
without considering a viewing frame of reference. Thus, we simply rotate (and
possibly translate) objects to a desired position and set up the clipping window—
all in world coordinates. For example, we could display a rotated view of the
triangle in Figure 5(a) by rotating it into the position we want and setting up
a standard clipping rectangle. In analogy with the coordinate transformation de-
scribed in the previous section, we could also translate the triangle to the world
origin and define a clipping window around the triangle. In that case, we define an

3 Normalization and Viewport
Transformations

With some graphics packages, the normalization and window-to-viewport trans-
formations are combined into one operation. In this case, the viewport coordinates
are often given in the range from 0 to 1 so that the viewport is positioned within
a unit square. After clipping, the unit square containing the viewport is mapped
to the output display device. In other systems, the normalization and clipping
routines are applied before the viewport transformation. For these systems, the
viewport boundaries are specified in screen coordinates relative to the display-
window position.

Mapping the Clipping Window into a Normalized Viewport
To illustrate the general procedures for the normalization and viewport transfor-
mations, we first consider a viewport defined with normalized coordinate values
between 0 and 1. Object descriptions are transferred to this normalized space
using a transformation that maintains the same relative placement of a point in

orientation vector and choose a reference point such as the triangle’s centroid.
Then we translate the reference point to the world origin and rotate the orientation
vector onto the yworld axis using transformation matrix 1. With the triangle in the
desired orientation, we can use a standard clipping window in world coordinates
to capture the view of the rotated triangle. The transformed position of the trian-
gle and the selected clipping window are shown in Figure 5(b).

Two-Dimensional Viewing

231

ywmax

(xw, yw)

Clipping Window

ywmin

xwmin xwmax

(xv, yv)

Normalization
Viewport

yvmax

1

yvmin

xvmin xvmax 10

F I G U R E 6
A point (x w, y w) in a world-coordinate clipping window is mapped to viewport coordinates
(x v, y v), within a unit square, so that the relative positions of the two points in their
respective rectangles are the same.

the viewport as it had in the clipping window. If a coordinate position is at the
center of the clipping window, for instance, it would be mapped to the center of
the viewport. Figure 6 illustrates this window-to-viewport mapping. Position
(xw, yw) in the clipping window is mapped to position (xv, yv) in the associated
viewport.

To transform the world-coordinate point into the same relative position within
the viewport, we require that

xv − xvmin

xvmax − xvmin
= xw − xwmin

xwmax − xwmin

yv − yvmin

yvmax − yvmin
= yw − ywmin

ywmax − ywmin

(2)

Solving these expressions for the viewport position (xv, yv), we have

xv = sxxw + tx

yv = sy yw + ty
(3)

where the scaling factors are

sx = xvmax − xvmin

xwmax − xwmin

sy = yvmax − yvmin

ywmax − ywmin

(4)

and the translation factors are

tx = xwmaxxvmin − xwminxvmax

xwmax − xwmin

ty = ywmax yvmin − ywmin yvmax

ywmax − ywmin

(5)

Because we are simply mapping world-coordinate positions into a viewport
that is positioned near the world origin, we can also derive Equations 3 using
any transformation sequence that converts the rectangle for the clipping window
into the viewport rectangle. For example, we could obtain the transformation
from world coordinates to viewport coordinates with the following sequence:

1. Scale the clipping window to the size of the viewport using a fixed-point
position of (xwmin, ywmin).

2. Translate (xwmin, ywmin) to (xvmin, yvmin).

Two-Dimensional Viewing

232

The scaling transformation in step (1) can be represented with the two-
dimensional matrix

S =
⎡

⎣

sx 0 xwmin(1 − sx)

0 sy ywmin(1 − sy)

0 0 1

⎤

⎦ (6)

where sx and sy are the same as in Equations 4. The two-dimensional matrix
representation for the translation of the lower-left corner of the clipping window
to the lower-left viewport corner is

T =
⎡

⎣

1 0 xvmin − xwmin
0 1 yvmin − ywmin
0 0 1

⎤

⎦ (7)

And the composite matrix representation for the transformation to the normalized
viewport is

Mwindow, normviewp = T · S =
⎡

⎣

sx 0 tx

0 sy ty

0 0 1

⎤

⎦ (8)

which gives us the same result as in Equations 3. Any other clipping-window ref-
erence point, such as the top-right corner or the window center, could be used for
the scale–translate operations. Alternatively, we could first translate any clipping-
window position to the corresponding location in the viewport, and then scale
relative to that viewport location.

The window-to-viewport transformation maintains the relative placement of
object descriptions. An object inside the clipping window is mapped to a corre-
sponding position inside the viewport. Similarly, an object outside the clipping
window is outside the viewport.

Relative proportions of objects, on the other hand, are maintained only if the
aspect ratio of the viewport is the same as the aspect ratio of the clipping window.
In other words, we keep the same object proportions if the scaling factors sx and
sy are the same. Otherwise, world objects will be stretched or contracted in either
the x or y directions (or both) when displayed on the output device.

The clipping routines can be applied using either the clipping-window bound-
aries or the viewport boundaries. After clipping, the normalized coordinates are
transformed into device coordinates. And the unit square can be mapped onto the
output device using the same procedures as in the window-to-viewport transfor-
mation, with the area inside the unit square transferred to the total display area
of the output device.

Mapping the Clipping Window into a Normalized Square
Another approach to two-dimensional viewing is to transform the clipping win-
dow into a normalized square, clip in normalized coordinates, and then transfer
the scene description to a viewport specified in screen coordinates. This transfor-
mation is illustrated in Figure 7 with normalized coordinates in the range from
−1 to 1. The clipping algorithms in this transformation sequence are now stan-
dardized so that objects outside the boundaries x = ±1 and y = ±1 are detected
and removed from the scene description. At the final step of the viewing trans-
formation, the objects in the viewport are positioned within the display window.

We transfer the contents of the clipping window into the normalization square
using the same procedures as in the window-to-viewport transformation. The
matrix for the normalization transformation is obtained from Equation 8 by
substituting −1 for xvmin and yvmin and substituting +1 for xvmax and yvmax.

Two-Dimensional Viewing

233

ywmax

ywmin

xwmin xwmax

(xw, yw)

Clipping Window 1

1�1

�1

(xnorm, ynorm)
Normalization

Square yvmax

yvmin

xvmin xvmax

(xv, yv)

Screen
Viewport

F I G U R E 7
A point (x w, y w) in a clipping window is mapped to a normalized coordinate position (xnorm, ynorm), then to a
screen-coordinate position (x v, y v) in a viewport. Objects are clipped against the normalization square before the
transformation to viewport coordinates occurs.

Making these substitutions in the expressions for tx, ty, sx, and sy, we have

Mwindow, normsquare =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2
xwmax − xwmin

0 − xwmax + xwmin

xwmax − xwmin

0
2

ywmax − ywmin
− ywmax + ywmin

ywmax − ywmin

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9)

Similarly, after the clipping algorithms have been applied, the normalized
square with edge length equal to 2 is transformed into a specified viewport. This
time, we get the transformation matrix from Equation 8 by substituting −1 for
xwmin and ywmin and substituting +1 for xwmax and ywmax:

Mnormsquare, viewport =

⎡

⎢
⎢
⎢
⎢
⎣

xvmax − xvmin

2
0

xvmax + xvmin

2

0
yvmax − yvmin

2
yvmax + yvmin

2
0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

(10)

The last step in the viewing process is to position the viewport area in the
display window. Typically, the lower-left corner of the viewport is placed at a
coordinate position specified relative to the lower-left corner of the display win-
dow. Figure 8 demonstrates the positioning of a viewport within a display
window.

As before, we maintain the initial proportions of objects by choosing the aspect
ratio of the viewport to be the same as the clipping window. Otherwise, objects

F I G U R E 8
A viewport at coordinate position
(xs , ys) within a display window.

yscreen

xscreen

Viewport

A Red TriangleDisplay
Window

ys

xs

Video Screen

Two-Dimensional Viewing

234

will be stretched or contracted in the x or y directions. Also, the aspect ratio of the
display window can affect the proportions of objects. If the viewport is mapped
to the entire area of the display window and the size of the display window is
changed, objects may be distorted unless the aspect ratio of the viewport is also
adjusted.

Display of Character Strings
Character strings can be handled in one of two ways when they are mapped
through the viewing pipeline to a viewport. The simplest mapping maintains a
constant character size. This method could be employed with bitmap character
patterns. But outline fonts could be transformed the same as other primitives; we
just need to transform the defining positions for the line segments in the outline
character shapes. Algorithms for determining the pixel patterns for the trans-
formed characters are then applied when the other primitives in the scene are
processed.

Split-Screen Effects and Multiple Output Devices
By selecting different clipping windows and associated viewports for a scene, we
can provide simultaneous display of two or more objects, multiple picture parts,
or different views of a single scene. And we can position these views in different
parts of a single display window or in multiple display windows on the screen.
In a design application, for example, we can display a wire-frame view of an
object in one viewport while also displaying a fully rendered view of the object
in another viewport. In addition, we could list other information or menus in a
third viewport.

It is also possible that two or more output devices could be operating con-
currently on a particular system, and we can set up a clipping-window/viewport
pair for each output device. A mapping to a selected output device is some-
times referred to as a workstation transformation. In this case, viewports could
be specified in the coordinates of a particular display device, or each viewport
could be specified within a unit square, which is then mapped to a chosen output
device. Some graphics systems provide a pair of workstation functions for this
purpose. One function is used to designate a clipping window for a selected output
device, identified by a workstation number, and the other function is used to set
the associated viewport for that device.

4 OpenGL Two-Dimensional
Viewing Functions

Actually, the basic OpenGL library has no functions specifically for two-
dimensional viewing because it is designed primarily for three-dimensional
applications. But we can adapt the three-dimensional viewing routines to a two-
dimensional scene, and the core library contains a viewport function. In addition,
the GLU library provides a function for specifying a two-dimensional clipping
window, and we have GLUT library functions for handling display windows.
Therefore, we can use these two-dimensional routines, along with the OpenGL
viewport function, for all the viewing operations we need.

OpenGL Projection Mode
Before we select a clipping window and a viewport in OpenGL, we need to
establish the appropriate mode for constructing the matrix to transform from
world coordinates to screen coordinates. With OpenGL, we cannot set up a

Two-Dimensional Viewing

235

separate two-dimensional viewing-coordinate system as in Figure 3, and we
must set the parameters for the clipping window as part of the projection trans-
formation. Therefore, we must first select the projection mode. We do this with
the same function we used to set the modelview mode for the geometric trans-
formations. Subsequent commands for defining a clipping window and viewport
will then be applied to the projection matrix.

glMatrixMode (GL_PROJECTION);

This designates the projection matrix as the current matrix, which is originally
set to the identity matrix. However, if we are going to loop back through this
statement for other views of a scene, we can also set the initialization as

glLoadIdentity ();

This ensures that each time we enter the projection mode, the matrix will be reset
to the identity matrix so that the new viewing parameters are not combined with
the previous ones.

GLU Clipping-Window Function
To define a two-dimensional clipping window, we can use the GLU function:

gluOrtho2D (xwmin, xwmax, ywmin, ywmax);

Coordinate positions for the clipping-window boundaries are given as double-
precision numbers. This function specifies an orthogonal projection for map-
ping the scene to the screen. For a three-dimensional scene, this means that
objects would be projected along parallel lines that are perpendicular to the two-
dimensional xy display screen. But for a two-dimensional application, objects
are already defined in the xy plane. Therefore, the orthogonal projection has no
effect on our two-dimensional scene other than to convert object positions to nor-
malized coordinates. Nevertheless, we must specify the orthogonal projection
because our two-dimensional scene is processed through the full three-
dimensional OpenGL viewing pipeline. In fact, we could specify the clip-
ping window using the three-dimensional OpenGL core-library version of the
gluOrtho2D functio .

Normalized coordinates in the range from −1 to 1 are used in the OpenGL
clipping routines. And the gluOrtho2D function sets up a three-dimensional
version of transformation matrix 9 for mapping objects within the clipping
window to normalized coordinates. Objects outside the normalized square (and
outside the clipping window) are eliminated from the scene to be displayed.

If we do not specify a clipping window in an application program, the default
coordinates are (xwmin, ywmin) = (−1.0, −1.0) and (xwmax, ywmax) = (1.0, 1.0).
Thus the default clipping window is the normalized square centered on the coor-
dinate origin with a side length of 2.0.

OpenGL Viewport Function
We specify the viewport parameters with the OpenGL function

glViewport (xvmin, yvmin, vpWidth, vpHeight);

where all parameter values are given in integer screen coordinates relative to the
display window. Parameters xvmin and yvmin specify the position of the lower-
left corner of the viewport relative to the lower-left corner of the display window,
and the pixel width and height of the viewport are set with parameters vpWidth

Two-Dimensional Viewing

n

236

and vpHeight. If we do not invoke the glViewport function in a program, the
default viewport size and position are the same as the size and position of the
display window.

After the clipping routines have been applied, positions within the normal-
ized square are transformed into the viewport rectangle using Matrix 10. Coor-
dinates for the upper-right corner of the viewport are calculated for this transfor-
mation matrix in terms of the viewport width and height:

xvmax = xvmin + vpWidth, yvmax = yvmin + vpHeight (11)

For the final transformation, pixel colors for the primitives within the viewport
are loaded into the refresh buffer at the specified screen locations.

Multiple viewports can be created in OpenGL for a variety of applications
(see Section 3). We can obtain the parameters for the currently active viewport
using the query function

glGetIntegerv (GL_VIEWPORT, vpArray);

where vpArray is a single-subscript, four-element array. This Get function
returns the parameters for the current viewport to vpArray in the order xvmin,
yvmin, vpWidth, and vpHeight. In an interactive application, for example,
we can use this function to obtain parameters for the viewport that contains the
screen cursor.

Creating a GLUT Display Window
Because the GLUT library interfaces with any window-management system, we
use the GLUT routines for creating and manipulating display windows so that
our example programs will be independent of any specific machine. To access
these routines, we first need to initialize GLUT with the following function:

glutInit (&argc, argv);

Parameters for this initialization function are the same as those for the main
procedure, and we can use glutInit to process command-line arguments.

We have three functions in GLUT for defining a display window and choosing
its dimensions and position:

glutInitWindowPosition (xTopLeft, yTopLeft);
glutInitWindowSize (dwWidth, dwHeight);
glutCreateWindow ("Title of Display Window");

The first of these functions gives the integer, screen-coordinate position for the
top-left corner of the display window, relative to the top-left corner of the screen. If
either coordinate is negative, the display-window position on the screen is deter-
mined by the window-management system. With the second function, we choose
a width and height for the display window in positive integer pixel dimensions.
If we do not use these two functions to specify a size and position, the default
size is 300 by 300 and the default position is (−1, −1), which leaves the posi-
tioning of the display window to the window-management system. In any case,
the display-window size and position specified with GLUT routines might be
ignored, depending on the state of the window-management system or the other
requirements currently in effect for it. Thus, the window system might position
and size the display window differently. The third function creates the display
window, with the specified size and position, and assigns a title, although the use

Two-Dimensional Viewing

237

of the title also depends on the windowing system. At this point, the display win-
dow is defined but not shown on the screen until all the GLUT setup operations
are complete.

Setting the GLUT Display-Window Mode and Color
Various display-window parameters are selected with the GLUT function

glutInitDisplayMode (mode);

We use this function to choose a color mode (RGB or index) and different buffer
combinations, and the selected parameters are combined with the logical or
operation. The default mode is single buffering and the RGB (or RGBA) color
mode, which is the same as setting this mode with the statement

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

The color mode specification GLUT RGB is equivalent to GLUT RGBA. A back-
ground color for the display window is chosen in RGB mode with the OpenGL
routine

glClearColor (red, green, blue, alpha);

In color-index mode, we set the display-window color with

glClearIndex (index);

where parameter index is assigned an integer value corresponding to a position
within the color table.

GLUT Display-Window Identifier
Multiple display windows can be created for an application, and each is assigned
a positive-integer display-window identifier, starting with the value 1 for the
first window that is created. At the time that we initiate a display window, we
can record its identifier with the statement

windowID = glutCreateWindow ("A Display Window");

Once we have saved the integer display-window identifier in variable name
windowID, we can use the identifier number to change display parameters or
to delete the display window.

Deleting a GLUT Display Window
The GLUT library also includes a function for deleting a display window that we
have created. If we know the display window’s identifier, we can eliminate it with
the statement

glutDestroyWindow (windowID);

Current GLUT Display Window
When we specify any display-window operation, it is applied to the current dis-
play window, which is either the last display window that we created or the one
we select with the following command:

glutSetWindow (windowID);

Two-Dimensional Viewing

238

In addition, at any time, we can query the system to determine which window is
the current display window:

currentWindowID = glutGetWindow ();

A value of 0 is returned by this function if there are no display windows or if the
current display window was destroyed.

Relocating and Resizing a GLUT Display Window
We can reset the screen location for the current display window with

glutPositionWindow (xNewTopLeft, yNewTopLeft);

where the coordinates specify the new position for the upper-left display-window
corner, relative to the upper-left corner of the screen. Similarly, the following
function resets the size of the current display window:

glutReshapeWindow (dwNewWidth, dwNewHeight);

With the following command, we can expand the current display window to fill
the screen:

glutFullScreen ();

The exact size of the display window after execution of this routine
depends on the window-management system. A subsequent call to either
glutPositionWindow or glutReshapeWindow will cancel the request for an
expansion to full-screen size.

Whenever the size of a display window is changed, its aspect ratio may

glutReshapeFunc (winReshapeFcn);

This GLUT routine is activated when the size of a display window is changed,
and the new width and height are passed to its argument: the function
winReshapeFcn, in this example. Thus, winReshapeFcn is the “callback func-
tion” for the “reshape event.” We can then use this callback function to change
the parameters for the viewport so that the original aspect ratio of the scene is
maintained. In addition, we could also reset the clipping-window boundaries,
change the display-window color, adjust other viewing parameters, and perform
any other tasks.

Managing Multiple GLUT Display Windows
The GLUT library also has a number of routines for manipulating a display win-
dow in various ways. These routines are particularly useful when we have mul-
tiple display windows on the screen and we want to rearrange them or locate a
particular display window.

We use the following routine to convert the current display window to an
icon in the form of a small picture or symbol representing the window:

glutIconifyWindow ();

The label on this icon will be the same name that we assigned to the window, but
we can change this with the following command:

glutSetIconTitle ("Icon Name");

change and objects may be distorted from their original shapes. We can adjust for
a change in display-window dimensions using the statement

Two-Dimensional Viewing

239

We also can change the name of the display window with a similar command:

glutSetWindowTitle ("New Window Name");

With multiple display windows open on the screen, some windows may
overlap or totally obscure other display windows. We can choose any display
window to be in front of all other windows by first designating it as the current
window, and then issuing the “pop-window” command:

glutSetWindow (windowID);
glutPopWindow ();

In a similar way, we can “push” the current display window to the back so that it
is behind all other display windows. This sequence of operations is

glutSetWindow (windowID);
glutPushWindow ();

We can also take the current window off the screen with

glutHideWindow ();

In addition, we can return a “hidden” display window, or one that has been
converted to an icon, by designating it as the current display window and then
invoking the function

glutShowWindow ();

GLUT Subwindows
Within a selected display window, we can set up any number of second-level
display windows, which are called subwindows. This provides a means for parti-
tioning display windows into different display sections. We create a subwindow
with the following function:

glutCreateSubWindow (windowID, xBottomLeft, yBottomLeft,
width, height);

Parameter windowID identifies the display window in which we want to set up
the subwindow. With the remaining parameters, we specify the subwindow’s size
and the placement of its lower-left corner relative to the lower-left corner of the
display window.

Subwindows are assigned a positive integer identifier in the same way that
first-level display windows are numbered, and we can place a subwindow inside
another subwindow. Also, each subwindow can be assigned an individual display
mode and other parameters. We can even reshape, reposition, push, pop, hide,
and show subwindows, just as we can with first-level display windows. But we
cannot convert a GLUT subwindow to an icon.

Selecting a Display-Window Screen-Cursor Shape
We can use the following GLUT routine to request a shape for the screen cursor
that is to be used with the current window:

glutSetCursor (shape);

Two-Dimensional Viewing

240

The possible cursor shapes that we can select are an arrow pointing in a cho-
sen direction, a bidirectional arrow, a rotating arrow, a crosshair, a wristwatch, a
question mark, or even a skull and crossbones. For example, we can assign the
symbolic constant GLUT CURSOR UP DOWN to parameter shape to obtain an
up-down arrow. A rotating arrow is chosen with GLUT CURSOR CYCLE, a wrist-
watch shape is selected with GLUT CURSOR WAIT, and a skull and crossbones
is obtained with the constant GLUT CURSOR DESTROY. A cursor shape can be
assigned to a display window to indicate a particular kind of application, such
as an animation. However, the exact shapes that we can use are system depen-
dent.

Viewing Graphics Objects in a GLUT Display Window
After we have created a display window and selected its position, size, color, and
other characteristics, we indicate what is to be shown in that window. If more
than one display window has been created, we first designate the one we want
as the current display window. Then we invoke the following function to assign
something to that window:

glutDisplayFunc (pictureDescrip);

The argument is a routine that describes what is to be displayed in the cur-
rent window. This routine, called pictureDescrip for this example, is referred
to as a callback function because it is the routine that is to be executed when-
ever GLUT determines that the display-window contents should be renewed.
Routine pictureDescrip usually contains the OpenGL primitives and
attributes that define a picture, although it could specify other constructs such
as a menu display.

If we have set up multiple display windows, then we repeat this process for
each of the display windows or subwindows. Also, we may need to call glut-
DisplayFunc after the glutPopWindow command if the display window has
been damaged during the process of redisplaying the windows. In this case, the
following function is used to indicate that the contents of the current display
window should be renewed:

glutPostRedisplay ();

This routine is also used when an additional object, such as a pop-up menu, is to
be shown in a display window.

Executing the Application Program
When the program setup is complete and the display windows have been created
and initialized, we need to issue the final GLUT command that signals execution
of the program:

glutMainLoop ();

At this time, display windows and their graphic contents are sent to the screen.
The program also enters the GLUT processing loop that continually checks for
new “events,” such as interactive input from a mouse or a graphics tablet.

Two-Dimensional Viewing

241

Other GLUT Functions

Sometimes it is convenient to designate a function that is to be executed when
there are no other events for the system to process. We can do that with

glutIdleFunc (function);

The parameter for this GLUT routine could reference a background function or
a procedure to update parameters for an animation when no other processes are
taking place.

Finally, we can use the following function to query the system about some of
the current state parameters:

glutGet (stateParam);

This function returns an integer value corresponding to the symbolic constant we
select for its argument. For example, we can obtain the x-coordinate position for
the top-left corner of the current display window, relative to the top-left corner
of the screen, with the constant GLUT WINDOW X; and we can retrieve the cur-
rent display-window width or the screen width with GLUT WINDOW WIDTH or
GLUT SCREEN WIDTH.

OpenGL Two-Dimensional Viewing Program Example
As a demonstration of the use of the OpenGL viewport function, we use a split-
screen effect to show two views of a triangle in the xy plane with its centroid
at the world-coordinate origin. First, a viewport is defined in the left half of the
display window, and the original triangle is displayed there in blue. Using the
same clipping window, we then define another viewport for the right half of the
display window, and the fill color is changed to red. The triangle is then rotated
about its centroid and displayed in the second viewport.

#include <GL/glut.h>

class wcPt2D {
public:

GLfloat x, y;
};

The GLUT library provides a wide variety of routines to handle processes that are
system dependent and to add features to the basic OpenGL library. For example,
this library contains functions for generating bitmap and outline characters and it
provides functions for loading values into a color table. In addition, some GLUT
functions are available for displaying three-dimensional objects, either as solids
or in a wireframe representation. These objects include a sphere, a torus, and the
five regular polyhedra (cube, tetrahedron, octahedron, dodecahedron, and
icosahedron).

Two-Dimensional Viewing

We also have GLUT functions for obtaining and processing interactive input
and for creating and managing menus. Individual routines are provided by GLUT
for input devices such as a mouse, keyboard, graphics tablet, and spaceball.

,

242

void init (void)
{

/* Set color of display window to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);

/* Set parameters for world-coordinate clipping window. */
glMatrixMode (GL_PROJECTION);
gluOrtho2D (-100.0, 100.0, -100.0, 100.0);

/* Set mode for constructing geometric transformation matrix. */
glMatrixMode (GL_MODELVIEW);

}

void triangle (wcPt2D *verts)
{

GLint k;

glBegin (GL_TRIANGLES);
for (k = 0; k < 3; k++)

glVertex2f (verts [k].x, verts [k].y);
glEnd ();

}

void displayFcn (void)
{

/* Define initial position for triangle. */
wcPt2D verts [3] = { {-50.0, -25.0}, {50.0, -25.0}, {0.0, 50.0} };

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set fill color to blue.
glViewport (0, 0, 300, 300); // Set left viewport.
triangle (verts); // Display triangle.

/* Rotate triangle and display in right half of display window. */
glColor3f (1.0, 0.0, 0.0); // Set fill color to red.
glViewport (300, 0, 300, 300); // Set right viewport.
glRotatef (90.0, 0.0, 0.0, 1.0); // Rotate about z axis.
triangle (verts); // Display red rotated triangle.

glFlush ();
}
void main (int argc, char ** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (600, 300);
glutCreateWindow ("Split-Screen Example");

init ();
glutDisplayFunc (displayFcn);

glutMainLoop ();
}

Two-Dimensional Viewing

243

5 Clipping Algorithms
Generally, any procedure that eliminates those portions of a picture that are either
inside or outside a specified region of space is referred to as a clipping algorithm
or simply clipping. Usually a clipping region is a rectangle in standard position,
although we could use any shape for a clipping application.

The most common application of clipping is in the viewing pipeline,
where clipping is applied to extract a designated portion of a scene (either
two-dimensional or three-dimensional) for display on an output device. Clip-
ping methods are also used to antialias object boundaries, to construct objects
using solid-modeling methods, to manage a multiwindow environment, and to
allow parts of a picture to be moved, copied, or erased in drawing and painting
programs.

Clipping algorithms are applied in two-dimensional viewing procedures to
identify those parts of a picture that are within the clipping window. Everything
outside the clipping window is then eliminated from the scene description that
is transferred to the output device for display. An efficient implementation of
clipping in the viewing pipeline is to apply the algorithms to the normalized
boundaries of the clipping window. This reduces calculations, because all geo-
metric and viewing transformation matrices can be concatenated and applied to
a scene description before clipping is carried out. The clipped scene can then be
transferred to screen coordinates for final processing.

In the following sections, we explore two-dimensional algorithms for

• Point clipping
• Line clipping (straight-line segments)
• Fill-area clipping (polygons)
• Curve clipping
• Text clipping

Point, line, and polygon clipping are standard components of graphics packages.
But similar methods can be applied to other objects, particularly conics, such as
circles, ellipses, and spheres, in addition to spline curves and surfaces. Usually,
however, objects with nonlinear boundaries are approximated with straight-line
segments or polygon surfaces to reduce computations.

Unless otherwise stated, we assume that the clipping region is a rectangu-
lar window in standard position, with boundary edges at coordinate positions
xwmin, xwmax, ywmin, and ywmax. These boundary edges typically correspond to a
normalized square, in which the x and y values range either from 0 to 1 or from
−1 to 1.

6 Two-Dimensional Point Clipping
For a clipping rectangle in standard position, we save a two-dimensional point
P = (x, y) for display if the following inequalities are satisfied:

xwmin ≤ x ≤ xwmax

ywmin ≤ y ≤ ywmax
(12)

If any of these four inequalities is not satisfied, the point is clipped (not saved for
display).

Although point clipping is applied less often than line or polygon clipping,
it is useful in various situations, particularly when pictures are modeled with
particle systems. For example, point clipping can be applied to scenes involving

Two-Dimensional Viewing

244

clouds, sea foam, smoke, or explosions that are modeled with “particles,” such as
the center coordinates for small circles or spheres.

7 Two-Dimensional Line Clipping
Figure 9 illustrates possible positions for straight-line segments in relationship
to a standard clipping window. A line-clipping algorithm processes each line in a
scene through a series of tests and intersection calculations to determine whether
the entire line or any part of it is to be saved. The expensive part of a line-clipping
procedure is in calculating the intersection positions of a line with the window
edges. Therefore, a major goal for any line-clipping algorithm is to minimize
the intersection calculations. To do this, we can first perform tests to determine
whether a line segment is completely inside the clipping window or completely
outside. It is easy to determine whether a line is completely inside a clipping
window, but it is more difficult to identify all lines that are entirely outside the
window. If we are unable to identify a line as completely inside or completely
outside a clipping rectangle, we must then perform intersection calculations to
determine whether any part of the line crosses the window interior.

We test a line segment to determine if it is completely inside or outside a
selected clipping-window edge by applying the point-clipping tests of the previ-
ous section. When both endpoints of a line segment are inside all four clipping
boundaries, such as the line from P1 to P2 in Figure 9, the line is completely inside
the clipping window and we save it. And when both endpoints of a line segment
are outside any one of the four boundaries (as with line P3P4 in Figure 9), that
line is completely outside the window and it is eliminated from the scene descrip-
tion. But if both these tests fail, the line segment intersects at least one clipping
boundary and it may or may not cross into the interior of the clipping window.

One way to formulate the equation for a straight-line segment is to use the
following parametric representation, where the coordinate positions (x0, y0) and
(xend, yend) designate the two line endpoints:

x = x0 + u(xend − x0)

y = y0 + u(yend − y0) 0 ≤ u ≤ 1
(13)

We can use this parametric representation to determine where a line segment
crosses each clipping-window edge by assigning the coordinate value for that
edge to either x or y and solving for parameter u. For example, the left window
boundary is at position xwmin, so we substitute this value for x, solve for u, and
calculate the corresponding y-intersection value. If this value of u is outside the
range from 0 to 1, the line segment does not intersect that window border line.

Clipping
Window

P1

P3

P4

P9

P5

P7

P2

P6

P8
P10

Before Clipping

(a)

Clipping
Window

P1

P5�

P7�

P2

P6
P8�

After Clipping

(b)

F I G U R E 9
Clipping straight-line segments using a
standard rectangular clipping window.

Two-Dimensional Viewing

245

However, if the value of u is within the range from 0 to 1, part of the line is inside
that border. We can then process this inside portion of the line segment against
the other clipping boundaries until either we have clipped the entire line or we
find a section that is inside the window.

Processing line segments in a scene using the simple clipping approach
described in the preceding paragraph is straightforward, but not very efficient.
It is possible to reformulate the initial testing and the intersection calculations to
reduce processing time for a set of line segments, and a number of faster line
clippers have been developed. Some of the algorithms are designed explic-
itly for two-dimensional pictures and some are easily adapted to sets of three-
dimensional line segments.

Cohen-Sutherland Line Clipping
This is one of the earliest algorithms to be developed for fast line clipping, and
variations of this method are widely used. Processing time is reduced in the
Cohen-Sutherland method by performing more tests before proceeding to the
intersection calculations. Initially, every line endpoint in a picture is assigned
a four-digit binary value, called a region code, and each bit position is used to
indicate whether the point is inside or outside one of the clipping-window bound-
aries. We can reference the window edges in any order, and Figure 10 illustrates
one possible ordering with the bit positions numbered 1 through 4 from right
to left. Thus, for this ordering, the rightmost position (bit 1) references the left
clipping-window boundary, and the leftmost position (bit 4) references the top
window boundary. A value of 1 (or true) in any bit position indicates that the
endpoint is outside that window border. Similarly, a value of 0 (or false) in any
bit position indicates that the endpoint is not outside (it is inside or on) the corre-
sponding window edge. Sometimes, a region code is referred to as an “out” code
because a value of 1 in any bit position indicates that the spatial point is outside
the corresponding clipping boundary.

bit

4

Top

Bottom

Right

Left

bit

3

bit

2

bit

1

F I G U R E 1 0
A possible ordering for the clipping-
window boundaries corresponding to
the bit positions in the Cohen-
Sutherland endpoint region code.

Each clipping-window edge divides two-dimensional space into an inside
half space and an outside half space. Together, the four window borders create
nine regions, and Figure 11 lists the value for the binary code in each of these
regions. Thus, an endpoint that is below and to the left of the clipping window is
assigned the region code 0101, and the region-code value for any endpoint inside
the clipping window is 0000.

Bit values in a region code are determined by comparing the coordinate values
(x, y) of an endpoint to the clipping boundaries. Bit 1 is set to 1 if x < xwmin, and

F I G U R E 1 1
The nine binary region codes for
identifying the position of a line
endpoint, relative to the
clipping-window boundaries.

1001 1000

0100

1010

00100001
0000

Clipping Window

0101 0110

Two-Dimensional Viewing

246

the other three bit values are determined similarly. Instead of using inequality
testing, we can determine the values for a region-code more efficiently using
bit-processing operations and the following two steps: (1) Calculate differences
between endpoint coordinates and clipping boundaries. (2) Use the resultant sign
bit of each difference calculation to set the corresponding value in the region code.
For the ordering scheme shown in Figure 10, bit 1 is the sign bit of x − xw min;
bit 2 is the sign bit of xwmax − x; bit 3 is the sign bit of y − ywmin; and bit 4 is the
sign bit of ywmax − y.

Once we have established region codes for all line endpoints, we can quickly
determine which lines are completely inside the clip window and which are com-
pletely outside. Any lines that are completely contained within the window edges
have a region code of 0000 for both endpoints, and we save these line segments.
Any line that has a region-code value of 1 in the same bit position for each endpoint
is completely outside the clipping rectangle, and we eliminate that line segment.
As an example, a line that has a region code of 1001 for one endpoint and a code
of 0101 for the other endpoint is completely to the left of the clipping window, as
indicated by the value of 1 in the first bit position of each region code.

We can perform the inside-outside tests for line segments using logical opera-
tors. When the or operation between two endpoint region codes for a line segment
is false (0000), the line is inside the clipping window. Therefore, we save the line
and proceed to test the next line in the scene description. When the and operation
between the two endpoint region codes for a line is true (not 0000), the line is
completely outside the clipping window, and we can eliminate it from the scene
description.

Lines that cannot be identified as being completely inside or completely out-
side a clipping window by the region-code tests are next checked for intersec-
tion with the window border lines. As shown in Figure 12, line segments can
intersect clipping boundary lines without entering the interior of the window.
Therefore, several intersection calculations might be necessary to clip a line seg-
ment, depending on the order in which we process the clipping boundaries. As
we process each clipping-window edge, a section of the line is clipped, and the
remaining part of the line is checked against the other window borders. We con-
tinue eliminating sections until either the line is totally clipped or the remaining
part of the line is inside the clipping window. For the following discussion, we
assume that the window edges are processed in the following order: left, right,
bottom, top. To determine whether a line crosses a selected clipping boundary,
we can check corresponding bit values in the two endpoint region codes. If one
of these bit values is 1 and the other is 0, the line segment crosses that boundary.

P2

P3

P4

P1

P2�

P3�
P1�

P2�

Clipping
Window

F I G U R E 1 2
Lines extending from one clipping-window region to
another may cross into the clipping window, or they
could intersect one or more clipping boundaries
without entering the window.

Two-Dimensional Viewing

247

Figure 12 illustrates two line segments that cannot be identified immedi-
ately as completely inside or completely outside the clipping window. The region
codes for the line from P1 to P2 are 0100 and 1001. Thus, P1 is inside the left clip-
ping boundary and P2 is outside that boundary. We then calculate the intersection
position P′

2, and we clip off the line section from P2 to P′
2. The remaining portion

of the line is inside the right border line, and so we next check the bottom border.
Endpoint P1 is below the bottom clipping edge and P′

2 is above it, so we determine
the intersection position at this boundary (P′

1). We eliminate the line section from
P1 to P′

1 and proceed to the top window edge. There we determine the intersection
position to be P′′

2. The final step is to clip off the section above the top boundary
and save the interior segment from P′

1 to P′′
2. For the second line, we find that point

P3 is outside the left boundary and P4 is inside. Thus, we calculate the intersection
position P′

3 and eliminate the line section from P3 to P′
3. By checking region codes

for the endpoints P′
3 and P4, we find that the remainder of the line is below the

clipping window and can be eliminated as well.
It is possible, when clipping a line segment using this approach, to calculate

an intersection position at all four clipping boundaries, depending on how the
line endpoints are processed and what ordering we use for the boundaries. Figure
13 shows the four intersection positions that could be calculated for a line seg-
ment that is processed against the clipping-window edges in the order left, right,
bottom, top. Therefore, variations of this basic approach have been developed in
an effort to reduce the intersection calculations.

To determine a boundary intersection for a line segment, we can use the slope-
intercept form of the line equation. For a line with endpoint coordinates (x0, y0)
and (xend, yend), the y coordinate of the intersection point with a vertical clipping
border line can be obtained with the calculation

y = y0 + m(x − x0) (14)

where the x value is set to either xwmin or xwmax, and the slope of the line is
calculated as m = (yend − y0)/(xend − x0). Similarly, if we are looking for the
intersection with a horizontal border, the x coordinate can be calculated as

x = x0 + y − y0

m
(15)

with y set either to ywmin or to ywmax.

F I G U R E 1 3
Four intersection positions (labeled from 1 to 4) for a line
segment that is clipped against the window boundaries in
the order left, right, bottom, top.

(xo, yo)

(xend, yend)

1

4

2

3

Clipping
Window

Two-Dimensional Viewing

248

An implementation of the two-dimensional, Cohen-Sutherland line-clipping
algorithm is given in the following procedures.

class wcPt2D {
public:

GLfloat x, y;
};

inline GLint round (const GLfloat a) { return GLint (a + 0.5); }

/* Define a four-bit code for each of the outside regions of a
* rectangular clipping window.
*/
const GLint winLeftBitCode = 0x1;
const GLint winRightBitCode = 0x2;
const GLint winBottomBitCode = 0x4;
const GLint winTopBitCode = 0x8;

/* A bit-mask region code is also assigned to each endpoint of an input
* line segment, according to its position relative to the four edges of
* an input rectangular clip window.
*
* An endpoint with a region-code value of 0000 is inside the clipping
* window, otherwise it is outside at least one clipping boundary. If
* the 'or' operation for the two endpoint codes produces a value of
* false, the entire line defined by these two endpoints is saved
* (accepted). If the 'and' operation between two endpoint codes is
* true, the line is completely outside the clipping window, and it is
* eliminated (rejected) from further processing.
*/
inline GLint inside (GLint code) { return GLint (!code); }
inline GLint reject (GLint code1, GLint code2)

{ return GLint (code1 & code2); }
inline GLint accept (GLint code1, GLint code2)

{ return GLint (!(code1 | code2)); }

GLubyte encode (wcPt2D pt, wcPt2D winMin, wcPt2D winMax)
{
GLubyte code = 0x00;

if (pt.x < winMin.x)
code = code | winLeftBitCode;

if (pt.x > winMax.x)
code = code | winRightBitCode;

if (pt.y < winMin.y)
code = code | winBottomBitCode;

if (pt.y > winMax.y)
code = code | winTopBitCode;

return (code);
}

Two-Dimensional Viewing

249

void swapPts (wcPt2D * p1, wcPt2D * p2)
{
wcPt2D tmp;

tmp = *p1; *p1 = *p2; *p2 = tmp;
}

void swapCodes (GLubyte * c1, GLubyte * c2)
{
GLubyte tmp;

tmp = *c1; *c1 = *c2; *c2 = tmp;
}

void lineClipCohSuth (wcPt2D winMin, wcPt2D winMax, wcPt2D p1, wcPt2D p2)
{
GLubyte code1, code2;
GLint done = false, plotLine = false;
GLfloat m;

while (!done) {
code1 = encode (p1, winMin, winMax);
code2 = encode (p2, winMin, winMax);
if (accept (code1, code2)) {
done = true;
plotLine = true;

}
else
if (reject (code1, code2))
done = true;

else {
/* Label the endpoint outside the display window as p1. */
if (inside (code1)) {
swapPts (&p1, &p2);
swapCodes (&code1, &code2);

}
/* Use slope m to find line-clipEdge intersection. */
if (p2.x != p1.x)
m = (p2.y - p1.y) / (p2.x - p1.x);

if (code1 & winLeftBitCode) {
p1.y += (winMin.x - p1.x) * m;
p1.x = winMin.x;

}
else
if (code1 & winRightBitCode) {
p1.y += (winMax.x - p1.x) * m;
p1.x = winMax.x;

}
else
if (code1 & winBottomBitCode) {
/* Need to update p1.x for nonvertical lines only. */
if (p2.x != p1.x)
p1.x += (winMin.y - p1.y) / m;

p1.y = winMin.y;
}

Two-Dimensional Viewing

250

else
if (code1 & winTopBitCode) {
if (p2.x != p1.x)
p1.x += (winMax.y - p1.y) / m;

p1.y = winMax.y;
}

}
}
if (plotLine)
lineBres (round (p1.x), round (p1.y), round (p2.x), round (p2.y));

}

Liang-Barsky Line Clipping
Faster line-clipping algorithms have been developed that do more line testing
before proceeding to the intersection calculations. One of the earliest efforts in
this direction is an algorithm developed by Cyrus and Beck, which is based on
analysis of the parametric line equations. Later, Liang and Barsky independently
devised an even faster form of the parametric line-clipping algorithm.

For a line segment with endpoints (x0, y0) and (xend, yend), we can describe the
line with the parametric form

x = x0 + u�x

y = y0 + u�y 0 ≤ u ≤ 1
(16)

where �x = xend − x0 and �y = yend − y0. In the Liang-Barsky algorithm, the
parametric line equations are combined with the point-clipping conditions 12
to obtain the inequalities

xwmin ≤ x0 + u�x ≤ xwmax

ywmin ≤ y0 + u�y ≤ ywmax
(17)

which can be expressed as

u pk ≤ qk , k = 1, 2, 3, 4 (18)

where parameters p and q are defined as

p1 = −�x, q1 = x0 − xwmin

p2 = �x, q2 = xwmax − x0

p3 = −�y, q3 = y0 − ywmin

p4 = �y, q4 = ywmax − y0

(19)

Any line that is parallel to one of the clipping-window edges has pk = 0 for the
value of k corresponding to that boundary, where k = 1, 2, 3, and 4 correspond
to the left, right, bottom, and top boundaries, respectively. If, for that value of k,
we also find qk < 0, then the line is completely outside the boundary and can
be eliminated from further consideration. If qk ≥ 0, the line is inside the parallel
clipping border.

When pk < 0, the infinite extension of the line proceeds from the outside
to the inside of the infinite extension of this particular clipping-window edge. If
pk > 0, the line proceeds from the inside to the outside. For a nonzero value of pk ,
we can calculate the value of u that corresponds to the point where the infinitely

Two-Dimensional Viewing

251

extended line intersects the extension of window edge k as

u = qk

pk
(20)

For each line, we can calculate values for parameters u1 and u2 that define that
part of the line that lies within the clip rectangle. The value of u1 is determined by
looking at the rectangle edges for which the line proceeds from the outside to the
inside (p < 0). For these edges, we calculate rk = qk/pk . The value of u1 is taken
as the largest of the set consisting of 0 and the various values of r . Conversely,
the value of u2 is determined by examining the boundaries for which the line
proceeds from inside to outside (p > 0). A value of rk is calculated for each of
these boundaries, and the value of u2 is the minimum of the set consisting of 1 and
the calculated r values. If u1 > u2, the line is completely outside the clip window
and it can be rejected. Otherwise, the endpoints of the clipped line are calculated
from the two values of parameter u.

This algorithm is implemented in the following code sections. Line intersec-
tion parameters are initialized to the values u1 = 0 and u2 = 1. For each clipping
boundary, the appropriate values for p and q are calculated and used by the
function clipTest to determine whether the line can be rejected or whether
the intersection parameters are to be adjusted. When p < 0, parameter r is used
to update u1; when p > 0, parameter r is used to update u2. If updating u1 or
u2 results in u1 > u2, we reject the line. Otherwise, we update the appropriate u
parameter only if the new value results in a shortening of the line. When p = 0 and
q < 0, we can eliminate the line because it is parallel to and outside this boundary.
If the line has not been rejected after all four values of p and q have been tested,
the endpoints of the clipped line are determined from values of u1 and u2.

class wcPt2D
{

private:
GLfloat x, y;

public:
/* Default Constructor: initialize position as (0.0, 0.0). */
wcPt3D () {

x = y = 0.0;
}

setCoords (GLfloat xCoord, GLfloat yCoord) {
x = xCoord;
y = yCoord;

}

GLfloat getx () const {
return x;

}

GLfloat gety () const {
return y;

}
};

inline GLint round (const GLfloat a) { return GLint (a + 0.5); }

Two-Dimensional Viewing

252

GLint clipTest (GLfloat p, GLfloat q, GLfloat * u1, GLfloat * u2)
{
GLfloat r;
GLint returnValue = true;

if (p < 0.0) {
r = q / p;
if (r > *u2)
returnValue = false;

else
if (r > *u1)
*u1 = r;

}
else
if (p > 0.0) {
r = q / p;
if (r < *u1)
returnValue = false;

else if (r < *u2)
*u2 = r;

}
else
/* Thus p = 0 and line is parallel to clipping boundary. */
if (q < 0.0)
/* Line is outside clipping boundary. */
returnValue = false;

return (returnValue);
}

void lineClipLiangBarsk (wcPt2D winMin, wcPt2D winMax, wcPt2D p1, wcPt2D p2)
{
GLfloat u1 = 0.0, u2 = 1.0, dx = p2.getx () - p1.getx (), dy;

if (clipTest (-dx, p1.getx () - winMin.getx (), &u1, &u2))
if (clipTest (dx, winMax.getx () - p1.getx (), &u1, &u2)) {
dy = p2.gety () - p1.gety ();
if (clipTest (-dy, p1.gety () - winMin.gety (), &u1, &u2))
if (clipTest (dy, winMax.gety () - p1.gety (), &u1, &u2)) {
if (u2 < 1.0) {
p2.setCoords (p1.getx () + u2 * dx, p1.gety () + u2 * dy);

}
if (u1 > 0.0) {
p1.setCoords (p1.getx () + u1 * dx, p1.gety () + u1 * dy);

}
lineBres (round (p1.getx ()), round (p1.gety ()),

round (p2.getx ()), round (p2.gety ()));
}

}
}

In general, the Liang-Barsky algorithm is more efficient than the Cohen-
Sutherland line-clipping algorithm. Each update of parameters u1 and u2 requires
only one division; and window intersections of the line are computed only once,
when the final values of u1 and u2 have been computed. In contrast, the Cohen

Two-Dimensional Viewing

253

and Sutherland algorithm can calculate intersections repeatedly along a line path,
even though the line may be completely outside the clip window. In addition, each
Cohen-Sutherland intersection calculation requires both a division and a multi-
plication. The two-dimensional Liang-Barsky algorithm can be extended to clip
three-dimensional lines.

Nicholl-Lee-Nicholl Line Clipping
By creating more regions around the clipping window, the Nicholl-Lee-Nicholl
(NLN) algorithm avoids multiple line-intersection calculations. In the Cohen-
Sutherland method, for example, multiple intersections could be calculated along
the path of a line segment before an intersection on the clipping rectangle is
located or the line is completely rejected. These extra intersection calculations
are eliminated in the NLN algorithm by carrying out more region testing before
intersection positions are calculated. Compared to both the Cohen-Sutherland
and the Liang-Barsky algorithms, the Nicholl-Lee-Nicholl algorithm performs
fewer comparisons and divisions. The trade-off is that the NLN algorithm can be
applied only to two-dimensional clipping, whereas both the Liang-Barsky and
the Cohen-Sutherland methods are easily extended to three-dimensional scenes.

Initial testing to determine whether a line segment is completely inside the
clipping window or outside the window limits can be accomplished with region-
code tests, as in the previous two algorithms. If a trivial acceptance or rejection of
the line is not possible, the NLN algorithm proceeds to set up additional clipping
regions.

For a line with endpoints P0 and Pend, we first determine the position of
point P0 for the nine possible regions relative to the clipping window. Only the
three regions shown in Figure 14 need be considered. If P0 lies in any one of
the other six regions, we can move it to one of the three regions in Figure 14
using a symmetry transformation. For example, the region directly above the clip
window can be transformed to the region left of the window using a reflection
about the line y = −x, or we could use a 90◦ counterclockwise rotation.

Assuming that P0 and Pend are not both inside the clipping window, we next
determine the position of Pend relative to P0. To do this, we create some new regions
in the plane, depending on the location of P0. Boundaries of the new regions are
semi-infinite line segments that start at the position of P0 and pass through the
clipping-window corners. If P0 is inside the clipping window, we set up the four
regions shown in Figure 15. Then, depending on which one of the four regions
(L, T, R, or B) contains Pend, we compute the line-intersection position with the
corresponding window boundary.

If P0 is in the region to the left of the window, we set up the four regions labeled
L, LT, LR, and LB in Figure 16. These four regions again determine a unique

P0 P0

P0

P0 inside Clipping Window

(a) (b) (c)

P0 in an Edge Region P0 in a Corner Region

F I G U R E 1 4
Three possible positions for a line endpoint P0 in the NLN line-clipping algorithm.

Two-Dimensional Viewing

254

T

B

P0

RL

F I G U R E 1 5
The four regions used in the NLN
algorithm when P0 is inside the
clipping window and Pend is outside.

LT

LB

P0 LRL

L

L

F I G U R E 1 6
The four clipping regions used in the
NLN algorithm when P0 is directly to
the left of the clip window.

clipping-window edge for the line segment, relative to the position of Pend. For
instance, if Pend is in any one of the three regions labeled L, we clip the line at the left
window border and save the line segment from this intersection point to Pend. If
Pend is in region LT, we save the line segment from the left window boundary to the
top boundary. Similar processing is carried out for regions LR and LB. However,
if Pend is not in any of the four regions L, LT, LR, or LB, the entire line is clipped.

For the third case, when P0 is to the left and above the clipping window, we
use the regions in Figure 17. In this case, we have the two possibilities shown,
depending on the position of P0 within the top-left corner of the clipping window.
When P0 is closer to the left clipping boundary of the window, we use the regions
in (a) of this figure. Otherwise, when P0 is closer to the top clipping boundary of
the window, we use the regions in (b). If Pend is in one of the regions T, L, TR, TB,
LR, or LB, this determines a unique clipping-window border for the intersection
calculations. Otherwise, the entire line is rejected.

To determine the region in which Pend is located, we compare the slope of the
line segment to the slopes of the boundaries of the NLN regions. For example, if
P0 is left of the clipping window (Figure 16), then Pend is in region LT if

slopeP0PT R < slopeP0Pend < slopeP0PT L (21)

or
yT − y0

xR − x0
<

yend − y0

xend − x0
<

yT − y0

xL − x0
(22)

TB

P0

TR

T

T

L

LB

P0

(a)

or TR

LR

T

L
L

LB

(b)

F I G U R E 1 7
The two possible sets of clipping
regions used in the NLN algorithm
when P0 is above and to the left of the
clipping window.

Two-Dimensional Viewing

255

We clip the entire line if

(yT − y0)(xend − x0) < (xL − x0)(yend − y0) (23)

The coordinate-difference calculations and product calculations used in the
slope tests are saved and also used in the intersection calculations. From the
parametric equations

x = x0 + (xend − x0)u

y = y0 + (yend − y0)u

we calculate an x-intersection position on the left window boundary as x = xL ,
with u = (xL − x0)/(xend − x0), so that the y-intersection position is

y = y0 + yend − y0

xend − x0
(xL − x0) (24)

An intersection position on the top boundary has y = yT and u = (yT − y0)/(yend −
y0), with

x = x0 + xend − x0

yend − y0
(yT − y0) (25)

Line Clipping Using Nonrectangular Polygon Clip Windows
In some applications, it may be desirable to clip lines against arbitrarily shaped
polygons. Methods based on parametric line equations, such as either the Cyrus-
Beck algorithm or the Liang-Barsky algorithm, can be readily extended to clip
lines against convex polygon windows. We do this by modifying the algorithm
to include the parametric equations for the boundaries of the clipping region.
Preliminary screening of line segments can be accomplished by processing lines
against the coordinate extents of the clipping polygon.

For concave-polygon clipping regions, we could still apply these parametric
clipping procedures if we first split the concave polygon into a set of convex
polygons. Another approach is
clipping area so that it is modified
clipping operations can be applied
nents, as illustrated in Figure 18. The
clipped by the concave window with
clipping regions are obtained, in this
V1. Then the line is clipped in two
vex polygon with vertices V1 , V2, V3,
[Figure 18(b)]. (2) The internal line
polygon with vertices V1 , V5 , and
segment P′′

1P′
2.

Line Clipping Using Nonlinear Clipping-Window Boundaries
Circles or other curved-boundary clipping regions are also possible, but they
require more processing because the intersection calculations involve nonlinear
equations. At the first step, lines could be clipped against the bounding rectan-
gle (coordinate extents) of the curved clipping region. Lines that are outside the
coordinate extents are eliminated. To identify lines that are inside a circle, for
instance, we could calculate the distance of the line endpoints from the circle cen-
ter. If the square of this distance for both endpoints of a line is less than or equal
to the radius squared, we can save the entire line. The remaining lines are then
processed through the intersection calculations, which must solve simultaneous
circle-line equations.

Two-Dimensional Viewing

simply to add one or more edges to the concave
to a convex-polygon shape. Then a series of
using the modified convex polygon compo-

line segment P1P2 in (a) of this figure is to be
vertices V1, V2, V3, V4, and V5. Two convex
case, by adding a line segment from V4 to
passes: (1) Line P1P2 is clipped by the con-
and V4 to yield the clipped segment P′

1P′
2

segment P′
1P′

2 is clipped off using the convex
V4 [Figure 18(c)] to yield the final clipped line

256

(a)

P1

V4

V5
V2

V1

V3
Concave Polygon
Clipping Window

P2

(c)

Clip Interior
Line Segment

V4

V5

V1

P2�
P1�

P1�

(b)

Clip Exterior
Line Segments

P1

V4

V2

V1

V3

P2

P2�
P1�

F I G U R E 1 8
A concave- polygon clipping window
(a), with vertex list (V1, V2, V3, V4,
V5), is modified to the convex polygon
(V1, V2, V3, V4) in (b). The external

segments of line P1P2 are then
snipped off using this convex clipping
window. The resulting line segment,
P′

1P′
2, is next processed against the

triangle (V1, V5, V4) (c) to clip off the

internal line segment P′
1P′′

1 to produce

the final clipped line P′′
1P′

2.

8 Polygon Fill-Area Clipping
Graphics packages typically support only fill areas that are polygons, and often
only convex polygons. To clip a polygon fill area, we cannot apply a line-clipping
method to the individual polygon edges directly because this approach would not,
in general, produce a closed polyline. Instead, a line clipper would often produce
a disjoint set of lines with no complete information about how we might form
a closed boundary around the clipped fill area. Figure 19 illustrates a possible
output from a line-clipping procedure applied to the edges of a polygon fill area.
What we require is a procedure that will output one or more closed polylines for
the boundaries of the clipped fill area, so that the polygons can be scan-converted
to fill the interiors with the assigned color or pattern, as in Figure 20.

We can process a polygon fill area against the borders of a clipping window
using the same general approach as in line clipping. A line segment is defined by
its two endpoints, and these endpoints are processed through a line-clipping pro-
cedure by constructing a new set of clipped endpoints at each clipping-window
boundary. Similarly, we need to maintain a fill area as an entity as it is processed
through the clipping stages. Thus, we can clip a polygon fill area by determining
the new shape for the polygon as each clipping-window edge is processed, as
demonstrated in Figure 21. Of course, the interior fill for the polygon would not
be applied until the final clipped border had been determined.

Two-Dimensional Viewing

257

Before Clipping After Clipping

(a) (b)

F I G U R E 1 9
A line-clipping algorithm applied to
the line segments of the polygon boundary in (a)
generates the unconnected set of lines in (b).

Before Clipping After Clipping

(a) (b)

F I G U R E 2 0
Display of a correctly clipped polygon fill area.

Original
Polygon

Clip
Left

Clip
Right

Clip
Bottom

Clip
Top

F I G U R E 2 1
Processing a polygon fill area against successive clipping-window boundaries.

F I G U R E 2 2
A polygon fill area with coordinate
extents outside the right clipping
boundary.

Clipping Window

Coordinate Extents
of Polygon Fill Area

Just as we first tested a line segment to determine whether it could be com-
pletely saved or completely clipped, we can do the same with a polygon fill
area by checking its coordinate extents. If the minimum and maximum coordi-
nate values for the fill area are inside all four clipping boundaries, the fill area is
saved for further processing. If these coordinate extents are all outside any of the
clipping-window borders, we eliminate the polygon from the scene description
(Figure 22).

When we cannot identify a fill area as being completely inside or completely
outside the clipping window, we then need to locate the polygon intersection
positions with the clipping boundaries. One way to implement convex-polygon

Two-Dimensional Viewing

258

(b)(a)

Clipping
Window

2�

1�

1

2�

2

3�

1�

3�

3

2�

1�

2�

3�

1�

3�

Clip

F I G U R E 2 3
A convex-polygon fill area (a), defined
with the vertex list {1, 2, 3}, is clipped
to produce the fill-area shape shown
in (b), which is defined with the output
vertex list {1′, 2′, 2′′, 3′, 3′′, 1′′}.

clipping is to create a new vertex list at each clipping boundary, and then pass
this new vertex list to the next boundary clipper. The output of the final clipping
stage is the vertex list for the clipped polygon (Figure 23). For concave-polygon
clipping, we would need to modify this basic approach so that multiple vertex
lists could be generated.

Sutherland--Hodgman Polygon Clipping
An efficient method for clipping a convex-polygon fill area, developed by Suther-
land and Hodgman, is to send the polygon vertices through each clipping stage
so that a single clipped vertex can be immediately passed to the next stage. This
eliminates the need for an output set of vertices at each clipping stage, and it
allows the boundary-clipping routines to be implemented in parallel. The final
output is a list of vertices that describe the edges of the clipped polygon fill area.

Because the Sutherland-Hodgman algorithm produces only one list of output
vertices, it cannot correctly generate the two output polygons in Figure 20(b) that
are the result of clipping the concave polygon shown in Figure 20(a). However,
more processing steps can be added to the algorithm to allow it to produce multi-
ple output vertex lists, so that general concave-polygon clipping could be accomo-
dated. And the basic Sutherland-Hodgman algorithm is able to process concave
polygons when the clipped fill area can be described with a single vertex list.

The general strategy in this algorithm is to send the pair of endpoints for each
successive polygon line segment through the series of clippers (left, right, bottom,
and top). As soon as a clipper completes the processing of one pair of vertices, the
clipped coordinate values, if any, for that edge are sent to the next clipper. Then
the first clipper processes the next pair of endpoints. In this way, the individual
boundary clippers can be operating in parallel.

There are four possible cases that need to be considered when processing a
polygon edge against one of the clipping boundaries. One possibility is that the
first edge endpoint is outside the clipping boundary and the second endpoint
is inside. Or, both endpoints could be inside this clipping boundary. Another
possibility is that the first endpoint is inside the clipping boundary and the second
endpoint is outside. And, finally, both endpoints could be outside the clipping
boundary.

To facilitate the passing of vertices from one clipping stage to the next, the
output from each clipper can be formulated as shown in Figure 24. As each
successive pair of endpoints is passed to one of the four clippers, an output is
generated for the next clipper according to the results of the following tests:

1. If the first input vertex is outside this clipping-window border and the
second vertex is inside, both the intersection point of the polygon edge
with the window border and the second vertex are sent to the next clipper.

Two-Dimensional Viewing

259

V1
V1�

Output: V1�, V2

(1)

V2

out in

V1

Output: V2

(2)

V2

in in

V1
V1�

Output: V1�

(3)

V2

in out

V1

Output: none

(4)

V2

out out

F I G U R E 2 4
The four possible outputs generated by the left clipper, depending on the position of a pair of endpoints relative to
the left boundary of the clipping window.

F I G U R E 2 5
Processing a set of polygon
vertices, {1, 2, 3}, through the
boundary clippers using the
Sutherland-Hodgman algorithm.
The final set of clipped vertices is
{1′, 2, 2′, 2′′}.

Clipping
Window

Left
Clipper

Right
Clipper

Bottom
Clipper

Top
Clipper

3�

3
2�

2�
2

1�

1

Input
Edge:

{1, 2}:

{2, 3}:

{3, 1}:

(in – in) {2}

(in – out) {2�}

(out – in) {3�, 1}

{2, 2�}: (in – in) {2�}

{2�, 3�}: (in – in) {3�}

{3�, 1}: (in – in) {1}

{1, 2}: (in – in) {2} {1, 2}: (out – in) {1�, 2}

{2, 2�}: (in – in) {2�}

{2�, 3�}: (in – out) {2�}

{3�, 1}: (out – out) { }

{2�, 1�}: (in – in) {1�}

{2�, 2�}: (in – in) {2�}

{1�, 2}: (in – in) {2}

{2, 2�}: (in – in) {2�}

2. If both input vertices are inside this clipping-window border, only the
second vertex is sent to the next clipper.

3. If the first vertex is inside this clipping-window border and the second
vertex is outside, only the polygon edge-intersection position with the
clipping-window border is sent to the next clipper.

4. If both input vertices are outside this clipping-window border, no vertices
are sent to the next clipper.

The last clipper in this series generates a vertex list that describes the final clipped
fill area.

Figure 25 provides an example of the Sutherland-Hodgman polygon-
clipping algorithm for a fill area defined with the vertex set {1, 2, 3}. As soon
as a clipper receives a pair of endpoints, it determines the appropriate output
using the tests illustrated in Figure 24. These outputs are passed in succession
from the left clipper to the right, bottom, and top clippers. The output from the

Two-Dimensional Viewing

260

return (iPt);
}

void clipPoint (wcPt2D p, Boundary winEdge, wcPt2D wMin, wcPt2D wMax,
wcPt2D * pOut, int * cnt, wcPt2D * first[], wcPt2D * s)

{
wcPt2D iPt;

/* If no previous point exists for this clipping boundary,
* save this point.
*/
if (!first[winEdge])
first[winEdge] = &p;

else
/* Previous point exists. If p and previous point cross
* this clipping boundary, find intersection. Clip against
* next boundary, if any. If no more clip boundaries, add
* intersection to output list.
*/
if (cross (p, s[winEdge], winEdge, wMin, wMax)) {
iPt = intersect (p, s[winEdge], winEdge, wMin, wMax);
if (winEdge < Top)
clipPoint (iPt, b+1, wMin, wMax, pOut, cnt, first, s);

else {
pOut[*cnt] = iPt; (*cnt)++;

}
}

/* Save p as most recent point for this clip boundary. */
s[winEdge] = p;

/* For all, if point inside, proceed to next boundary, if any. */
if (inside (p, winEdge, wMin, wMax))
if (winEdge < Top)
clipPoint (p, winEdge + 1, wMin, wMax, pOut, cnt, first, s);

else {
pOut[*cnt] = p; (*cnt)++;

}
}

void closeClip (wcPt2D wMin, wcPt2D wMax, wcPt2D * pOut,
GLint * cnt, wcPt2D * first [], wcPt2D * s)

{
wcPt2D pt;
Boundary winEdge;

for (winEdge = Left; winEdge <= Top; winEdge++) {
if (cross (s[winEdge], *first[winEdge], winEdge, wMin, wMax)) {
pt = intersect (s[winEdge], *first[winEdge], winEdge, wMin, wMax);
if (winEdge < Top)
clipPoint (pt, winEdge + 1, wMin, wMax, pOut, cnt, first, s);

else {
pOut[*cnt] = pt; (*cnt)++;

}
}

}
}

Two-Dimensional Viewing

262

top clipper is the set of vertices defining the clipped fill area. For this example,
the output vertex list is {1′, 2, 2′, 2′′}.

A sequential implementation of the Sutherland-Hodgman polygon-clipping
algorithm is demonstrated in the following set of procedures. An input set of
vertices is converted to an output vertex list by clipping it against the four edges
of the axis-aligned rectangular clipping region.

typedef enum { Left, Right, Bottom, Top } Boundary;
const GLint nClip = 4;

GLint inside (wcPt2D p, Boundary b, wcPt2D wMin, wcPt2D wMax)
{
switch (b) {
case Left: if (p.x < wMin.x) return (false); break;
case Right: if (p.x > wMax.x) return (false); break;
case Bottom: if (p.y < wMin.y) return (false); break;
case Top: if (p.y > wMax.y) return (false); break;
}
return (true);

}

GLint cross (wcPt2D p1, wcPt2D p2, Boundary winEdge, wcPt2D wMin, wcPt2D wMax)
{
if (inside (p1, winEdge, wMin, wMax) == inside (p2, winEdge, wMin, wMax))
return (false);

else return (true);
}

wcPt2D intersect (wcPt2D p1, wcPt2D p2, Boundary winEdge,
wcPt2D wMin, wcPt2D wMax)

{
wcPt2D iPt;
GLfloat m;

if (p1.x != p2.x) m = (p1.y - p2.y) / (p1.x - p2.x);
switch (winEdge) {
case Left:
iPt.x = wMin.x;
iPt.y = p2.y + (wMin.x - p2.x) * m;
break;

case Right:
iPt.x = wMax.x;
iPt.y = p2.y + (wMax.x - p2.x) * m;
break;

case Bottom:
iPt.y = wMin.y;
if (p1.x != p2.x) iPt.x = p2.x + (wMin.y - p2.y) / m;
else iPt.x = p2.x;
break;

case Top:
iPt.y = wMax.y;
if (p1.x != p2.x) iPt.x = p2.x + (wMax.y - p2.y) / m;
else iPt.x = p2.x;
break;

}

Two-Dimensional Viewing

261

GLint polygonClipSuthHodg (wcPt2D wMin, wcPt2D wMax, GLint n, wcPt2D * pIn, wcPt2D * pOut)
{
/* Parameter "first" holds pointer to first point processed for
* a boundary; "s" holds most recent point processed for boundary.
*/
wcPt2D * first[nClip] = { 0, 0, 0, 0 }, s[nClip];
GLint k, cnt = 0;

for (k = 0; k < n; k++)
clipPoint (pIn[k], Left, wMin, wMax, pOut, &cnt, first, s);

closeClip (wMin, wMax, pOut, &cnt, first, s);
return (cnt);

}

When a concave polygon is clipped with the Sutherland-Hodgman algorithm,
extraneous lines may be displayed. An example of this effect is demonstrated in
Figure 26. This occurs when the clipped polygon should have two or more
separate sections. But since there is only one output vertex list, the last vertex in
the list is always joined to the first vertex.

There are several things we can do to display clipped concave polygons

Weiler-Atherton Polygon Clipping
This algorithm provides a general polygon-clipping approach that can be used
to clip a fill area that is either a convex polygon or a concave polygon. Moreover,
the method was developed as a means for identifying visible surfaces in a three-
dimensional scene. Therefore, we could also use this approach to clip any polygon
fill area against a clipping window with any polygon shape.

Clipping Window

(a) (b)

F I G U R E 2 6
Clipping the concave polygon in (a) using the
Sutherland-Hodgman algorithm produces the two
connected areas in (b).

correctly. For one, we could split a concave polygon into two or more convex
polygons and process each convex polygon separately using the Sutherland-
Hodgman algorithm. Another possibility is to modify the Sutherland- Hodgman
method so that the final vertex list is checked for multiple intersection points
along any clipping-window boundary. If we find more than two vertex positions
along any clipping boundary, we can separate the list of vertices into two or
more lists that correctly identify the separate sections of the clipped fill area. This
may require extensive analysis to determine whether some points along the clip-
ping boundary should be paired or whether they represent single vertex points
that have been clipped.Athird possibility is to use a more general polygon clipper
that has been designed to process concave polygons correctly.

Two-Dimensional Viewing

263

Instead of simply clipping the fill-area edges as in the Sutherland-Hodgman
method, the Weiler-Atherton algorithm traces around the perimeter of the fill
polygon searching for the borders that enclose a clipped fill region. In this way,
multiple fill regions, as in Figure 26(b), can be identified and displayed as sepa-
rate, unconnected polygons. To find the edges for a clipped fill area, we follow a
path (either counterclockwise or clockwise) around the fill area that detours along
a clipping-window boundary whenever a polygon edge crosses to the outside of
that boundary. The direction of a detour at a clipping-window border is the same
as the processing direction for the polygon edges.

We can usually determine whether the processing direction is counterclock-
wise or clockwise from the ordering of the vertex list that defines a polygon fill
area. In most cases, the vertex list is specified in a counterclockwise order as a
means for defining the front face of the polygon. Thus, the cross-product of two
successive edge vectors that form a convex angle determines the direction for the
normal vector, which is in the direction from the back face to the front face of the
polygon. If we do not know the vertex ordering, we could calculate the normal

For a counterclockwise traversal of the polygon fill-area vertices, we apply
the following Weiler-Atherton procedures:

1. Process the edges of the polygon fill area in a counterclockwise order until
an inside-outside pair of vertices is encountered for one of the clipping
boundaries; that is, the first vertex of the polygon edge is inside the clip
region and the second vertex is outside the clip region.

2. Follow the window boundaries in a counterclockwise direction from the
exit-intersection point to another intersection point with the polygon. If
this is a previously processed point, proceed to the next step. If this is a
new intersection point, continue processing polygon edges in a counter-
clockwise order until a previously processed vertex is encountered.

3. Form the vertex list for this section of the clipped fill area.
4. Return to the exit-intersection point and continue processing the polygon

edges in a counterclockwise order.

Figure 27 illustrates the Weiler-Atherton clipping of a concave polygon
against a standard, rectangular clipping window for a counterclockwise traversal
of the polygon edges. For a clockwise edge traversal, we would use a clockwise
clipping-window traversal.

Starting from the vertex labeled 1 in Figure 27(a), the next polygon vertex to
process in a counterclockwise order is labeled 2. Thus, this edge exits the clipping
window at the top boundary. We calculate this intersection position (point 1′)
and make a left turn there to process the window borders in a counterclockwise
direction. Proceeding along the top border of the clipping window, we do not
intersect a polygon edge before reaching the left window boundary. Therefore,
we label this position as vertex 1′′ and follow the left boundary to the intersection
position 1′′′. We then follow this polygon edge in a counterclockwise direction,
which returns us to vertex 1. This completes a circuit of the window boundaries
and identifies the vertex list {1, 1′, 1′′, 1′′′} as a clipped region of the original fill
area. Processing of the polygon edges is then resumed at point 1′. The edge defined
by points 2 and 3 crosses to the outside of the left boundary, but points 2 and 2′

vector, or we can locate the interior of the fill area from any reference position.
Then, if we sequentially process the edges so that the polygon interior is always
on our left, we obtain a counterclockwise traversal. Otherwise, with the interior
to our right, we have a clockwise traversal.

Two-Dimensional Viewing

264

Clipping
Window

(a) (b)

(resum
e)

(resume)

(stop)

2�

1�

1

2

1�

1�

4�

4

5�

5

1�

1�

1

1�

4�

5�

5

3

6
F I G U R E 2 7
A concave polygon (a), defined with
the vertex list {1, 2, 3, 4, 5, 6}, is
clipped using the Weiler-Atherton
algorithm to generate the two lists
{1, 1′, 1′′, 1′′′} and {4′, 5, 5′}, which
represent the separate polygon fill
areas shown in (b).

Clipping
Window

Clipped
Fill Area

Polygon
Fill Area

1

F I G U R E 2 8
Clipping a polygon fill area against a
concave-polygon clipping window using the
Weiler-Atherton algorithm.

are above the top clipping-window border and points 2′ and 3 are to the left of the
clipping region. Also, the edge with endpoints 3 and 4 is outside the left clipping
boundary, but the next edge (from endpoint 4 to endpoint 5) reenters the clipping
region and we pick up intersection point 4′. The edge with endpoints 5 and 6
exits the window at intersection position 5′, so we detour down the left clipping
boundary to obtain the closed vertex list {4′, 5, 5′}. We resume the polygon edge
processing at position 5′, which returns us to the previously processed point 1′′′.
At this point, all polygon vertices and edges have been processed, so the fill area
is completely clipped.

Polygon Clipping Using Nonrectangular Polygon Clip Windows
The Liang-Barsky algorithm and other parametric line-clipping methods are par-
ticularly well suited for processing polygon fill areas against convex-polygon
clipping windows. In this approach, we use a parametric representation for the
edges of both the fill area and the clipping window, and both polygons are repre-
sented with a vertex list. We first compare the positions of the bounding rectangles
for the fill area and the clipping polygon. If we cannot identity the fill area as com-
pletely outside the clipping polygon, we can use inside-outside tests to process the
parametric edge equations. After completing all the region tests, we solve pairs
of simultaneous parametric line equations to determine the window intersection
positions.

We can also process any polygon fill area against any polygon-shaped clip-
ping window (convex or concave), as in Figure 28, using the edge-traversal
approach of the Weiler-Atherton algorithm. In this case, we need to maintain
a vertex list for the clipping window as well as for the fill area, with both lists
arranged in a counterclockwise (or clockwise) order. In addition, we need to apply

Two-Dimensional Viewing

265

inside-outside tests to determine whether a fill-area vertex is inside or outside a
particular clipping-window boundary. As in the previous examples, we follow
the window boundaries whenever a fill-area edge exits a clipping boundary. This
clipping method can also be used when either the fill area or the clipping window
contains holes that are defined with polygon borders. In addition, we can use this
basic approach in constructive solid-geometry applications to identify the result
of a union, intersection, or difference operation on two polygons. In fact, locating
the clipped region of a fill area is equivalent to determining the intersection of
two planar areas.

Polygon Clipping Using Nonlinear Clipping-Window Boundaries
One method for processing a clipping window with curved boundaries is to
approximate the boundaries with straight-line sections and use one of the algo-
rithms for clipping against a general polygon-shaped clipping window. Alter-
natively, we could use the same general procedures that we discussed for line
segments. First, we can compare the coordinate extents of the fill area to the
coordinate extents of the clipping window. Depending on the shape of the clip-
ping window, we may also be able to perform some other region tests based on
symmetric considerations. For fill areas that cannot be identified as completely
inside or completely outside the clipping window, we ultimately need to calculate
the window intersection positions with the fill area.

9 Curve Clipping
Areas with curved boundaries can be clipped with methods similar to those dis-
cussed in the previous sections. If the objects are approximated with straight-line
boundary sections, we use a polygon-clipping method. Otherwise, the clipping
procedures involve nonlinear equations, and this requires more processing than
for objects with linear boundaries.

We can first test the coordinate extents of an object against the clipping bound-
aries to determine whether it is possible to accept or reject the entire object trivially.
If not, we could check for object symmetries that we might be able to exploit in
the initial accept/reject tests. For example, circles have symmetries between quad-
rants and octants, so we could check the coordinate extents of these individual
circle regions. We cannot reject the complete circular fill area in Figure 29 just
by checking its overall coordinate extents. But half of the circle is outside the right
clipping border (or outside the top border), the upper-left quadrant is above the
top clipping border, and the remaining two octants can be similarly eliminated.

Clipping Window

F I G U R E 2 9
A circle fill area, showing the quadrant
and octant sections that are outside
the clipping-window boundaries.

Before Clipping

After Clipping

F I G U R E 3 0
Clipping a circle fill area.

An intersection calculation involves substituting a clipping-boundary posi-
tion (xwmin, xwmax, ywmin, or ywmax) in the nonlinear equation for the object bound-
ary and solving for the other coordinate value. Once all intersection positions have
been evaluated, the defining positions for the object can be stored for later use
by the scan-line fill procedures. Figure 30 illustrates circle clipping against a
rectangular window. For this example, the circle radius and the endpoints of the
clipped arc can be used to fill the clipped region, by invoking the circle algorithm
to locate positions along the arc between the intersection endpoints.

Similar procedures can be applied when clipping a curved object against a
general polygon clipping region. On the first pass, we could compare the bound-
ing rectangle of the object with the bounding rectangle of the clipping region. If
this does not save or eliminate the entire object, we next solve the simultaneous
line-curve equations to determine the clipping intersection points.

Two-Dimensional Viewing

266

10 Text Clipping
Several techniques can be used to provide text clipping in a graphics package.
In a particular application, the choice of clipping method depends on how char-
acters are generated and what requirements we have for displaying character
strings.

The simplest method for processing character strings relative to the limits
of a clipping window is to use the all-or-none string-clipping strategy shown in
Figure 31. If all of the string is inside the clipping window, we display the entire
string. Otherwise, the entire string is eliminated. This procedure is implemented
by examining the coordinate extents of the text string. If the coordinate limits of
this bounding rectangle are not completely within the clipping window, the string
is rejected.

An alternative is to use the all-or-none character-clipping strategy. Here we
eliminate only those characters that are not completely inside the clipping window
(Figure 32). In this case, the coordinate extents of individual characters are
compared to the window boundaries. Any character that is not completely within
the clipping-window boundary is eliminated.

A third approach to text clipping is to clip the components of individual
characters. This provides the most accurate display of clipped character strings,
but it requires the most processing. We now treat characters in much the same way
that we treated lines or polygons. If an individual character overlaps a clipping
window, we clip off only the parts of the character that are outside the window
(Figure 33). Outline character fonts defined with line segments are processed in
this way using a polygon-clipping algorithm. Characters defined with bit maps
are clipped by comparing the relative position of the individual pixels in the
character grid patterns to the borders of the clipping region.

Before Clipping

STRING 1

After Clipping

STRING 2

STRING 2

F I G U R E 3 1
Text clipping using the coordinate
extents for an entire string.

STRING 3

Before Clipping

STRING 4

TRING 3

After Clipping

NG 1

STRING 4

STR

STRING 1

STRING 2

F I G U R E 3 2
Text clipping using the bounding
rectangle for individual characters in a
string.

Before Clipping

STRING 1

STRIN
G 2

After Clipping

STRING 1

ST

F I G U R E 3 3
Text clipping performed on the
components of individual characters.

Two-Dimensional Viewing

267

11 Summary
The two-dimensional viewing-transformation pipeline is a series of operations
that result in the display of a world-coordinate picture that has been defined in the
xy plane. After we construct the scene, it can be mapped to a viewing-coordinate
reference frame, then to a normalized coordinate system where clipping routines
can be applied. Finally, the scene is transferred to device coordinates for display.
Normalized coordinates can be specified in the range from 0 to 1 or in the range
from −1 to 1, and they are used to make graphics packages independent of the
output-device requirements.

We select part of a scene for display on an output device using a clipping
window, which can be described in the world-coordinate system or in a viewing-
coordinate frame defined relative to world coordinates. The contents of the clip-
ping window are transferred to a viewport for display on an output device. In
some systems, a viewport is specified within normalized coordinates. Other sys-
tems specify the viewport in device coordinates. Typically, the clipping window
and viewport are rectangles whose edges are parallel to the coordinate axes. An
object is mapped to the viewport so that it has the same relative position in the
viewport as it has in the clipping window. To maintain the relative proportions
of an object, the viewport must have the same aspect ratio as the corresponding
clipping window. In addition, we can set up any number of clipping windows
and viewports for a scene.

Clipping algorithms are usually implemented in normalized coordinates, so
that all geometric transformations and viewing operations that are independent of
device coordinates can be concatenated into one transformation matrix. With the
viewport specified in device coordinates, we can clip a two-dimensional scene
against a normalized, symmetric square, with normalized coordinates varying
from −1 to 1, before transferring the contents of the normalized, symmetric square
to the viewport.

All graphics packages include routines for clipping straight-line segments
and polygon fill areas. Packages that contain functions for specifying single point
positions or text strings also include clipping routines for those graphics primi-
tives. Because the clipping calculations are time-consuming, the development of
improved clipping algorithms continues to be an area of major concern in com-
puter graphics. Cohen and Sutherland developed a line-clipping algorithm that
uses a region code to identify the position of a line endpoint relative to the clipping-
window boundaries. Endpoint region codes are used to identify quickly those
lines that are completely inside the clipping window and some of the lines that are
completely outside. For the remaining lines, intersection positions at the window
boundaries must be calculated. Liang and Barsky developed a faster line-clipping
algorithm that represents line segments with parametric equations, similar to the
Cyrus-Beck algorithm. This approach allows more testing to be accomplished
before proceeding to the intersection calculations. The Nicholl-Lee-Nicholl (NLN)
algorithm further reduces intersection calculations by using more region testing
in the xy plane. Parametric line-clipping methods are extended easily to convex
clipping windows and to three-dimensional scenes. However, the NLN approach
applies only to two-dimensional line segments.

Algorithms for clipping straight-line segments against concave-polygon clip-
ping windows have also been developed. One approach is to split a concave clip-
ping window into a set of convex polygons and apply the parametric line-clipping
methods. Another approach is to add edges to the concave window to modify it
to a convex shape. Then a series of exterior and interior clipping operations can
be performed to obtain the clipped line segment.

Two-Dimensional Viewing

268

T A B L E 1

Summary of OpenGL Two-Dimensional Viewing Functions

Function Description

gluOrtho2D Specifies clipping-window coordinates as parameters for a
two-dimensional orthogonal projection.

glViewport Specifies screen-coordinate parameters for a viewport.

glGetIntegerv Uses arguments GL VIEWPORT and vpArray to obtain
parameters for the currently active viewport.

glutInit Initializes the GLUT library.

glutInitWindowPosition Specifies coordinates for the top-left corner of a display
window.

glutInitWindowSize Specifies width and height for a display window.

glutCreateWindow Creates a display window (which is assigned an integer
identifier) and specify a display-window title.

glutInitDisplayMode Selects parameters such as buffering and color mode for a
display window.

glClearColor Specifies a background RGB color for a display window.

glClearIndex Specifies a background color for a display window using
color-index mode.

glutDestroyWindow Specifies an identifier number for a display window that
is to be deleted.

glutSetWindow Specifies the identifier number for a display window that
is to be the current display window.

glutPositionWindow Resets the screen location for the current display window.

glutReshapeWindow Resets the width and height for the current display
window.

glutFullScreen Sets current display window to the size of the video screen.

glutReshapeFunc Specifies a function that is to be invoked when display-
window size is changed.

glutIconifyWindow Converts the current display window to an icon.

glutSetIconTitle Specifies a label for a display-window icon.

glutSetWindowTitle Specifies new title for the current display window.

glutPopWindow Moves current display window to the “top”; i.e., in front of
all other windows.

glutPushWindow Moves current display window to the “bottom”; i.e.,
behind all other windows.

glutShowWindow Returns the current display window to the screen.

glutCreateSubWindow Creates a second-level window within a display window.

glutSetCursor Selects a shape for the screen cursor.

glutDisplayFunc Invokes a function to create a picture within the current
display window.

glutPostRedisplay Renews the contents of the current display window.

glutMainLoop Executes the computer-graphics program.

glutIdleFunc Specifies a function to execute when the system is idle.

glutGet Queries the system about a specified state parameter.

Two-Dimensional Viewing

269

Although clipping windows with curved boundaries are rarely used, we
can apply similar line-clipping methods. However, intersection calculations now
involve nonlinear equations.

A polygon fill area is defined with a vertex list, and polygon-clipping pro-
cedures must retain information about how the clipped edges are to be con-
nected as the polygon proceeds through the various processing stages. In the
Sutherland-Hodgman algorithm, pairs of fill-area vertices are processed by each
boundary clipper in turn, and clipping information for that edge is passed
immediately to the next clipper, which allows the four clipping routines (left,
right, bottom, and top) to be operating in parallel. This algorithm provides
an efficient method for clipping convex-polygon fill areas. However, when a
clipped concave polygon contains disjoint sections, the Sutherland-Hodgman
algorithm produces extraneous connecting line segments. Extensions of para-
metric line clippers, such as the Liang-Barsky method, can also be used to clip
convex polygon fill areas. Both convex and concave fill areas can be clipped
correctly with the Weiler-Atherton algorithm, which uses a boundary-traversal
approach.

Fill areas can be clipped against convex clipping windows using an extension
of the parametric line-representation approach. And the Weiler-Atherton method
can clip any polygon fill area using any polygon-shaped clipping window. Fill
areas can be clipped against windows with nonlinear boundaries by using a poly-
gon approximation for the window or by processing the fill area against the curved
window boundaries.

The fastest text-clipping method is the all-or-none strategy, which completely
clips a text string if any part of the string is outside any clipping-window bound-
ary. Alternatively, we could clip a text string by eliminating only those characters
in the string that are not completely inside the clipping window. And the most
accurate text-clipping method is to apply either point, line, polygon, or curve clip-
ping to the individual characters in a string, depending on whether characters are
defined as point grids or outline fonts.

Although OpenGL is designed for three-dimensional applications, a two-
dimensional GLU function is provided for specifying a standard, rectangular
clipping window in world coordinates. In OpenGL, the clipping-window coordi-
nates are parameters for the projection transformation. Therefore, we first need to
invoke the projection matrix mode. Next we can specify the viewport, using a func-
tion in the basic OpenGL library, and a display window, using GLUT functions. A
wide range of GLUT functions are available for setting various display-window
parameters. Table 1 summarizes the OpenGL two-dimensional viewing func-
tions. In addition, the table lists some viewing-related functions.

REFERENCES
Line-clipping algorithms are discussed in Sproull and
Sutherland (1968), Cyrus and Beck (1978), Liang and
Barsky (1984), and Nicholl, Lee, and Nicholl (1987).
Methods for improving the speed of the Cohen-
Sutherland line-clipping algorithm are given in Duva-
nenko (1990).

Basic polygon-clipping methods are presented in
Sutherland and Hodgman (1974) and in Liang and

Barsky (1983). General techniques for clipping arbitrarily
shaped polygons against each other are given in Weiler
and Atherton (1977) and in Weiler (1980).

Viewing operations in OpenGL are discussed
in Woo, et al. (1999). Display-window GLUT rou-
tines are discussed in Kilgard (1996), and additional
information on GLUT can be obtained online at
http://reality.sgi.com/opengl/glut3/glut3.html.

Two-Dimensional Viewing

270

EXERCISES
1 Write a procedure to calculate the elements of

matrix 1 for transforming two-dimensional
world coordinates to viewing coordinates, given
the viewing coordinate origin P0 and the view up
vector V.

2 Derive matrix 8 for transferring the contents of
a clipping window to a viewport by first scal-
ing the window to the size of the viewport, then
translating the scaled window to the viewport
position. Use the center of the clipping window as
the reference point for the scaling and translation
operations.

3 Write a procedure to calculate the elements of
matrix 9 for transforming a clipping window to
the symmetric normalized square.

4 Write a set of procedures to implement the two-
dimensional viewing pipeline without clipping
operations. Your program should allow a scene to
be constructed with modeling-coordinate transfor-
mations, a specified viewing system, and a trans-
formation to the symmetric normalized square. As
an option, a viewing table could be implemented
to store different sets of viewing transformation
parameters.

5 Write a complete program to implement the
Cohen-Sutherland line-clipping algorithm.

6 Modify the program in the previous exercise to pro-
duce an animation of a single line whose length
is longer than the diagonal length of the viewing
window. The midpoint of the line should be placed
at the center of the viewing window and the line
should rotate clockwise by a small amount in each
frame. The clipping algorithm implemented in the
previous exercise should clip the line appropriately
in each frame.

7 Carefully discuss the rationale behind the various
tests and methods for calculating the intersection
parameters u1 and u2 in the Liang-Barsky line-
clipping algorithm.

8 Compare the number of arithmetic operations per-
formed in the Cohen-Sutherland and the Liang-
Barsky line-clipping algorithms for several differ-
ent line orientations relative to a clipping window.

9 Write a complete program to implement the Liang-
Barsky line-clipping algorithm.

10 Modify the program in the previous exercise to pro-
duce an animation similar to the one described in
Exercise 6. The clipping algorithm implemented
in the previous exercise should clip the line appro-
priately in each frame.

11 Devise symmetry transformations for mapping the
intersection calculations for the three regions in
Figure 14 to the other six regions of the xy plane.

12 Set up a detailed algorithm for the Nicholl-Lee-
Nicholl approach to line clipping for any input pair
of line endpoints.

13 Compare the number of arithmetic operations
performed in the NLN algorithm to both the
Cohen-Sutherland and Liang-Barsky line-clipping
algorithms, for several different line orientations
relative to a clipping window.

14 Adapt the Liang-Barsky line-clipping algorithm to
polygon clipping.

15 Use the implementation of Liang-Barsky polygon
clipping developed in the previous exercise to
write a program that displays an animation of
a moving hexagon in the display window. The
hexagon should be displayed as moving into the
window from the top-left corner of the window
diagonally towards the bottom-right corner and off
the screen. Once the hexagon has exited the win-
dow completely the animation should repeat.

16 Set up a detailed algorithm for Weiler-Atherton
polygon clipping, assuming that the clipping win-
dow is a rectangle in standard position.

17 Use the implementation of Weiler-Atherton poly-
gon clipping developed in the previous exercise to
write a program that produces a similar animation
to the one described in Exercise 14.

18 Devise an algorithm for Weiler-Atherton polygon
clipping, where the clipping window can be any
convex polygon.

19 Devise an algorithm for Weiler-Atherton polygon
clipping, where the clipping window can be any
specified polygon (convex or concave).

20 Write a routine to clip an ellipse in standard posi-
tion against a rectangular window.

21 Assuming that all characters in a text string have
the same width, develop a text-clipping algorithm
that clips a string according to the all-or-none
character-clipping strategy.

22 Use the implementation of text clipping developed
in the previous exercise to write a program that
displays an animation of a moving marquee in the
display window. That is, a sequence of characters
should be displayed as moving into the window
from the left side, across the window horizontally,
and out of the window on the right side. Once all
of the characters have exited the viewport on the
right side the animation should repeat.

23 Develop a text-clipping algorithm that clips indi-
vidual characters, assuming that the characters are
defined in a pixel grid of a specified size.

24 Use the implementation of text clipping developed
in the previous exercise to write a program that per-
forms the same behavior as that in Exercise 21.

Two-Dimensional Viewing

271

IN MORE DEPTH
1 Implement both the Sutherland-Hodgman and

Weiler-Atherton polygon-clipping algorithms in
two separate routines. Use them to clip the objects
in the current snapshot of your scene against a
sub-rectangle of the full scene extents. Compare
the performance of the two algorithms. Make any
modifications necessary to handle clipping of con-
cave polygons in your scene using the Sutherland-
Hodgman algorithm. The routines should take in
the position and size of a rectangular clipping win-
dow and clip the objects in the scene against it.

2

Two-Dimensional Viewing

Use the GLUT commands discussed in this chap-
ter to set up a display window in which you will
display a portion of the animated scene that you
developed. More specifically, define a rectangle
whose size is moderately smaller than the coordi-

nate extents of all the objects in your scene. This
rectangle will act as a clipping window against
which you will employ the clipping algorithms
you implemented in the previous exercise. The
animation should be run continuously, but the
objects in the scene should be clipped in each
frame against the clipping window, and only this
portion of the scene displayed in the display win-
dow. Additionally, add the ability to move the clip-
ping window around the scene via keyboard input
by using the directional arrows. Each keystroke
should move the clipping window by a small
amount in the appropriate direction. Run the ani-
mation using both the Sutherland-Hodgman and
Weiler-Atherton algorithms and note any differ-
ences in performance.

272

Three-Dimensional
Geometric Transformations

1 Three-Dimensional Translation

2 Three-Dimensional Rotation

3 Three-Dimensional Scaling

4 Composite Three-Dimensional
Transformations

5 Other Three-Dimensional
Transformations

6 Transformations between
Three-Dimensional Coordinate
Systems

7 Affine Transformations

8 OpenGL Geometric-Transformation
Functions

9 OpenGL Three-Dimensional
Geometric- Transformation
Programming Examples

10 Summary

M ethods for geometric transformations in three dimensions

are extended from two-dimensional methods by includ-

ing considerations for the z coordinate. In most cases, this

extension is relatively straighforward. However, in some cases—

particularly, rotation—the extension to three dimensions is less

obvious.

When we discussed two-dimensional rotations in the xy plane,

we needed to consider only rotations about axes that were perpendic-

ular to the xy plane. In three-dimensional space, we can now select

any spatial orientation for the rotation axis. Some graphics packages

handle three-dimensional rotation as a composite of three rotations,

one for each of the three Cartesian axes. Alternatively, we can set up

general rotation equations, given the orientation of a rotation axis

and the required rotation angle.

A three-dimensional position, expressed in homogeneous coor-

dinates, is represented as a four-element column vector. Thus, each

geometric transformation operator is now a 4 × 4 matrix, which

From Chapter 9 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

273

premultiplies a coordinate column vector. In addition, as in two dimensions, any sequence

of transformations is represented as a single matrix, formed by concatenating the matri-

ces for the individual transformations in the sequence. Each successive matrix in a trans-

formation sequence is concatenated to the left of previous transformation matrices.

1 Three-Dimensional Translation
A position P = (x, y, z) in three-dimensional space is translated to a location P′ =
(x′, y′, z′) by adding translation distances tx, ty, and tz to the Cartesian coordinates
of P:

x′ = x + tx, y′ = y + ty, z′ = z + tz

Figure 1 illustrates three-dimensional point translation.
We can express these three-dimensional translation operations in matrix form.

But now the coordinate positions, P and P ′, are represented in homogeneous
coordinates with four-element column matrices, and the translation operator T
is a 4 × 4 matrix:

⎡

⎢
⎢
⎣

x′

y′

z′

1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(2)

or

P′ = T · P (3)

An object is translated in three dimensions by transforming each of the defin-
ing coordinate positions for the object, then reconstructing the object at the new
location. For an object represented as a set of polygon surfaces, we translate each
vertex for each surface (Figure 2) and redisplay the polygon facets at the trans-
lated positions.

The following program segment illustrates construction of a translation
matrix, given an input set of translation parameters.

F I G U R E
Moving a coordinate position with translation vector
T = (tx , ty , tz) .

y axis

x axis
z axis

(x, y, z)

(x�, y�, z�)

T � (tx, ty, tz)

 (1)

Three-Dimensional Geometric Transformations

1

274

T � (tx, ty, tz)

(x�, y�, z�)

(x, y, z)

y axis

x axis
z axis

F I G U R E 2
Shifting the position of a three-dimensional object
using translation vector T.

typedef GLfloat Matrix4x4 [4][4];

/* Construct the 4 x 4 identity matrix. */
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4)
{

GLint row, col;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matIdent4x4 [row][col] = (row == col);
}

void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)
{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */
matrix4x4SetIdentity (matTransl3D);

matTransl3D [0][3] = tx;
matTransl3D [1][3] = ty;
matTransl3D [2][3] = tz;

}

An inverse of a three-dimensional translation matrix is obtained using the
same procedures that we applied in a two-dimensional translation. That is,
we negate the translation distances tx, ty, and tz. This produces a translation in the
opposite direction, and the product of a translation matrix and its inverse is the
identity matrix.

2 Three-Dimensional Rotation
We can rotate an object about any axis in space, but the easiest rotation axes to
handle are those that are parallel to the Cartesian-coordinate axes. Also, we can use
combinations of coordinate-axis rotations (along with appropriate translations)
to specify a rotation about any other line in space. Therefore, we first consider the
operations involved in coordinate-axis rotations, then we discuss the calculations
needed for other rotation axes.

By convention, positive rotation angles produce counterclockwise rotations
about a coordinate axis, assuming that we are looking in the negative direction
along that coordinate axis (Figure 3). This agrees with our earlier discussion of

Three-Dimensional Geometric Transformations

275

F I G U R E 3
Positive rotations about a coordinate axis are
counterclockwise, when looking along the positive
half of the axis toward the origin.

y

x

z

(a)

y

x

z
(b)

y

x

z
(c)

rotations in two dimensions, where positive rotations in the xy plane are counter-
clockwise about a pivot point (an axis that is parallel to the z axis).

Three-Dimensional Coordinate-Axis Rotations
The two-dimensional z-axis rotation equations are easily extended to three
dimensions, as follows:

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ (4)

z′ = z

Parameter θ specifies the rotation angle about the z axis, and z-coordinate val-
ues are unchanged by this transformation. In homogeneous-coordinate form, the
three-dimensional z-axis rotation equations are

⎡

⎢
⎢
⎣

x′

y′

z′

1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(5)

Three-Dimensional Geometric Transformations

276

y

x

z
F I G U R E 4
Rotation of an object about the z axis.

which we can write more compactly as

P′ = Rz(θ) · P (6)

Figure 4 illustrates rotation of an object about the z axis.
Transformation equations for rotations about the other two coordinate axes

can be obtained with a cyclic permutation of the coordinate parameters x, y, and
z in Equations 4:

x → y → z → x (7)

Thus, to obtain the x-axis and y-axis rotation transformations, we cyclically
replace x with y, y with z, and z with x, as illustrated in Figure 5.

Substituting permutations 7 into Equations 4, we get the equations for an
x-axis rotation:

y′ = y cos θ − z sin θ

z′ = y sin θ + z cos θ (8)

x′ = x

Rotation of an object around the x axis is demonstrated in Figure 6.
A cyclic permutation of coordinates in Equations 8 gives us the transforma-

tion equations for a y-axis rotation:

z′ = z cos θ − x sin θ

x′ = z sin θ + x cos θ (9)

y′ = y

An example of y-axis rotation is shown in Figure 7.
An inverse three-dimensional rotation matrix is obtained in the same way

as the inverse rotations in two dimensions. We just replace the angle θ with −θ .

y

x

z

z

y

x

x

z

y

F I G U R E 5
Cyclic permutation of the Cartesian-coordinate axes to produce the three sets of coordinate-axis rotation
equations.

Three-Dimensional Geometric Transformations

277

y

x

z

F I G U R E 6
Rotation of an object about the x axis.

y

x
z

F I G U R E 7
Rotation of an object about the y axis.

Negative values for rotation angles generate rotations in a clockwise direction,
and the identity matrix is produced when we multiply any rotation matrix by its
inverse. Because only the sine function is affected by the change in sign of the
rotation angle, the inverse matrix can also be obtained by interchanging rows and
columns. That is, we can calculate the inverse of any rotation matrix R by forming
its transpose (R−1 = RT).

General Three-Dimensional Rotations
A rotation matrix for any axis that does not coincide with a coordinate axis can
be set up as a composite transformation involving combinations of translations
and the coordinate-axis rotations. We first move the designated rotation axis onto
one of the coordinate axes. Then we apply the appropriate rotation matrix for
that coordinate axis. The last step in the transformation sequence is to return the
rotation axis to its original position.

In the special case where an object is to be rotated about an axis that is parallel
to one of the coordinate axes, we attain the desired rotation with the following
transformation sequence:

1. Translate the object so that the rotation axis coincides with the parallel
coordinate axis.

2. Perform the specified rotation about that axis.
3. Translate the object so that the rotation axis is moved back to its original

position.

The steps in this sequence are illustrated in Figure 8. A coordinate position P is
transformed with the sequence shown in this figure as

P′ = T−1 · Rx(θ) · T · P (10)

where the composite rotation matrix for the transformation is

R(θ) = T−1 · Rx(θ) · T (11)

This composite matrix is of the same form as the two-dimensional transformation
sequence for rotation about an axis that is parallel to the z axis (a pivot point that
is not at the coordinate origin).

When an object is to be rotated about an axis that is not parallel to one of
the coordinate axes, we must perform some additional transformations. In this

Three-Dimensional Geometric Transformations

278

y

xz

y

xz

y

xz

y

xz

Rotation Axis

Rotation Axis

(a)
Original Position of Object

(b)
Translate Rotation Axis onto x Axis

(d)
Translate Rotation

Axis to Original Position

(c)
Rotate Object Through Angle u

u

F I G U R E 8
Sequence of transformations for
rotating an object about an axis that is
parallel to the x axis.

case, we also need rotations to align the rotation axis with a selected coordinate
axis and then to bring the rotation axis back to its original orientation. Given the
specifications for the rotation axis and the rotation angle, we can accomplish the
required rotation in five steps:

1. Translate the object so that the rotation axis passes through the coordinate
origin.

2. Rotate the object so that the axis of rotation coincides with one of the
coordinate axes.

3. Perform the specified rotation about the selected coordinate axis.
4. Apply inverse rotations to bring the rotation axis back to its original

orientation.
5. Apply the inverse translation to bring the rotation axis back to its original

spatial position.

We can transform the rotation axis onto any one of the three coordinate axes.
The z axis is often a convenient choice, and we next consider a transformation
sequence using the z-axis rotation matrix (Figure 9).

A rotation axis can be defined with two coordinate positions, as in Figure 10,
or with one coordinate point and direction angles (or direction cosines) between
the rotation axis and two of the coordinate axes. We assume that the rotation axis
is defined by two points, as illustrated, and that the direction of rotation is to be
counterclockwise when looking along the axis from P2 to P1. The components of
the rotation-axis vector are then computed as

V = P2 − P1

= (x2 − x1, y2 − y1, z2 − z1) (12)

The unit rotation-axis vector u is

u = V
|V| = (a , b, c) (13)

Three-Dimensional Geometric Transformations

279

F I G U R E 9
Five transformation steps for obtaining
a composite matrix for rotation about
an arbitrary axis, with the rotation axis
projected onto the z axis.

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

Initial
Position

P1

P2

Step 5
Translate the
Rotation Axis
to Its Original

Position

P1

P2

Step 1
Translate

P1 to the Origin

P1�

P2�

P1�

P2�

P2��

Step 4
Rotate the Axis
to Its Original
Orientation

Step 2
Rotate P2�

onto the z Axis

Step 3
Rotate the

Object Around the
z Axis

P1�

P2��

P1�

u

where the components a , b, and c are the direction cosines for the rotation axis:

a = x2 − x1

|V| , b = y2 − y1

|V| , c = z2 − z1

|V| (14)

If the rotation is to be in the opposite direction (clockwise when viewing from P2
to P1), then we would reverse axis vector V and unit vector u so that they point
in the direction from P2 to P1.

y

x

z

u
P2

P1

F I G U R E 1 0
An axis of rotation (dashed line)
defined with points P1 and P2. The
direction for the unit axis vector u is
determined by the specified rotation
direction.

The first step in the rotation sequence is to set up the translation matrix
that repositions the rotation axis so that it passes through the coordinate ori-
gin. Because we want a counterclockwise rotation when viewing along the axis
from P2 to P1 (Figure 10), we move the point P1 to the origin. (If the rotation had
been specified in the opposite direction, we would move P2 to the origin.) This
translation matrix is

T =

⎡

⎢
⎢
⎣

1 0 0 −x1
0 1 0 −y1
0 0 1 −z1
0 0 0 1

⎤

⎥
⎥
⎦

(15)

which repositions the rotation axis and the object as shown in Figure 11.

y

x

z

u

F I G U R E 1 1
Translation of the rotation axis to the
coordinate origin.

Next, we formulate the transformations that will put the rotation axis onto
the z axis. We can use the coordinate-axis rotations to accomplish this alignment
in two steps, and there are a number of ways to perform these two steps. For this
example, we first rotate about the x axis, then rotate about the y axis. The x-axis
rotation gets vector u into the xz plane, and the y-axis rotation swings u around
to the z axis. These two rotations are illustrated in Figure 12 for one possible
orientation of vector u.

Because rotation calculations involve sine and cosine functions, we can use
standard vector operations to obtain elements of the two rotation matrices.
A vector dot product can be used to determine the cosine term, and a vector
cross -product can be used to calculate the sine term.

Three-Dimensional Geometric Transformations

280

y

x
z

u

(a)

y

x
z

(b)

u

a

F I G U R E 1 2
Unit vector u is rotated about the x axis to bring it into the x z plane
(a), then it is rotated around the y axis to align it with the z axis (b).

y

x

z

u� u

uz � (0, 0, 1)

a

F I G U R E 1 3
Rotation of u around the x axis into
the x z plane is accomplished by
rotating u′ (the projection of u in the
y z plane) through angle α onto the z
axis.

We establish the transformation matrix for rotation around the x axis by
determining the values for the sine and cosine of the rotation angle necessary
to get u into the xz plane. This rotation angle is the angle between the projection
of u in the yz plane and the positive z axis (Figure 13). If we represent the projec-
tion of u in the yz plane as the vector u′ = (0, b, c), then the cosine of the rotation
angle α can be determined from the dot product of u′ and the unit vector uz along
the z axis:

cos α = u′ · uz

|u′| |uz| = c
d

(16)

where d is the magnitude of u′:

d =
√

b2 + c2 (17)

Similarly, we can determine the sine of α from the cross-product of u′ and uz. The
coordinate-independent form of this cross-product is

u′ × uz = ux |u′| |uz| sin α (18)

and the Cartesian form for the cross-product gives us

u′ × uz = ux · b (19)

Equating the right sides of Equations 18 and 19, and noting that |u z| = 1 and
|u′| = d , we have

d sin α = b

or

sin α = b
d

(20)

Now that we have determined the values for cos α and sin α in terms of the
components of vector u, we can set up the matrix elements for rotation of this
vector about the x axis and into the xz plane:

Rx(α) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0
c
d

− b
d

0

0
b
d

c
d

0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)

y

x

z

uz � (0, 0, 1)

u� � (a, 0, d)

b

F I G U R E
Rotation of unit vector u′′ (vector u
after rotation into the x z plane) about
the y axis. Positive rotation angle β

aligns u′′ with vector uz .

The next step in the formulation of the transformation sequence is to deter-
mine the matrix that will swing the unit vector in the xz plane counterclockwise
around the y axis onto the positive z axis. Figure 14 shows the orientation of

Three-Dimensional Geometric Transformations

1 4

281

the unit vector in the xz plane, resulting from the rotation about the x axis. This
vector, labeled u′′, has the value a for its x component, because rotation about the
x axis leaves the x component unchanged. Its z component is d (the magnitude of
u′), because vector u′ has been rotated onto the z axis. Also, the y component of
u′′ is 0 because it now lies in the xz plane. Again, we can determine the cosine
of rotation angle β from the dot product of unit vectors u′′ and uz. Thus,

cos β = u′′ · uz

|u′′| |uz| = d (22)

because |uz| = |u′′| = 1. Comparing the coordinate-independent form of the
cross-product

u′′ × uz = uy |u′′| |uz| sin β (23)

with the Cartesian form

u′′ × uz = uy · (−a) (24)

we find that

sin β = −a (25)

Therefore, the transformation matrix for rotation of u′′ about the y axis is

Ry(β) =

⎡

⎢
⎢
⎣

d 0 −a 0
0 1 0 0
a 0 d 0
0 0 0 1

⎤

⎥
⎥
⎦

(26)

With transformation matrices 15, 21, and 26, we have aligned the rota-
tion axis with the positive z axis. The specified rotation angle θ can now be applied
as a rotation about the z axis as follows:

Rz(θ) =

⎡

⎢
⎢
⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(27)

To complete the required rotation about the given axis, we need to transform
the rotation axis back to its original position. This is done by applying the inverse
of transformations 15, 21, and 26. The transformation matrix for rotation
about an arbitrary axis can then be expressed as the composition of these seven
individual transformations:

R(θ) = T−1 · R−1
x (α) · R−1

y (β) · Rz(θ) · Ry(β) · Rx(α) · T (28)

A somewhat quicker, but perhaps less intuitive, method for obtaining the
composite rotation matrix Ry(β) ·Rx(α) is to use the fact that the composite matrix
for any sequence of three-dimensional rotations is of the form

R =

⎡

⎢
⎢
⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤

⎥
⎥
⎦

(29)

The upper-left 3 × 3 submatrix of this matrix is orthogonal. This means that the
rows (or the columns) of this submatrix form a set of orthogonal unit vectors that

Three-Dimensional Geometric Transformations

282

are rotated by matrix R onto the x, y, and z axes, respectively:

R ·

⎡

⎢
⎢
⎣

r11
r12
r13
1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦

, R ·

⎡

⎢
⎢
⎣

r21
r22
r23
1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
1
0
1

⎤

⎥
⎥
⎦

, R ·

⎡

⎢
⎢
⎣

r31
r32
r33
1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦

(30)

y

x

z

u�z � u
u�y

u�x

F I G U R E
Local coordinate system for a rotation
axis defined by unit vector u.

Therefore, we can set up a local coordinate system with one of its axes aligned on
the rotation axis. Then the unit vectors for the three coordinate axes are used to
construct the columns of the rotation matrix. Assuming that the rotation axis is
not parallel to any coordinate axis, we could form the following set of local unit
vectors (Figure 15).

u′
z = u

u′
y = u × ux

|u × ux|
u′

x = u′
y × u′

z

(31)

If we express the elements of the unit local vectors for the rotation axis as

u′
x = (u′

x1, u′
x2, u′

x3)

u′
y = (u′

y1, u′
y2, u′

y3)

u′
z = (u′

z1, u′
z2, u′

z3)

(32)

then the required composite matrix, which is equal to the product Ry(β) · Rx(α),
is

R =

⎡

⎢
⎢
⎢
⎣

u′
x1 u′

x2 u′
x3 0

u′
y1 u′

y2 u′
y3 0

u′
z1 u′

z2 u′
z3 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦

(33)

This matrix transforms the unit vectors u′
x, u′

y, and u′
z onto the x, y, and z axes,

respectively. This aligns the rotation axis with the z axis, because u′
z = u.

Quaternion Methods for Three-Dimensional Rotations
A more efficient method for generating a rotation about an arbitrarily selected axis
is to use a quaternion representation for the rotation transformation. Quaternions,
which are extensions of two-dimensional complex numbers, are useful in a num-
ber of computer-graphics procedures, including the generation of fractal objects.
They require less storage space than 4 × 4 matrices, and it is simpler to write
quaternion procedures for transformation sequences. This is particularly important
in animations, which often require complicated motion sequences and motion
interpolations between two given positions of an object.

One way to characterize a quaternion is as an ordered pair, consisting of a
scalar part and a vector part:

q = (s, v)

We can also think of a quaternion as a higher-order complex number with one
real part (the scalar part) and three complex parts (the elements of vector v). A
rotation about any axis passing through the coordinate origin is accomplished by
first setting up a unit quaternion with the scalar and vector parts as follows:

s = cos
θ

2
, v = u sin

θ

2
(34)

Three-Dimensional Geometric Transformations

1 5

283

where u is a unit vector along the selected rotation axis and θ is the specified
rotation angle about this axis (Figure 16). Any point position P that is to be
rotated by this quaternion can be represented in quaternion notation as

P = (0, p)

with the coordinates of the point as the vector part p = (x, y, z). The rotation of
the point is then carried out with the quaternion operation

P′ = qPq−1 (35)

where q−1 = (s, −v) is the inverse of the unit quaternion q with the scalar and
vector parts given in Equations 34. This transformation produces the following
new quaternion:

P′ = (0, p′) (36)

The second term in this ordered pair is the rotated point position p′, which is
evaluated with vector dot and cross-products as

p′ = s2p + v(p · v) + 2s(v × p) + v × (v × p) (37)

Values for parameters s and v are obtained from the expressions in 34. Many
computer graphics systems use efficient hardware implementations of these vec-
tor calculations to perform rapid three-dimensional object rotations.

y

x

z

u

u

F I G U R E
Unit quaternion parameters θ and u
for rotation about a specified axis.

Transformation 35 is equivalent to rotation about an axis that passes through
the coordinate origin. This is the same as the sequence of rotation transformations
in Equation 28 that aligns the rotation axis with the z axis, rotates about z, and
then returns the rotation axis to its original orientation at the coordinate origin.

We can evaluate the terms in Equation 37 using the definition for quaternion
multiplication. Also, designating the components of the vector part of q as v =
(a , b, c) , we obtain the elements for the composite rotation matrix R−1

x (α) · R−1
y (β)

· Rz(θ) · Ry(β) · Rx(α) in a 3 × 3 form as

MR(θ) =
⎡

⎣

1 − 2b2 − 2c2 2ab − 2sc 2ac + 2sb
2ab + 2sc 1 − 2a2 − 2c2 2bc − 2sa
2ac − 2sb 2bc + 2sa 1 − 2a2 − 2b2

⎤

⎦ (38)

The calculations involved in this matrix can be greatly reduced by substituting
explicit values for parameters a , b, c, and s, and then using the following trigono-
metric identities to simplify the terms:

cos2 θ

2
− sin2 θ

2
= 1 − 2 sin2 θ

2
= cos θ , 2 cos

θ

2
sin

θ

2
= sin θ

Thus, we can rewrite Matrix 38 as

MR(θ) =
⎡

⎣

u2
x(1 − cos θ) + cos θ uxuy(1 − cos θ) − uz sin θ uxuz(1 − cos θ) + uy sin θ

uyux(1 − cos θ) + uz sin θ u2
y(1 − cos θ) + cos θ uyuz(1 − cos θ) − ux sin θ

uzux(1 − cos θ) − uy sin θ uzuy(1 − cos θ) + ux sin θ u2
z(1 − cos θ) + cos θ

⎤

⎦

(39)

where ux, uy, and uz are the components of the unit axis vector u.
To complete the transformation sequence for rotating about an arbitrarily

placed rotation axis, we need to include the translations that move the rotation
axis to the coordinate axis and return it to its original position. Thus, the complete
quaternion rotation expression, corresponding to Equation 28, is

R(θ) = T−1 · MR · T (40)

Three-Dimensional Geometric Transformations

16

284

For example, we can perform a rotation about the z axis by setting rotation-
axis vector u to the unit z-axis vector (0, 0, 1). Substituting the components of this
vector into Matrix 39, we get the 3×3 version of the z-axis rotation matrix Rz(θ)

in Equation . Similarly, substituting the unit-quaternion rotation values into
Equation 35 produces the rotated coordinate values in Equations 4.

In the following code, we give examples of procedures that could be used to
construct a three-dimensional rotation matrix. The quaternion representation in
Equation 40 is used to set up the matrix elements for a general three-dimensional
rotation.

class wcPt3D {
public:

GLfloat x, y, z;
};
typedef float Matrix4x4 [4][4];

Matrix4x4 matRot;

/* Construct the 4 x 4 identity matrix. */
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4)
{

GLint row, col;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matIdent4x4 [row][col] = (row == col);
}

/* Premultiply matrix m1 by matrix m2, store result in m2. */
void matrix4x4PreMultiply (Matrix4x4 m1, Matrix4x4 m2)
{

GLint row, col;
Matrix4x4 matTemp;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] *
m2 [1][col] + m1 [row][2] * m2 [2][col] +
m1 [row][3] * m2 [3][col];

for (row = 0; row < 4; row++)
for (col = 0; col < 4; col++)

m2 [row][col] = matTemp [row][col];
}

void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)
{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */
matrix4x4SetIdentity (matTransl3D);

matTransl3D [0][3] = tx;
matTransl3D [1][3] = ty;
matTransl3D [2][3] = tz;

Three-Dimensional Geometric Transformations

5

285

/* Concatenate translation matrix with matRot. */
matrix4x4PreMultiply (matTransl3D, matRot);

}

void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat radianAngle)
{

Matrix4x4 matQuaternionRot;

GLfloat axisVectLength = sqrt ((p2.x - p1.x) * (p2.x - p1.x) +
(p2.y - p1.y) * (p2.y - p1.y) +
(p2.z - p1.z) * (p2.z - p1.z));

GLfloat cosA = cos (radianAngle);
GLfloat oneC = 1 - cosA;
GLfloat sinA = sin (radianAngle);
GLfloat ux = (p2.x - p1.x) / axisVectLength;
GLfloat uy = (p2.y - p1.y) / axisVectLength;
GLfloat uz = (p2.z - p1.z) / axisVectLength;

/* Set up translation matrix for moving p1 to origin. */
translate3D (-p1.x, -p1.y, -p1.z);

/* Initialize matQuaternionRot to identity matrix. */
matrix4x4SetIdentity (matQuaternionRot);

matQuaternionRot [0][0] = ux*ux*oneC + cosA;
matQuaternionRot [0][1] = ux*uy*oneC - uz*sinA;
matQuaternionRot [0][2] = ux*uz*oneC + uy*sinA;
matQuaternionRot [1][0] = uy*ux*oneC + uz*sinA;
matQuaternionRot [1][1] = uy*uy*oneC + cosA;
matQuaternionRot [1][2] = uy*uz*oneC - ux*sinA;
matQuaternionRot [2][0] = uz*ux*oneC - uy*sinA;
matQuaternionRot [2][1] = uz*uy*oneC + ux*sinA;
matQuaternionRot [2][2] = uz*uz*oneC + cosA;

/* Combine matQuaternionRot with translation matrix. */
matrix4x4PreMultiply (matQuaternionRot, matRot);

/* Set up inverse matTransl3D and concatenate with
* product of previous two matrices.
*/
translate3D (p1.x, p1.y, p1.z);

}

void displayFcn (void)
{

/* Input rotation parameters. */

/* Initialize matRot to identity matrix: */
matrix4x4SetIdentity (matRot);

/* Pass rotation parameters to procedure rotate3D. */

/* Display rotated object. */
}

Three-Dimensional Geometric Transformations

286

F I G U R E 1 7
Doubling the size of an object with transformation 41 also
moves the object farther from the origin.

y

xz

3 Three-Dimensional Scaling
The matrix expression for the three-dimensional scaling transformation of a
position P = (x, y, z) relative to the coordinate origin is a simple extension of
two-dimensional scaling. We just include the parameter for z-coordinate scaling
in the transformation matrix:

⎡

⎢
⎢
⎣

x′

y′

z′

1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(41)

The three-dimensional scaling transformation for a point position can be repre-
sented as

P′ = S · P (42)

where scaling parameters sx, sy, and sz are assigned any positive values. Explicit
expressions for the scaling transformation relative to the origin are

x′ = x · sx, y′ = y · sy, z′ = z · sz (43)

Scaling an object with transformation 41 changes the position of the object
relative to the coordinate origin. A parameter value greater than 1 moves a point
farther from the origin in the corresponding coordinate direction. Similarly, a
parameter value less than 1 moves a point closer to the origin in that coordinate
direction. Also, if the scaling parameters are not all equal, relative dimensions of a
transformed object are changed. We preserve the original shape of an object with
a uniform scaling: sx = sy = sz. The result of scaling an object uniformly, with each
scaling parameter set to 2, is illustrated in Figure .

Because some graphics packages provide only a routine that scales relative
to the coordinate origin, we can always construct a scaling transformation with
respect to any selected fixed position (x f , yf , z f) using the following transformation
sequence:

1. Translate the fixed point to the origin.
2. Apply the scaling transformation relative to the coordinate origin using

Equation 41.
3. Translate the fixed point back to its original position.

This sequence of transformations is demonstrated in Figure 18. The matrix
representation for an arbitrary fixed-point scaling can then be expressed as the

Three-Dimensional Geometric Transformations

17

287

concatenation of these translate-scale-translate transformations:

T(x f , yf , z f) · S(sx, sy, sz) · T(−x f , −yf , −z f) =

⎡

⎢
⎢
⎣

sx 0 0 (1 − sx)x f

0 sy 0 (1 − sy)yf

0 0 sz (1 − sz)z f

0 0 0 1

⎤

⎥
⎥
⎦

(44)

y

xz

(a)

(xF, yF, zF)

Original Position

(xF, yF, zF)

y

xz

(b)

Translate

(xF, yF, zF)

y

xz

(c)

Scale

(xF, yF, zF)

y

xz

(d)

Inverse Translate

F I G U R E 1 8
A sequence of transformations for
scaling an object relative to a selected
fixed point, using Equation 41.

We can set up programming procedures for constructing a three-dimensional
scaling matrix using either a translate-scale-translate sequence or a direct incorpo-
ration of the fixed-point coordinates. In the following code example, we demon-
strate a direct construction of a three-dimensional scaling matrix relative to a
selected fixed point using the calculations in Equation 44:

class wcPt3D
{

private:
GLfloat x, y, z;

public:
/* Default Constructor:
* Initialize position as (0.0, 0.0, 0.0).
*/
wcPt3D () {

x = y = z = 0.0;
}

setCoords (GLfloat xCoord, GLfloat yCoord, GLfloat zCoord) {
x = xCoord;
y = yCoord;
z = zCoord;

}

GLfloat getx () const {
return x;

}

GLfloat gety () const {
return y;

}

GLfloat getz () const {
return z;

}
};

typedef float Matrix4x4 [4][4];

void scale3D (GLfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)
{

Matrix4x4 matScale3D;

/* Initialize scaling matrix to identity. */
matrix4x4SetIdentity (matScale3D);

Three-Dimensional Geometric Transformations

288

matScale3D [0][0] = sx;
matScale3D [0][3] = (1 - sx) * fixedPt.getx ();
matScale3D [1][1] = sy;
matScale3D [1][3] = (1 - sy) * fixedPt.gety ();
matScale3D [2][2] = sz;
matScale3D [2][3] = (1 - sz) * fixedPt.getz ();

}

An inverse, three-dimensional scaling matrix is set up for either Equation 41
or Equation 44 by replacing each scaling parameter (s x, sy, and sz)with its recip-
rocal. However, this inverse transformation is undefined if any scaling parameter
is assigned the value 0. The inverse matrix generates an opposite scaling trans-
formation, and the concatenation of a three-dimensional scaling matrix with its
inverse yields the identity matrix.

4 Composite Three-Dimensional
Transformations

As with two-dimensional transformations, we form a composite three-
dimensional transformation by multiplying the matrix representations for
the individual operations in the transformation sequence. Any of the two-
dimensional transformation sequences, such as scaling in noncoordinate direct-
ions, can be carried out in three-dimensional space.

We can implement a transformation sequence by concatenating the individual
matrices from right to left or from left to right, depending on the order in which
the matrix representations are specified. Of course, the rightmost term in a matrix
product is always the first transformation to be applied to an object and the
leftmost term is always the last transformation. We need to use this ordering for
the matrix product because coordinate positions are represented as four-element
column vectors, which are premultiplied by the composite 4 × 4 transformation
matrix.

The following program provides example routines for constructing a three-
dimensional composite transformation matrix. The three basic geometric trans-
formations are combined in a selected order to produce a single composite matrix,
which is initialized to the identity matrix. For this example, we first rotate, then
scale, then translate. We choose a left-to-right evaluation of the composite matrix
so that the transformations are called in the order that they are to be applied.
Thus, as each matrix is constructed, it is concatenated on the left of the current
composite matrix to form the updated product matrix.

class wcPt3D {
public:

GLfloat x, y, z;
};
typedef GLfloat Matrix4x4 [4][4];

Matrix4x4 matComposite;

/* Construct the 4 x 4 identity matrix. */
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4)

Three-Dimensional Geometric Transformations

289

{
GLint row, col;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matIdent4x4 [row][col] = (row == col);
}

/* Premultiply matrix m1 by matrix m2, store result in m2. */
void matrix4x4PreMultiply (Matrix4x4 m1, Matrix4x4 m2)
{

GLint row, col;
Matrix4x4 matTemp;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] *
m2 [1][col] + m1 [row][2] * m2 [2][col] +
m1 [row][3] * m2 [3][col];

for (row = 0; row < 4; row++)
for (col = 0; col < 4; col++)

m2 [row][col] = matTemp [row][col];
}

/* Procedure for generating 3-D translation matrix. */
void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)
{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */
matrix4x4SetIdentity (matTransl3D);

matTransl3D [0][3] = tx;
matTransl3D [1][3] = ty;
matTransl3D [2][3] = tz;

/* Concatenate matTransl3D with composite matrix. */
matrix4x4PreMultiply (matTransl3D, matComposite);

}

/* Procedure for generating a quaternion rotation matrix. */
void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat radianAngle)
{

Matrix4x4 matQuatRot;

float axisVectLength = sqrt ((p2.x - p1.x) * (p2.x - p1.x) +
(p2.y - p1.y) * (p2.y - p1.y) +
(p2.z - p1.z) * (p2.z - p1.z));

float cosA = cosf (radianAngle);
float oneC = 1 - cosA;
float sinA = sinf (radianAngle);
float ux = (p2.x - p1.x) / axisVectLength;
float uy = (p2.y - p1.y) / axisVectLength;
float uz = (p2.z - p1.z) / axisVectLength;

/* Set up translation matrix for moving p1 to origin,

Three-Dimensional Geometric Transformations

290

* and concatenate translation matrix with matComposite.
*/
translate3D (-p1.x, -p1.y, -p1.z);

/* Initialize matQuatRot to identity matrix. */
matrix4x4SetIdentity (matQuatRot);

matQuatRot [0][0] = ux*ux*oneC + cosA;
matQuatRot [0][1] = ux*uy*oneC - uz*sinA;
matQuatRot [0][2] = ux*uz*oneC + uy*sinA;
matQuatRot [1][0] = uy*ux*oneC + uz*sinA;
matQuatRot [1][1] = uy*uy*oneC + cosA;
matQuatRot [1][2] = uy*uz*oneC - ux*sinA;
matQuatRot [2][0] = uz*ux*oneC - uy*sinA;
matQuatRot [2][1] = uz*uy*oneC + ux*sinA;
matQuatRot [2][2] = uz*uz*oneC + cosA;

/* Concatenate matQuatRot with composite matrix. */
matrix4x4PreMultiply (matQuatRot, matComposite);

/* Construct inverse translation matrix for p1 and
* concatenate with composite matrix.
*/
translate3D (p1.x, p1.y, p1.z);

}

/* Procedure for generating a 3-D scaling matrix. */
void scale3D (Gfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)
{

Matrix4x4 matScale3D;

/* Initialize scaling matrix to identity. */
matrix4x4SetIdentity (matScale3D);

matScale3D [0][0] = sx;
matScale3D [0][3] = (1 - sx) * fixedPt.x;
matScale3D [1][1] = sy;
matScale3D [1][3] = (1 - sy) * fixedPt.y;
matScale3D [2][2] = sz;
matScale3D [2][3] = (1 - sz) * fixedPt.z;

/* Concatenate matScale3D with composite matrix. */
matrix4x4PreMultiply (matScale3D, matComposite);

}

void displayFcn (void)
{

/* Input object description. */
/* Input translation, rotation, and scaling parameters. */

/* Set up 3-D viewing-transformation routines. */

/* Initialize matComposite to identity matrix: */
matrix4x4SetIdentity (matComposite);

/* Invoke transformation routines in the order they

Three-Dimensional Geometric Transformations

291

* are to be applied:
*/
rotate3D (p1, p2, radianAngle); // First transformation: Rotate.
scale3D (sx, sy, sz, fixedPt); // Second transformation: Scale.
translate3D (tx, ty, tz); // Final transformation: Translate.

/* Call routines for displaying transformed objects. */
}

5 Other Three-Dimensional Transformations
In addition to translation, rotation, and scaling, the other transformations
discussed for two-dimensional applications are also useful in many three-
dimensional situations. These additional transformations include reflection,
shear, and transformations between coordinate-reference frames.

Three-Dimensional Reflections
A reflection in a three-dimensional space can be performed relative to a selected
reflection axis or with respect to a reflection plane. In general, three-dimensional
reflection matrices are set up similarly to those for two dimensions. Reflections rel-
ative to a given axis are equivalent to 180◦ rotations about that axis. Reflections
with respect to a plane are similar; when the reflection plane is a coordinate
plane (xy, xz, or yz), we can think of the transformation as a 180◦ rotation in
four-dimensional space with a conversion between a left-handed frame and a
right-handed frame.

An example of a reflection that converts coordinate specifications from a right-
handed system to a left-handed system (or vice versa) is shown in Figure 19. This
transformation changes the sign of z coordinates, leaving the values for the x and
y coordinates unchanged. The matrix representation for this reflection relative to
the xy plane is

Mzreflect =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥
⎥
⎦

(45)

Transformation matrices for inverting x coordinates or y coordinates are
defined similarly, as reflections relative to the yz plane or to the xz plane,
respectively. Reflections about other planes can be obtained as a combination
of rotations and coordinate-plane reflections.

F I G U R E 1 9
Conversion of coordinate
specifications between a right-handed
and a left-handed system can be
carried out with the reflection
transformation 45.

y

x

z

y

x

z

Reflection
Relative to the

xy Plane

Three-Dimensional Geometric Transformations

292

Three-Dimensional Shears
These transformations can be used to modify object shapes, just as in two-
dimensional applications. They are also applied in three-dimensional viewing
transformations for perspective projections. For three-dimensional
we can also generate shears relative to the z axis.

y

x

z
(a)

y

x

z
(b)

F I G U R E 2 0
A unit cube (a) is sheared relative to
the origin (b) by Matrix 46, with
shzx = shzy = 1.

A general z-axis shearing transformation relative to a selected reference
position is produced with the following matrix:

Mzshear =

⎡

⎢
⎢
⎣

1 0 shzx −shzx · zref
0 1 shzy −shzy · zref
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(46)

Shearing parameters shzx and shzy can be assigned any real values. The effect of
this transformation matrix is to alter the values for the x and y coordinates by an
amount that is proportional to the distance from zref, while leaving the z coordinate
unchanged. Plane areas that are perpendicular to the z axis are thus shifted by an
amount equal to z− zref. An example of the effect of this shearing matrix on a unit
cube is shown in Figure 20 for shearing values sh zx = shzy = 1 and a reference
position zref = 0. Three-dimensional transformation matrices for an x-axis shear
and a y-axis shear are similar to the two-dimensional matrices. We just need to
add a row and a column for the z-coordinate shearing parameters.

6 Transformations between
Three-Dimensional Coordinate Systems

Coordinate-system trans
ages to construct (model) scenes and to implement viewing routines for both
two-dimensional and three-dimensional applications. A transformation matrix for
transferring a two-dimensional scene description from one coordinate system to
another is constructed with operations for superimposing the coordinate axes of
the two systems. The same procedures apply to three-dimensional scene transfers.

We again consider only Cartesian reference frames, and we assume that an
x′y′z′ system is defined with respect to an xyz system. To transfer the xyz coor-
dinate descriptions to the x′y′z′ system, we first set up a translation that brings
the x′y′z′ coordinate origin to the position of the xyz origin. This is followed by a
sequence of rotations that align corresponding coordinate axes. If different scales
are used in the two coordinate systems, a scaling transformation may also be
necessary to compensate for the differences in coordinate intervals.

Figure 21 shows an x′y′z′coordinate system with origin (x0, y0, z0) and unit
axis vectors defined relative to an xyz reference frame. The coordinate origin of

F I G U R E 2 1
An x ′ y ′z ′ coordinate system defined within
an x y z system. A scene description is
transferred to the new coordinate reference
using a transformation sequence that
superimposes the x ′ y ′z ′ frame on the
x y z axes.

y

x

z

y�

(0, 0, 0)

x�(x0, y0, z0)

u�z

u�y

u�x

z�

applications,

formations are employed in computer-graphics pack-

Three-Dimensional Geometric Transformations

293

the x′y′z′ system is brought into coincidence with the xyz origin using the trans-
lation matrix T(−x0, −y0, −z0). Also, we can use the unit axis vectors to form the
coordinate-axis rotation matrix

R =

⎡

⎢
⎢
⎢
⎣

u′
x1 u′

x2 u′
x3 0

u′
y1 u′

y2 u′
y3 0

u′
z1 u′

z2 u′
z3 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦

(47)

which transforms unit vectors u′
x, u′

y, and u′
z onto the x, y, and z axes, respectively.

The complete coordinate transformation sequence is then given by the composite
matrix R · T. This matrix correctly transforms coordinate descriptions from one
Cartesian system to another, even if one system is left-handed and the other is
right-handed.

7 Affine Transformations
A coordinate transformation of the form

x′ = axxx + axy y + axzz + bx

y′ = ayxx + ayy y + ayzz + by

z′ = azxx + azy y + azzz + bz

(48)

is called an affine transformation. Each of the transformed coordinates x′, y′, and
z′ is a linear function of the original coordinates x, y, and z, and parameters ai j and
bk are constants determined by the transformation type. Affine transformations
(in two dimensions, three dimensions, or higher dimensions) have the general
properties that parallel lines are transformed into parallel lines, and finite points
map to finite points.

Translation, rotation, scaling, reflection, and shear are examples of affine trans-
formations. We can always express any affine transformation as some composition
of these five transformations. Another example of an affine transformation is the
conversion of coordinate descriptions for a scene from one reference system to
another because this transformation can be described as a combination of trans-
lation and rotation. An affine transformation involving only translation, rotation,
and reflection preserves angles and lengths, as well as parallel lines. For each of
these three transformations, line lengths and the angle between any two lines
remain the same after the transformation.

8 OpenGL Geometric-Transformation
Functions

same functions used to perform transformations in three dimensions. For con-
venience, those functions are listed in Table 1

OpenGL Matrix Stacks

lected with the glMatrixMode routine and is used to select the modelview

The basic OpenGL functions for performing geometric transformations are the

at the end of the chapter.

You are already familiar with the OpenGL modelview mode. This mode is se-

Three-Dimensional Geometric Transformations

294

composite transformation matrix as the target of subsequent OpenGL transfor-
mation calls.

For each of the four modes (modelview, projection, texture, and color) that we
can select with the glMatrixMode function, OpenGL maintains a matrix stack.
Initially, each stack contains only the identity matrix. At any time during the pro-
cessing of a scene, the top matrix on each stack is called the “current matrix”
for that mode. After we specify the viewing and geometric transformations, the
top of the modelview matrix stack is the 4 × 4 composite matrix that combines
the viewing transformations and the various geometric transformations that we
want to apply to a scene. In some cases, we may want to create multiple views and
transformation sequences, and then save the composite matrix for each. Therefore,
OpenGL supports a modelview stack depth of at least 32, and some implemen-
tations may allow more than 32 matrices to be saved on the modelview stack.
We can determine the number of positions available in the modelview stack for a
particular implementation of OpenGL with

glGetIntegerv (GL_MAX_MODELVIEW_STACK_DEPTH, stackSize);

which returns a single integer value to array stackSize. The other three matrix
modes have a minimum stack depth of 2, and we can determine the maxi-
mum available depth of each for a particular implementation using one of the
following OpenGL symbolic constants: GL MAX PROJECTION STACK DEPTH,
GL MAX TEXTURE STACK DEPTH, or GL MAX COLOR STACK DEPTH.

We can also find out how many matrices are currently in the stack with

glGetIntegerv (GL_MODELVIEW_STACK_DEPTH, numMats);

Initially, the modelview stack contains only the identity matrix, so the value 1 is
returned by this function if we issue the query before any stack processing has
occurred. Similar symbolic constants are available for determining the number of
matrices currently in the other three stacks.

We have two functions available in OpenGL for processing the matrices in
a stack. These stack-processing functions are more efficient than manipulating
the stack matrices individually, particularly when the stack functions are imple-
mented in hardware. For example, a hardware implementation can copy multiple
matrix elements simultaneously. And we can maintain an identity matrix on the
stack, so that initializations of the current matrix can be performed faster than by
using repeated calls to glLoadIdentity.

With the following function, we copy the current matrix at the top of the active
stack and store that copy in the second stack position:

glPushMatrix ();

This gives us duplicate matrices at the top two positions of the stack. The other
stack function is

glPopMatrix ();

which destroys the matrix at the top of the stack, and the second matrix in the
stack becomes the current matrix. To “pop” the top of the stack, there must be at
least two matrices in the stack. Otherwise, we generate an error.

Three-Dimensional Geometric Transformations

295

9 OpenGL Three-Dimensional Geometric-
Transformation Programming Examples
Usually, it is more efficient to use the stack-processing functions than to use the

matrix-manipulation functions. This is particularly true when we want to make
several changes in the viewing or geometric transformations. In the following
code, we perform rectangle transformations using stack processing instead of the
glLoadIdentity function:

glMatrixMode (GL_MODELVIEW);

glColor3f (0.0, 0.0, 1.0); // Set current color to blue.
glRecti (50, 100, 200, 150); // Display blue rectangle.

glPushMatrix (); // Make copy of identity (top) matrix.
glColor3f (1.0, 0.0, 0.0); // Set current color to red.

glTranslatef (-200.0, -50.0, 0.0); // Set translation parameters.
glRecti (50, 100, 200, 150); // Display red, translated rectangle.

glPopMatrix (); // Throw away the translation matrix.
glPushMatrix (); // Make copy of identity (top) matrix.

glRotatef (90.0, 0.0, 0.0, 1.0); // Set 90-deg. rotation about z axis.
glRecti (50, 100, 200, 150); // Display red, rotated rectangle.

glPopMatrix (); // Throw away the rotation matrix.
glScalef (-0.5, 1.0, 1.0); // Set scale-reflection parameters.
glRecti (50, 100, 200, 150); // Display red, transformed rectangle.

For our next geometric-transformation programming example, we give an
OpenGL version of the three-dimensional, composite-transformation code in Sec-
tion 4. Because OpenGL postmultiplies transformation matrices as they are
called, we must now invoke the transformations in the opposite order from which
they are to be applied. Thus, each subsequent transformation call concatenates the
designated transformation matrix on the right of the composite matrix. Because
we have not yet explored the three-dimensional OpenGL viewing routines, this

rogram could be completed using
and applying the geometric transformations to objects in the xy plane.

class wcPt3D {
public:

GLfloat x, y, z;
};

/* Procedure for generating a matrix for rotation about

p two-dimensional OpenGL viewing operations

Three-Dimensional Geometric Transformations

296

* an axis defined with points p1 and p2.
*/
void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat thetaDegrees)
{

/* Set up components for rotation-axis vector. */
float vx = (p2.x - p1.x);
float vy = (p2.y - p1.y);
float vz = (p2.z - p1.z);

/* Specify translate-rotate-translate sequence in reverse order: */
glTranslatef (p1.x, p1.y, p1.z); // Move p1 back to original position.
/* Rotate about axis through origin: */
glRotatef (thetaDegrees, vx, vy, vz);
glTranslatef (-p1.x, -p1.y, -p1.z); // Translate p1 to origin.

}

/* Procedure for generating a matrix for a scaling
* transformation with respect to an arbitrary fixed point.
*/
void scale3D (GLfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)
{

/* Specify translate-scale-translate sequence in reverse order: */
/* (3) Translate fixed point back to original position: */
glTranslatef (fixedPt.x, fixedPt.y, fixedPt.z);
glScalef (sx, sy, sz); // (2) Scale with respect to origin.
/* (1) Translate fixed point to coordinate origin: */
glTranslatef (-fixedPt.x, -fixedPt.y, -fixedPt.z);

}

void displayFcn (void)
{

/* Input object description. */
/* Set up 3D viewing-transformation routines. */
/* Display object. */

glMatrixMode (GL_MODELVIEW);

/* Input translation parameters tx, ty, tz. */
/* Input the defining points, p1 and p2, for the rotation axis. */
/* Input rotation angle in degrees. */
/* Input scaling parameters: sx, sy, sz, and fixedPt. */

/* Invoke geometric transformations in reverse order: */
glTranslatef (tx, ty, tz); // Final transformation: Translate.
scale3D (sx, sy, sz, fixedPt); // Second transformation: Scale.
rotate3D (p1, p2, thetaDegrees); // First transformation: Rotate.

/* Call routines for displaying transformed objects. */
}

10 Summary
We can express three-dimensional transformations as 4 × 4 matrix operators, so
that sequences of transformations can be concatenated into a single composite

Three-Dimensional Geometric Transformations

297

T A B L E 1

Summary of OpenGL Geometric Transformation Functions

Function Description

glTranslate* Specifies translation parameters.

glRotate* Specifies parameters for rotation about any axis
through the origin.

glScale* Specifies scaling parameters with respect to
coordinate origin.

glMatrixMode Specifies current matrix for geometric-viewing
transformations, projection transformations,
texture transformations, or color transformations.

glLoadIdentity Sets current matrix to identity.

glLoadMatrix* (elems); Sets elements of current matrix.

glMultMatrix* (elems); Postmultiplies the current matrix by the
specified matrix.

glGetIntegerv Gets max stack depth or current number of matrices
in the stack for the selected matrix mode.

glPushMatrix Copies the top matrix in the stack and store copy in
the second stack position.

glPopMatrix Erases the top matrix in the stack and moves the
second matrix to the top of the stack.

glPixelZoom Specifies two-dimensional scaling parameters for
raster operations.

matrix to allow efficient application of multiple transformations. We use a four-
element column matrix (vector) representation for three-dimensional coordinate
points, representing them using a homogeneous coordinate representation.

We can create composite transformations through matrix multiplications of
translation, rotation, scaling, and other transformations. In general, matrix mul-
tiplications are not commutative. The upper-left 3 × 3 submatrix of a rigid-body
transformation is an orthogonal matrix. Thus, rotation matrices can be formed by
setting the upper-left, 3×3 submatrix equal to the elements of two orthogonal unit
vectors. When the angle is small, we can reduce rotation computations by using
first-order approximations for the sine and cosine functions. Over many rotational
steps, however, the approximation error can accumulate to a significant value.

Transformations between Cartesian coordinate systems in three dimensions
are accomplished with a sequence of translate-rotate transformations that brings
the two systems into coincidence. We specify the coordinate origin and axis vectors
for one reference frame relative to the original coordinate reference frame. The
transfer of object descriptions from the original coordinate system to the second
system is calculated as the matrix product of a translation that moves the new
origin to the old coordinate origin and a rotation to align the two sets of axes. The
rotation needed to align the two frames can be obtained from the orthonormal set
of axis vectors for the new system.

Three-Dimensional Geometric Transformations

298

The OpenGL library provides functions for applying individual translate,
rotate, and scale transformations to coordinate positions. Each function generates
a matrix that is premultiplied by the modelview matrix. Transformation matrices
are applied to subsequently defined objects. In addition to accumulating transfor-
mation sequences in the modelview matrix, we can set this matrix to the identity
or some other matrix, and can also form products with the modelview matrix
and any specified matrices. All matrices are stored in stacks, and OpenGL main-
tains four stacks for the various types of transformations that we use in graphics
applications. We can use an OpenGL query function to determine the current stack
size or the maximum allowable stack depth for a system. Two stack-processing
routines are available: one for copying the top matrix in a stack to the second
position, and one for removing the top matrix.

Table 1 summarizes the OpenGL geometric-transformation functions and
matrix routines discussed in this chapter.

REFERENCES
For additional techniques involving matrices and geo-
metric transformations, see Glassner (1990), Arvo (1991),
Kirk (1992), Heckbert (1994), and Paeth (1995). Discus-
sions of homogeneous coordinates in computer graphics
can be found in Blinn and Newell (1978) and in Blinn
(1993, 1996, and 1998).

Additional programming examples using OpenGL
geometric-transformation functions are given in Woo,
et al. (1999). Programming examples for the OpenGL
geometric-transformation functions are also available at
Nate Robins’s tutorial website: http://www.xmission.
com/∼nate/opengl.html. Finally, a complete listing of
OpenGL geometric-transformation functions is pro-
vided in Shreiner (2000).

EXERCISES
1 Show that rotation matrix 33 is equal to the com-

posite matrix Ry(β) · Rx(α).
2 By evaluating the terms in Equation 37, derive

the elements for the general rotation matrix given
in Equation 38.

3 Prove that the quaternion rotation matrix 38
reduces to the matrix representation in Equation
5 when the rotation axis is the coordinate z axis.

4 Prove that Equation 40 is equivalent to the
general rotation transformation given in Equa-
tion 28.

5 Using trigonometric identities, derive the elements
of the quaternion-rotation matrix 39 from 38.

6 Develop a procedure for animating a three-
dimensional object by incrementally rotating it
about any specified axis. Use appropriate approx-
imations to the trigonometric equations to speed
up the calculations, and reset the object to its

initial position after each complete revolution
about the axis.

7 Derive the three-dimensional transformation
matrix for scaling an object by a scaling factor s in
a direction defined by the direction cosines α, β,
and γ .

8 Develop a routine to reflect a three-dimensional
object about an arbitrarily selected plane.

9 Write a procedure to shear a three-dimensional
object with respect to any specified axis, using in-
put values for the shearing parameters.

10 Develop a procedure for converting an object
definition in one three-dimensional coordinate ref-
erence to any other coordinate system defined rel-
ative to the first system.

11 Develop a routine to scale an object by a given fac-
tor in each dimension relative to a given point con-
tained within the object.

Three-Dimensional Geometric Transformations

299

12 Write a program to perform a series of transforma-
tions on a 30 × 30 square whose centroid lies at
(−20, −20, 0) and that is contained in the xy plane.
Use three-dimensional OpenGL matrix operations
to perform the transformations. The square should
first be reflected in the x axis, then rotated counter-
clockwise by 45◦ about its center, then sheared in
the x direction by a value of 2.

13 Modify the program from the previous exercise so
that the transformation sequence can be applied to
any two-dimensional polygon, with vertices spec-
ified as user input.

14 Modify the example program in the previous exer-
cise so that the order of the geometric transforma-
tion sequence can be specified as user input.

1 Modify the example program from the previ-
ous exercise so that the geometric transformation
parameters are specified as user input.

IN MORE DEPTH
1 You have not yet been exposed to the material nec-

essary to construct three-dimensional representa-
tions of the objects in your application, so you
can instead embed the two-dimensional polyg-
onal approximations to those objects in a three
dimensional scene and perform three-dimensional

transformations on those approximations using
the techniques in this chapter. In this exercise, you
will set up a set of transformations to produce an
animation. Define the three-dimensional
formation matrices to do this using homogeneous
coordinate representations. If
act as a single ”unit” in certain
easier to model in terms of rel
can use the techniques in Sec
local transformations of the
other (in their own coordi
formations in the world coordinate frame.

2

5

trans-

two or more objects
behaviors that are

ative positions, you
t ion 6 to convert the

objects relative to each
nate frame) into trans-

Use the matrices you designed in the previous
exercise to produce an animation. You should em-
ploy the OpenGL matrix operations for three-
dimensional transformations and have the matri-
ces produce small changes in position for each of
the objects in the scene. Since you haven t yet cov-
ered the material necessary for generating views
of a threedimensional scene, simply display the
animation using a two-dimensional orthogonal
projection, with all of the polygons in the scene
being contained in the xy plane. The transfor-
mations themselves, however, are still three-
dimensional.

Three-Dimensional Geometric Transformations

300

Three-Dimensional Viewing

1 Overview of Three-Dimensional
Viewing Concepts

2 The Three-Dimensional Viewing
Pipeline

3 Three-Dimensional
Viewing-Coordinate Parameters

4 Transformation from World
to Viewing Coordinates

5 Projection Transformations

6 Orthogonal Projections

7 Oblique Parallel Projections

8 Perspective Projections

9 The Viewport Transformation and
Three-Dimensional Screen
Coordinates

10 OpenGL Three-Dimensional
Viewing Functions

11 Three-Dimensional Clipping
Algorithms

12 OpenGL Optional Clipping Planes

13 Summary
F or two-dimensional graphics applications, viewing opera-

tions transfer positions from the world-coordinate plane to

pixel positions in the plane of the output device. Using

the rectangular boundaries for the clipping window and the view-

port, a two-dimensional package clips a scene and maps it to device

coordinates. Three-dimensional viewing operations, however, are

more involved, because we now have many more choices as to how

we can construct a scene and how we can generate views of the

scene on an output device.

From Chapter 1 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

0

301

1 Overview of Three-Dimensional
Viewing Concepts

When we model a three-dimensional scene, each object in the scene is typically
defined with a set of surfaces that form a closed boundary around the object
interior. And, for some applications, we may need also to specify information
about the interior structure of an object. In addition to procedures that generate
views of the surface features of an object, graphics packages sometimes provide
routines for displaying internal components or cross-sectional views of a solid
object. Viewing functions process the object descriptions through a set of pro-
cedures that ultimately project a specified view of the objects onto the surface
of a display device. Many processes in three-dimensional viewing, such as the
clipping routines, are similar to those in the two-dimensional viewing pipeline.
But three-dimensional viewing involves some tasks that are not present in two-
dimensional viewing. For example, projection routines are needed to transfer the
scene to a view on a planar surface, visible parts of a scene must be identified, and,
for a realistic display, lighting effects and surface characteristics must be taken
into account.

Viewing a Three-Dimensional Scene
To obtain a display of a three-dimensional world-coordinate scene, we first set
up a coordinate reference for the viewing, or “camera,” parameters. This coordi-
nate reference defines the position and orientation for a view plane (or projection
plane) that corresponds to a camera film plane (Figure 1). Object descriptions
are then transferred to the viewing reference coordinates and projected onto the
view plane. We can generate a view of an object on the output device in wire-
frame (outline) form, or we can apply lighting and surface-rendering techniques
to obtain a realistic shading of the visible surfaces.

View
Plane

F I G U R E 1
Coordinate reference for obtaining a
selected view of a three-dimensional
scene.

Projections
Unlike a camera picture, we can choose different methods for projecting a scene
onto the view plane. One method for getting the description of a solid object
onto a view plane is to project points on the object surface along parallel lines.
This technique, called parallel projection, is used in engineering and architectural
drawings to represent an object with a set of views that show accurate dimensions
of the object, as in Figure 2.

Another method for generating a view of a three-dimensional scene is to
project points to the view plane along converging paths. This process, called a
perspective projection, causes objects farther from the viewing position to be dis-
played smaller than objects of the same size that are nearer to the viewing position.
A scene that is generated using a perspective projection appears more realistic,
because this is the way that our eyes and a camera lens form images. Parallel lines
along the viewing direction appear to converge to a distant point in the back-
ground, and objects in the background appear to be smaller than objects in the
foreground.

F I G U R E 2
Three parallel-projection views of an
object, showing relative proportions
from different viewing positions.

Top Side Front

Three-Dimensional Viewing

302

Depth Cueing
With few exceptions, depth information is important in a three-dimensional scene
so that we can easily identify, for a particular viewing direction, which is the
front and which is the back of each displayed object. Figure 3 illustrates the
ambiguity that can result when a wire-frame object is displayed without depth
information. There are several ways in which we can include depth information
in the two-dimensional representation of solid objects. (a)

(b)

(c)

F I G U R E 3
The wire-frame representation of the
pyramid in (a) contains no depth
information to indicate whether the
viewing direction is (b) downward
from a position above the apex or
(c) upward from a position below
the base.

A simple method for indicating depth with wire-frame displays is to vary
the brightness of line segments according to their distances from the viewing
position. Figure 4 shows a wire-frame object displayed with depth cueing. The
lines closest to the viewing position are displayed with the highest intensity,
and lines farther away are displayed with decreasing intensities. Depth cueing is
applied by choosing a maximum and a minimum intensity value and a range of
distances over which the intensity is to vary.

Another application of depth cuing is modeling the effect of the atmosphere
on the perceived intensity of objects. More distant objects appear dimmer to us
than nearer objects due to light scattering by dust particles, haze, and smoke.
Some atmospheric effects can even change the perceived color of an object, and
we can model these effects with depth cueing.

Identifying Visible Lines and Surfaces
We can also clarify depth relationships in a wire-frame display using techniques
other than depth cueing. One approach is simply to highlight the visible lines
or to display them in a different color. Another technique, commonly used for
engineering drawings, is to display the nonvisible lines as dashed lines. Or we
could remove the nonvisible lines from the display, as in Figures 3(b) and
3(c). But removing the hidden lines also removes information about the shape
of the back surfaces of an object, and wire-frame representations are generally
used to get an indication of an object’s overall appearance, front and back.

F I G U R E 4
A wire-frame object displayed with
depth cueing, so that the brightness of
lines decreases from the front of the
object to the back.

When a realistic view of a scene is to be produced, back parts of the objects
are completely eliminated so that only the visible surfaces are displayed. In this
case, surface-rendering procedures are applied so that screen pixels contain only
the color patterns for the front surfaces.

Surface Rendering
Added realism is attained in displays by rendering object surfaces using the light-
ing conditions in the scene and the assigned surface characteristics. We set the
lighting conditions by specifying the color and location of the light sources, and
we can also set background illumination effects. Surface properties of objects
include whether a surface is transparent or opaque and whether the surface is
smooth or rough. We set values for parameters to model surfaces such as glass,
plastic, wood-grain patterns, and the bumpy appearance of an orange. In Color
Plate 9 surface-rendering methods are combined with perspective and visible-
surface identification to generate a degree of realism in a displayed scene.

Exploded and Cutaway Views
Many graphics packages allow objects to be defined as hierarchical structures, so
that internal details can be stored. Exploded and cutaway views of such objects
can then be used to show the internal structure and relationship of the object parts.
An alternative to exploding an object into its component parts is a cutaway view,
which removes part of the visible surfaces to show internal structure.

Three-Dimensional Viewing

303

Three-Dimensional and Stereoscopic Viewing
Other methods for adding a sense of realism to a computer-generated scene

Stereoscopic devices present two views of a scene: one for the left eye and the
other for the right eye. The viewing positions correspond to the eye positions of
the viewer. These two views are typically displayed on alternate refresh cycles of a
raster monitor. When we view the monitor through special glasses that alternately
darken first one lens and then the other, in synchronization with the monitor
refresh cycles, we see the scene displayed with a three-dimensional effect.

2 The Three-Dimensional Viewing Pipeline
Procedures for generating a computer-graphics view of a three-dimensional scene
are somewhat analogous to the processes involved in taking a photograph. First
of all, we need to choose a viewing position corresponding to where we would
place a camera. We choose the viewing position according to whether we want
to display a front, back, side, top, or bottom view of the scene. We could also
pick a position in the middle of a group of objects or even inside a single object,
such as a building or a molecule. Then we must decide on the camera orientation
(Figure 5). Which way do we want to point the camera from the viewing
position, and how should we rotate it around the line of sight to set the “up”
direction for the picture? Finally, when we snap the shutter, the scene is cropped
to the size of a selected clipping window, which corresponds to the aperture or
lens type of a camera, and light from the visible surfaces is projected onto the
camera film.

We need to keep in mind, however, that the camera analogy can be carried only
so far, because we have more flexibility and many more options for generating
views of a scene with a computer-graphics program than we do with a real camera.
We can choose to use either a parallel projection or a perspective projection, we
can selectively eliminate parts of a scene along the line of sight, we can move the
projection plane away from the “camera” position, and we can even get a picture
of objects in back of our synthetic camera.

Some of the viewing operations for a three-dimensional scene are the same as,

F I G U R E 5
Photographing a scene involves selection of the camera
position and orientation. z

y

x

Three-Dimensional Viewing

include three-dimensional displays and stereoscopic views. Three-dimensional
views can be obtained by reflecting a raster image from a vibrating, flexible mir-
ror. The vibrations of the mirror are synchronized with the display of the scene
on the cathode ray tube (CRT). As the mirror vibrates, the focal length varies so
that each point in the scene is reflected to a spatial position corresponding to its
depth.

or similar to, those used in the two-dimensional viewing pipeline. A two-dimen-
sional viewport is used to position a projected view of the threedimensional
scene on the output device, and a two-dimensional clipping window is used to

304

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

MC WC VC

Viewport
Transformation

Normalization
Transformation

and
Clipping

PC NC DC

F I G U R E 1 0 - 6
General three-dimensional transformation pipeline, from modeling coordinates (MC) to world coordinates (WC) to
viewing coordinates (VC) to projection coordinates (PC) to normalized coordinates (NC) and, ultimately, to device
coordinates (DC).

Figure 6 shows the general processing steps for creating and transforming a
three-dimensional scene to device coordinates. Once the scene has been modeled
in world coordinates, a viewing-coordinate system is selected and the descrip-
tion of the scene is converted to viewing coordinates. The viewing coordinate
system defines the viewing parameters, including the position and orientation
of the projection plane (view plane), which we can think of as the camera film
plane. A two-dimensional clipping window, corresponding to a selected camera
lens, is defined on the projection plane, and a three-dimensional clipping region
is established. This clipping region is called the view volume, and its shape and
size depends on the dimensions of the clipping window, the type of projection
we choose, and the selected limiting positions along the viewing direction. Pro-
jection operations are performed to convert the viewing-coordinate description
of the scene to coordinate positions on the projection plane. Objects are mapped
to normalized coordinates, and all parts of the scene outside the view volume are
clipped off. The clipping operations can be applied after all device-independent
coordinate transformations (from world coordinates to normalized coordinates)
are completed. In this way, the coordinate transformations can be concatenated
for maximum efficiency.

As in two-dimensional viewing, the viewport limits could be given in normal-
ized coordinates or in device coordinates. In developing the viewing algorithms,
we will assume that the viewport is to be specified in device coordinates and
that normalized coordinates are transferred to viewport coordinates, following
the clipping operations. There are also a few other tasks that must be performed,
such as identifying visible surfaces and applying the surface-rendering proce-
dures. The final step is to map viewport coordinates to device coordinates within
a selected display window. Scene descriptions in device coordinates are some-
times expressed in a left-handed reference frame so that positive distances from
the display screen can be used to measure depth values in the scene.

Three-Dimensional Viewing

select a view that is to be mapped to the viewport. In addition, we set up a dis-
play window in screen coordinates, just as we do in a two-dimensional applica-
tion. Clipping windows, viewports, and display windows are usually specified
as rectangles with their edges parallel to the coordinate axes. In three-dimensional
viewing, however, the clipping window is positioned on a selected view plane,
and scenes are clipped against an enclosing volume of space, which is defined
by a set of clipping planes. The viewing position, view plane, clipping window,
and clipping planes are all specified within the viewing-coordinate reference
frame.

305

3 Three-Dimensional Viewing-Coordinate
Parameters

referred to as the eye position or the camera position.) And we specify a view-up
vector V, which defines the yview direction. For three-dimensional space, we also
need to assign a direction for one of the remaining two coordinate axes. This
is typically accomplished with a second vector that defines the zview axis, with
the viewing direction along this axis. Figure 7 illustrates the positioning of a
three-dimensional viewing-coordinate frame within a world system.

yview

zview

xview

P0 � (x0, y0, z0)

xw
zw

yw

F I G U R E 7
A right-handed viewing-coordinate
system, with axes xview, yview, and
zview, relative to a right-handed
world-coordinate frame. The View-Plane Normal Vector

Because the viewing direction is usually along the zview axis, the view plane, also
called the projection plane, is normally assumed to be perpendicular to this axis.
Thus, the orientation of the view plane, as well as the direction for the positive zview
axis, can be defined with a view-plane normal vector N, as shown in Figure 8.

An additional scalar parameter is used to set the position of the view plane
at some coordinate value zvp along the zview axis, as illustrated in Figure 9.
This parameter value is usually specified as a distance from the viewing origin
along the direction of viewing, which is often taken to be in the negative zview
direction. Thus, the view plane is always parallel to the xview yview plane, and the
projection of objects to the view plane corresponds to the view of the scene that
will be displayed on the output device.

Vector N can be specified in various ways. In some graphics systems, the
direction for N is defined to be along the line from the world-coordinate origin
to a selected point position. Other systems take N to be in the direction from a
reference point Pref to the viewing origin P0, as in Figure 10. In this case, the
reference point is often referred to as a look-at point within the scene, with the
viewing direction opposite to the direction of N.

We could also define the view-plane normal vector, and other vector direc-
tions, using direction angles. These are the three angles, α, β, and γ , that a spatial line
makes with the x, y, and z axes, respectively. But it is usually much easier to specify
a vector direction with two point positions in a scene than with direction angles.

View
Plane

N

P0

xw
zw

yw

yview
xview zview

F I G U R E 8
Orientation of the view plane and
view-plane normal vector N.

zview

xview

yview

zvp � 0

zvp � 0

zvp � 0

F I G U R E 9
Three possible positions for the view
plane along the zview axis.

Three-Dimensional Viewing

Establishing a three-dimensional viewing reference frame is similar to set-
ting up the two-dimensional viewing reference frame. We first select a
world-coordinate position P0 =(x0, y0, z0) for the viewing origin, which is
called the view point or viewing position. (Sometimes the view point is also

306

xw
zw

yw

Pref

yview xview

zview

P0N

F I G U R E 1 0
Specifying the view-plane normal vector N as
the direction from a selected reference point
Pref to the viewing-coordinate origin P0.

The View-Up Vector
Once we have chosen a view-plane normal vector N, we can set the direction for
the view-up vector V. This vector is used to establish the positive direction for
the yview axis.

Adjusted
V

Input
V

N

F I G U R E 1 1
Adjusting the input direction of the
view-up vector V to an orientation
perpendicular to the view-plane
normal vector N.

Usually, V is defined by selecting a position relative to the world-coordinate
origin, so that the direction for the view-up vector is from the world origin to this
selected position. Because the view-plane normal vector N defines the direction
for the zview axis, vector V should be perpendicular to N. But, in general, it can
be difficult to determine a direction for V that is precisely perpendicular to N.
Therefore, viewing routines typically adjust the user-defined orientation of vector
V, as shown in Figure 11, so that V is projected onto a plane that is perpendicular
to the view-plane normal vector.

We can choose any direction for the view-up vector V, so long as it is not
parallel to N. A convenient choice is often in a direction parallel to the world yw

axis; that is, we could set V = (0, 1, 0).

The uvn Viewing-Coordinate Reference Frame
Left-handed viewing coordinates are sometimes used in graphics packages, with
the viewing direction in the positive zview direction. With a left-handed system,
increasing zview values are interpreted as being farther from the viewing posi-
tion along the line of sight. But right-handed viewing systems are more common,
because they have the same orientation as the world-reference frame. This allows
a graphics package to deal with only one coordinate orientation for both world
and viewing references. Although some early graphics packages defined view-
ing coordinates within a left-handed frame, right-handed viewing coordinates
are now used by the graphics standards. However, left-handed coordinate ref-
erences are often used to represent screen coordinates and for the normalization
transformation.

Because the view-plane normal N defines the direction for the zview axis and
the view-up vector V is used to obtain the direction for the yview axis, we need
only determine the direction for the xview axis. Using the input values for N and V,
we can compute a third vector, U, that is perpendicular to both N and V. Vector U
then defines the direction for the positive xview axis. We determine the correct
direction for U by taking the vector cross product of V and N so as to form a
right-handed viewing frame. The vector cross product of N and U also produces
the adjusted value for V, perpendicular to both N and U, along the positive yview
axis. Following these procedures, we obtain the following set of unit axis vectors
for a right-handed viewing coordinate system.

n = N
|N| = (nx, ny, nz)

u = V × n
|V × n| = (ux, uy, uz) (1)

v = n × u = (vx, vy, vz)

Three-Dimensional Viewing

307

Illumination Models and
Surface-Rendering Methods

1 Light Sources

2 Surface Lighting Effects

3 Basic Illumination Models

4 Transparent Surfaces

5 Atmospheric Effects

6 Shadows

7 Camera Parameters

8 Displaying Light Intensities

9 Halftone Patterns and Dithering
Techniques

10 Polygon Rendering Methods

11 OpenGL Illumination and
Surface-Rendering Functions

12 Summary

R ealistic displays of a scene are obtained by generating per-

spective projections of objects and applying natural light-

ing effects to the visible surfaces. An illumination model,
also called a lighting model (and sometimes referred to as a shad-

ing model), is used to calculate the color of an illuminated position

on the surface of an object. A surface-rendering method uses

the color calculations from an illumination model to determine the

pixel colors for all projected positions in a scene. The illumination

model can be applied to every projection position, or the surface

rendering can be accomplished by interpolating colors on the sur-

faces using a small set of illumination-model calculations. Scan-line,

image-space algorithms typically use interpolation schemes. Some-

times, a surface-rendering procedure is called a shading method that

calculates surface colors using a shading model, but this can lead

to some confusion between the two terms. To avoid possible mis-

interpretations due to the use of similar terminology, we refer to

the model for calculating the light intensity at a single surface point

From Chapter 17 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

493

as an illumination model or a lighting model, and we use the term surface rendering to

mean a procedure for applying a lighting model to obtain pixel colors for all projected

surface positions.

Among other things, photorealism in computer graphics involves two elements:

accurate representations of surface properties and good physical descriptions of the light-

ing effects in a scene. These surface lighting effects include light reflections, transparency,

surface texture, and shadows.

In general, modeling the lighting effects that we see on an object is a complex pro-

cess, involving principles of both physics and psychology. Fundamentally, lighting effects

are described with models that consider the interaction of electromagnetic energy with

the object surfaces in a scene. Once light reaches our eyes, it triggers perception pro-

cesses that determine what we actually “see.” Physical illumination models involve a

number of factors, such as material properties, object position relative to light sources and

other objects, and the features of the light sources. Objects can be composed of opaque

materials, or they can be more or less transparent. In addition, they can have shiny or

dull surfaces, and they can have a variety of surface-texture patterns. Light sources of

varying shapes, colors, and positions can be used to provide the illumination for a scene.

Given the parameters for the optical properties of surfaces, the relative positions of the

surfaces in a scene, the color and positions of the light sources, the characteristics of the

light sources, and the position and orientation of the viewing plane, illumination mod-

els calculate the light intensity projected from a particular surface position in a specified

viewing direction.

Illumination models in computer graphics are often approximations of the physical

laws that describe surface-lighting effects. To reduce computations, most packages use

empirical models based on simplified photometric calculations. In the following sections,

we take a look at the basic lighting models often used in computer-graphics systems, and

we explore the various surface-rendering algorithms for applying the lighting models to

obtain effective displays of natural scenes.

1 Light Sources
Any object that is emitting radiant energy is a light source that contributes to the
lighting effects for other objects in a scene. We can model light sources with a
variety of shapes and characteristics, and most emitters serve only as a source of
illumination for a scene. In some applications, however, we may want to create
an object that is both a light source and a light reflector. For example, a plastic
globe surrounding a light bulb both emits and reflects light from the surface of
the globe. We could also model the globe as a semitransparent surface around a
light source. However, for some objects, such as a large fluorescent light panel, it
might be more convenient to describe the surface simply as a combination emitter
and reflector.

A light source can be defined with a number of properties. We can specify
its position, the color of the emitted light, the emission direction, and its shape.
If the source is also to be a light-reflecting surface, we need to give its reflectivity
properties. In addition, we could set up a light source that emits different colors
in different directions. For example, we could define a light source that emits a
red light on one side and a green light on the other side.

Illumination Models and Surface-Rendering Methods

494

In most applications, and particularly for real-time graphics displays, a simple
light-source model is used to avoid excessive computations. We assign light-
emitting properties using a single value for each of the red, green, and blue (RGB)
color components, which we can describe as the amount, or the “intensity,” of
that color component.

F I G U R E 1
Diverging ray paths from a point light
source.

Point Light Sources
The simplest model for an object that is emitting radiant energy is a point light
source with a single color, specified with three RGB components. We define a
point source for a scene by giving its position and the color of the emitted light.
As shown in Figure 1, light rays are generated along radially diverging paths
from the single-color source position. This light-source model is a reasonable
approximation for sources whose dimensions are small compared to the size of
objects in the scene. We can also simulate larger sources as point emitters if they
are not too close to a scene. We use the position of a point source in an illumination
model to determine which objects in the scene are illuminated by that source and
to calculate the light direction to a selected object surface position.

Infinitely Distant Light Sources
A large light source, such as the sun, that is very far from a scene can also be
approximated as a point emitter, but there is little variation in its directional
effects. In contrast to a light source in the middle of a scene, which illuminates
objects on all sides of the source, a remote source illuminates the scene from only
one direction. The light path from a distant light source to any position in the
scene is nearly constant, as illustrated in Figure 2.

We can simulate an infinitely distant light source by assigning it a color value
and a fixed direction for the light rays emanating from the source. The vector for
the emission direction and the light-source color are needed in the illumination
calculations, but not the position of the source.

Radial Intensity Attenuation
As radiant energy from a light source travels outwards through space, its
amplitude at any distance dl from the source is attenuated by the factor 1/d2

l .
This means that a surface close to the light source receives a higher incident light

F I G U R E 2
Light rays from an infinitely distant
light source illuminate an object along
nearly parallel light paths.

Illumination Models and Surface-Rendering Methods

495

intensity from that source than a more distant surface. Therefore, to produce real-
istic lighting effects, we should take this intensity attenuation into account. Other-
wise, all surfaces are illuminated with the same intensity from a light source, and
undesirable display effects can result. For example, if two surfaces with the same
optical parameters project to overlapping positions, they would be indistinguish-
able from one another. Thus, regardless of their relative distances from the light
source, the two surfaces would appear to be one surface.

In practice, however, using an attenuation factor of 1/d2
l with a point source

does not always produce realistic pictures. The factor 1/d2
l tends to produce too

much intensity variation for objects that are close to the light source, and very little
variation when dl is large. This is because actual light sources are not infinitesimal
points, and illuminating a scene with point emitters is only a simple approxima-
tion of true lighting effects. To generate more realistic displays using point sources,
we can attenuate light intensities with an inverse quadratic function of dl that
includes a linear term:

fradatten(dl) = 1
a0 + a1 dl + a2 d2

l
(1)

The numerical values for the coefficients, a0, a1, and a2, can then be adjusted to
produce optimal attenuation effects. For instance, we can assign a large value to
a0 when dl is very small to prevent fradatten(dl) from becoming too large. As an
additional option, often available in graphics packages, a different set of values
for the attenuation coefficients could be assigned to each point light source in the
scene.

We cannot apply intensity-attenuation calculation 1 to a point source at
“infinity,” because the distance to the light source is indeterminate. Also, all points
in the scene are at a nearly equal distance from a far-off source. To accommodate
both remote and local light sources, we can express the intensity-attenuation
function as

fl,radatten =

⎧

⎪⎨

⎪⎩

1.0, if source is at infinity

1
a0 + a1 dl + a2 d2

l
, if source is local

(2)

Directional Light Sources and Spotlight Effects
A local light source can be modified easily to produce a directional, or spotlight,
beam of light. If an object is outside the directional limits of the light source, we
exclude it from illumination by that source. One way to set up a directional light
source is to assign it a vector direction and an angular limit θl measured from
that vector direction, in addition to its position and color. This defines a conical
region of space with the light-source vector direction along the axis of the cone
(Figure 3). A multicolor point light source could be modeled in this way using
multiple direction vectors and a different emission color for each direction.

We can denote Vlight as the unit vector in the light-source direction and Vobj as
the unit vector in the direction from the light position to an object position. Then

Vobj ·Vlight = cos α (3)

where angle α is the angular distance of the object from the light direction vec-
tor. If we restrict the angular extent of any light cone so that 0◦ < θl ≤ 90◦, then
the object is within the spotlight if cos α ≥ cos θl , as shown in Figure 4. If
Vobj ·Vlight < cos θl , however, the object is outside the light cone.

Illumination Models and Surface-Rendering Methods

496

Vlight

(Light Direction
Vector)

Light
Source

ul
F I G U R E 3
A directional point light source. The
unit light-direction vector defines the
axis of a light cone, and angle θl
defines the angular extent of the
circular cone.

Light
Source

ul

a

To Object
Vertex

Cone Axis
Vector

F I G U R E 4
An object illuminated by a directional
point light source.

Angular Intensity Attenuation
For a directional light source, we can attenuate the light intensity angularly about
the source as well as radially out from the point-source position. This allows us
to simulate a cone of light that is most intense along the axis of the cone, with the
intensity decreasing as we move farther from the cone axis. A commonly used
angular intensity-attenuation function for a directional light source is

fangatten(φ) = cosal φ, 0◦ ≤ φ ≤ θ (4)

where the attenuation exponent al is assigned some positive value and angle φ is
measured from the cone axis. Along the cone axis, φ = 0◦ and fangatten(φ) = 1.0.
The greater the value for the attenuation exponent al , the smaller the value of the
angular intensity-attenuation function for a given value of angle φ > 0◦.

Illumination Models and Surface-Rendering Methods

497

F I G U R E 5
An object illuminated by a large nearby light source.

There are several special cases to consider in the implementation of the
angular-attenuation function. There is no angular attenuation if the light source
is not directional (not a spotlight). Also, an object is not illuminated by the light
source if it is anywhere outside the cone of the spotlight. To determine the angular
attenuation factor along a line from the light position to a surface position in a
scene, we can compute the cosine of the direction angle from the cone axis using
the dot product calculation in Equation 3. We designate Vlight as the unit vector
in the light-source direction (along the cone axis) and Vobj as the unit vector in the
direction from the light source to an object position. Using these two unit vectors
and assuming that 0◦ < θl ≤ 90◦, we can express the general equation for angular
attenuation as

fl,angatten =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1.0, if source is not a spotlight
0.0, if Vobj ·Vlight = cos α < cos θl

(object is outside the spotlight cone)
(Vobj ·Vlight)

al , otherwise

(5)

Extended Light Sources and the Warn Model
When we want to include a large light source at a position close to the objects in a
scene, such as the long neon lamp in Figure 5, we can approximate it as a light-
emitting surface. One way to do this is to model the light surface as a grid of direc-
tional point emitters. We can set the direction for the point sources so that objects
behind the light-emitting surface are not illuminated. We could also include other
controls to restrict the direction of the emitted light near the edges of the source.

The Warn model provides a method for producing studio lighting effects
using sets of point emitters with various parameters to simulate the barn doors,
flaps, and spotlighting controls employed by photographers. Spotlighting is
achieved with the cone of light discussed earlier, and the flaps and barn doors
provide additional directional control. For instance, two flaps can be set up for
each of the x, y, and z directions to further restrict the path of the emitted light
rays. This light-source simulation is implemented in some graphics packages.

2 Surface Lighting Effects
An illumination model computes the lighting effects for a surface using the var-
ious optical properties that have been assigned to that surface. These properties
include degree of transparency, color reflectance coefficients, and various surface-
texture parameters.

When light is incident on an opaque surface, part of it is reflected and part
is absorbed. The amount of incident light reflected by the surface depends on

Illumination Models and Surface-Rendering Methods

498

the type of material. Shiny materials reflect more of the incident light, and dull
surfaces absorb more of the incident light. For a transparent surface, some of the
incident light is also transmitted through the material.

F I G U R E 6
Diffuse reflections from a surface.

Surfaces that are rough or grainy tend to scatter the reflected light in all direc-
tions. This scattered light is called diffuse reflection. A very rough, matte surface
produces primarily diffuse reflections, so the surface appears equally bright from
any viewing angle. Figure 6 illustrates diffuse light scattering from a surface.
What we call the color of an object is the color of the diffuse reflection when the
object is illuminated with white light, which is composed of a combination of all
colors. A blue object, for example, reflects the blue component of the white light
and absorbs all the other color components. If the blue object is viewed under a
red light, it appears black because all the incident light is absorbed.

F I G U R E 7
Specular reflection superimposed on
diffuse reflection vectors.

In addition to diffuse light scattering, some of the reflected light is concen-
trated into a highlight, or bright spot, called specular reflection. This highlighting
effect is more pronounced on shiny surfaces than on dull surfaces, and we can
see the specular reflection when we look at an illuminated shiny surface, such as
polished metal, an apple, or a person’s forehead, only when we view the surface
from a particular direction. A representation of specular reflection is shown in
Figure 7.

Light
Source

F I G U R E 8
Surface lighting effects are produced
by a combination of illumination from
light sources and reflections from other
surfaces.

Another factor that must be considered in an illumination model is the back-
ground light or ambient light in a scene. A surface that is not directly exposed
to a light source may still be visible due to the reflected light from nearby objects
that are illuminated. Thus, the ambient light for a scene is the illumination effect
produced by the reflected light from the various surfaces in the scene. Figure 8
illustrates this background lighting effect. The total reflected light from a surface
is the sum of the contributions from light sources and from the light reflected by
other illuminated objects.

3 Basic Illumination Models
Accurate surface lighting models compute the results of interactions between
incident radiant energy and the material composition of an object. To simplify the
surface-illumination calculations, we can use approximate representations for
the physical processes that produce the lighting effects discussed in the previous
section. The empirical model described in this section produces reasonably good
results, and it is implemented in most graphics systems.

Light-emitting objects in a basic illumination model are generally limited to
point sources. However, many graphics packages provide additional functions
for dealing with directional lighting (spotlights) and extended light sources.

Ambient Light
In our basic illumination model, we can incorporate background lighting by set-
ting a general brightness level for a scene. This produces a uniform ambient
lighting that is the same for all objects, and it approximates the global diffuse
reflections from the various illuminated surfaces.

Assuming that we are describing only monochromatic lighting effects, such
as shades of gray, we designate the level for the ambient light in a scene with
an intensity parameter Ia . Each surface in the scene is then illuminated with this
background light. Reflections produced by ambient-light illumination are simply
a form of diffuse reflection, and they are independent of the viewing direction and
the spatial orientation of a surface. However, the amount of the incident ambient

Illumination Models and Surface-Rendering Methods

499

F I G U R E 9
Radiant energy from a surface area
element dA in direction φN relative to
the surface normal direction is
proportional to cos φN .

Radiant-Energy
Direction

N

fN
fN

dA

light that is reflected depends on surface optical properties, which determine how
much of the incident energy is reflected and how much is absorbed.

Diffuse Reflection
We can model diffuse reflections from a surface by assuming that the incident
light is scattered with equal intensity in all directions, independent of the viewing
position. Such surfaces are called ideal diffuse reflectors. They are also referred to
as Lambertian reflectors, because the reflected radiant light energy from any point
on the surface is calculated with Lambert’s cosine law. This law states that the
amount of radiant energy coming from any small surface area dA in a direction φN

relative to the surface normal is proportional to cos φ N (Figure 9). The intensity
of light in this direction can be computed as the ratio of the magnitude of the
radiant energy per unit time divided by the projection of the surface area in the
radiation direction:

Intensity = radiant energy per unit time
projected area

∝ cos φN

dA cos φN

= constant (6)

Thus, for Lambertion reflection, the intensity of light is the same over all viewing
directions.

Assuming that every surface is to be treated as an ideal diffuse reflector
(Lambertian), we can set a parameter kd for each surface that determines the frac-
tion of the incident light that is to be scattered as diffuse reflections. This parameter
is called the diffuse-reflection coefficient or the diffuse reflectivity. The diffuse
reflection in any direction is then a constant, which is equal to the incident light
intensity multiplied by the diffuse-reflection coefficient. For a monochromatic
light source, parameter kd is assigned a constant value in the interval 0.0 to 1.0,
according to the reflecting properties we want the surface to have. If we want a
highly reflective surface, we set the value of kd near 1.0. This produces a brighter
surface with the intensity of the reflected light near that of the incident light. If
we want to simulate a surface that absorbs most of the incident light, we set the
reflectivity to a value near 0.0.

For the background lighting effects, we can assume that every surface is fully
illuminated by the ambient light Ia that we assigned to the scene. Therefore, the
ambient contribution to the diffuse reflection at any point on a surface is simply

Iambdiff = kd Ia (7)

Ambient light alone, however, produces a flat uninteresting shading for a surface
(Color Plate 12), so scenes are rarely rendered using only ambient light. At least

Illumination Models and Surface-Rendering Methods

500

one light source is included in a scene, often as a point source at the viewing
position.

When a surface is illuminated by a light source with an intensity Il , the amount
of incident light from the source depends on the orientation of the surface relative
to the light source direction. A surface that is oriented nearly perpendicular to the
illumination direction receives more light from the source than a surface that is
tilted at an oblique angle to the direction of the incoming light. This illumination
effect can be observed on a white sheet of paper or smooth cardboard that is
placed parallel to a sunlit window. As the sheet is slowly rotated away from the
window direction, the surface appears less bright. Figure 10 illustrates this
effect, showing a beam of light rays incident on two equal-area plane surface
elements with different spatial orientations relative to the illumination direction
from a distant source (parallel incoming rays).

(a)

(b)

F I G U R E 1 0
A surface that is perpendicular to the
direction of the incident light (a) is
more illuminated than an equal-sized
surface at an oblique angle (b) to the
incoming light direction.

From Figure 10, we see that the number of light rays intersecting a surface
element is proportional to the area of the surface projection perpendicular to the
incident light direction. If we denote the angle of incidence between the incoming
light direction and the surface normal as θ (Figure 11), then the projected area
of a surface element perpendicular to the light direction is proportional to cos θ .
Therefore, we can model the amount of incident light on a surface from a source
with intensity Il as

Il,incident = Il cos θ (8)

Using Equation 8, we can model the diffuse reflections from a light source
with intensity Il using the calculation

Il,diff = kd Il,incident

= kd Il cos θ (9)

When the incoming light from the source is perpendicular to the surface at a
particular point, θ = 90◦ and Il,diff = kd Il . As the angle of incidence increases, the
illumination from the light source decreases. Furthermore, a surface is illuminated
by a point source only if the angle of incidence is in the range 0◦ to 90◦ (cos θ is
in the interval from 0.0 to 1.0). When cos θ < 0.0, the light source is behind the
surface.

At any surface position, we can denote the unit normal vector as N and the
unit direction vector to a point source as L, as in Figure 12. Then, cos θ = N ·L
and the diffuse reflection equation for single point-source illumination at a surface
position can be expressed in the form

Il,diff =
{

kd Il(N ·L), if N ·L > 0

0.0, if N ·L ≤ 0
(10)

N
L

To Light
Source

u

F I G U R E 1 2
Angle of incidence θ between the unit
light-source direction vector L and the
unit normal vector N at a surface
position.

The unit direction vector L to a nearby point light source is calculated using
the surface position and the light-source position:

L = Psource − Psurf

|Psource − Psurf| (11)

u A cosu

A

N

incident
light

u

F I G U R E 1 1
An illuminated area A projected perpendicular to the
path of incoming light rays. This perpendicular
projection has an area equal to A cos θ .

Illumination Models and Surface-Rendering Methods

501

A light source at “infinity,” however, has no position, only a propagation direction.
In that case, we use the negative of the assigned light-source emission direction
for the direction of vector L.

Color Plate 13 illustrates the application of Equation 10 to positions over
the surface of a sphere, using selected values for parameter kd between 0 and 1. At
kd = 0, no light is reflected and the object surface appears black. Increasing values
for kd increase the intensity of the diffuse reflections, producing lighter shades of
gray. Each projected pixel position for the surface is assigned an intensity value as
calculated by the diffuse reflection equation. The surface renderings in this figure
illustrate single point-source lighting with no other lighting effects. This is what
we might expect to see if we shined a very small flashlight, such as a penlight, on
the object in a completely darkened room. For general scenes, however, we expect
some surface reflections due to the ambient light in addition to the illumination
effects produced by a light source.

We can combine the ambient and point-source intensity calculations to obtain
an expression for the total diffuse reflection at a surface position. In addition,
many graphics packages introduce an ambient-reflection coefficient ka that can
be assigned to each surface to modify the ambient-light intensity Ia . This simply
provides us with an additional parameter for adjusting the lighting effects in our
empirical model. Using parameter ka , we can write the total diffuse-reflection
equation for a single point source as

Idiff =
{

ka Ia + kd Il (N ·L), if N ·L > 0

ka Ia , if N ·L ≤ 0
(12)

where both ka and kd depend on surface material properties and are assigned
values in the range from 0 to 1.0 for monochromatic lighting effects.

Specular Reflection and the Phong Model

N
L R

V
u u
f

F I G U R E 1 3
Specular reflection angle equals angle
of incidence θ .

The bright spot, or specular reflection, that we can see on a shiny surface is the
result of total, or near total, reflection of the incident light in a concentrated region
around the specular-reflection angle. Figure 13 shows the specular reflection
direction for a position on an illuminated surface. The specular reflection angle
equals the angle of the incident light, with the two angles measured on opposite
sides of the unit normal surface vector N. In this figure, R represents the unit vector
in the direction of ideal specular reflection, L is the unit vector directed toward the
point light source, and V is the unit vector pointing to the viewer from the selected
surface position. Angle φ is the viewing angle relative to the specular-reflection
direction R. For an ideal reflector (a perfect mirror), incident light is reflected only
in the specular-reflection direction, and we would see reflected light only when
vectors V and R coincide (φ = 0).

Objects other than ideal reflectors exhibit specular reflections over a finite
range of viewing positions around vector R. Shiny surfaces have a narrow
specular reflection range, and dull surfaces have a wider reflection range. An
empirical model for calculating the specular reflection range, developed by Phong
Bui Tuong and called the Phong specular-reflection model or simply the Phong
model, sets the intensity of specular reflection proportional to cosns φ. Angle φ

can be assigned values in the range 0◦ to 90◦, so that cos φ varies from 0 to 1.0.
The value assigned to the specular-reflection exponent ns is determined by the
type of surface that we want to display. A very shiny surface is modeled with
a large value for ns (say, 100 or more), and smaller values (down to 1) are used
for duller surfaces. For a perfect reflector, ns is infinite. For a rough surface, such
as chalk or cinderblock, ns is assigned a value near 1. Figures 14 and 15

Illumination Models and Surface-Rendering Methods

502

Shiny Surface
(Large ns)

R

Dull Surface
(Small ns)

NL R N
L

F I G U R E 1 4
Modeling specular reflections (shaded
area) with parameter ns .

cos f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

cos8 f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

cos64 f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

cos256 f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

cos128 f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

F I G U R E 1 5
Plots of cosns φ using five different values for the specular exponent ns .

show the effect of ns on the angular range for which we can expect to see specular
reflections.

The intensity of specular reflection depends on the material properties of the
surface and the angle of incidence, as well as other factors such as the polariza-
tion and color of the incident light. We can approximately model monochromatic
specular intensity variations using a specular-reflection coefficient, W(θ), for each
surface. Figure 16 shows the general variation of W(θ) over the range θ = 0◦

to θ = 90◦ for a few materials. In general, W(θ) tends to increase as the angle of
incidence increases. At θ = 90◦, all the incident light is reflected (W(θ) = 1). The

Illumination Models and Surface-Rendering Methods

503

F I G U R E 1 6
Approximate variation of the specular-reflection
coefficient for different materials, as a function
of the angle of incidence.

0.5

1

W(u)

90�0

dielectric (glass)

silver

gold

u

variation of specular intensity with angle of incidence is described by Fresnel’s
Laws of Reflection. Using the spectral-reflection function W(θ), we can write the
Phong specular-reflection model as

Il,spec = W(θ)Il cosns φ (13)

where Il is the intensity of the light source, and φ is the viewing angle relative to
the specular-reflection direction R.

As seen in Figure 16, transparent materials, such as glass, exhibit appre-
ciable specular reflections only as θ approaches 90◦. At θ = 0◦, about 4 percent of
the incident light on a glass surface is reflected, and for most of the range of θ , the
reflected intensity is less than 10 percent of the incident intensity. However, for
many opaque materials, specular reflection is nearly constant for all incidence an-
gles. In this case, we can reasonably model the specular effects by replacing W(θ)

with a constant specular-reflection coefficient ks . We then simply set ks equal to
some value in the range from 0 to 1.0 for each surface.

Because V and R are unit vectors in the viewing and specular-reflection direc-
tions, we can calculate the value of cos φ with the dot product V ·R. In addition,
no specular effects are generated for the display of a surface if V and L are on the
same side of the normal vector N or if the light source is behind the surface. Thus,
assuming the specular-reflection coefficient is a constant for any material, we can
determine the intensity of the specular reflection due to a point light source at a
surface position with the calculation

Il,spec =
{

ks Il(V ·R)ns , if V ·R > 0 and N ·L > 0

0.0, if V ·R ≤ 0 or N ·L ≤ 0
(14)

N • L

L

N
L R

F I G U R E 1 7
The projection of either L or R onto
the direction of the normal vector N
has a magnitude equal to N · L.

The direction for R, the reflection vector, can be computed from the directions
for vectors L and N. As seen in Figure 17, the projection of L onto the direction
of the normal vector has a magnitude equal to the dot product N ·L, which is also
equal to the magnitude of the projection of unit vector R onto the direction of N.
Therefore, from this diagram, we see that

R + L = (2N ·L)N

and the specular-reflection vector is obtained as

R = (2N ·L)N − L (15)

We calculate V using the surface position and the viewing position, in same
way that we obtained the unit vector L (Eq. 11). But if a fixed viewing direction

Illumination Models and Surface-Rendering Methods

504

is to be used for all positions in a scene, we can set V = (0.0, 0.0, 1.0), which is
a unit vector in the positive z direction. Specular calculations take less time to
calculate using a constant V, but the displays are not as realistic.

A somewhat simplified Phong model is obtained using the halfway vector H
between L and V to calculate the range of specular reflections. If we replace V ·R
in the Phong model with the dot product N ·H, this simply replaces the empirical
cos φ calculation with the empirical cos α calculation (Figure 18). The halfway
vector is obtained as

H = L + V
|L + V| (16)

For nonplanar surfaces, N ·H requires less computation than V ·R because the
calculation of R at each surface point involves the variable vector N. Also, if both
the viewer and the light source are sufficiently far from the surface, vectors V
and L are each constants, and thus H is also constant for all surface points. If
the angle between H and N is greater than 90◦, N ·H is negative and we set the
specular-reflection contribution to 0.0.

HN
L R

V
a
f

F I G U R E 1 8
Halfway vector H along the bisector of
the angle between L and V.

Vector H is the orientation direction for the surface that would produce max-
imum specular reflection in the viewing direction, for a given position of a point
light source. For this reason, H is sometimes referred to as the surface orientation
direction for maximum highlights. Also, if vector V is coplanar with vectors L and
R (and thus N), angle α has the value φ/2. When V, L, and N are not coplanar,
α > φ/2, depending on the spatial relationship of the three vectors.

Combined Diffuse and Specular Reflections
For a single point light source, we can model the combined diffuse and specular
reflections from a position on an illuminated surface as

I = Idiff + Ispec

= ka Ia + kd Il(N ·L) + ks Il(N ·H)ns (17)

The surface is illuminated only with ambient light if the light source is behind
the surface, and there are no specular effects if V and L are on the same side of
the normal vector N. Color Plate 12 illustrates surface lighting effects produced
by the various terms in Equation 17.

Diffuse and Specular Reflections from Multiple Light Sources
We can place any number of light sources in a scene. For multiple point light
sources, we compute the diffuse and specular reflections as a sum of the contri-
butions from the various sources, as follows:

I = Iambdiff +
n∑

l=1

[Il,diff + Il,spec]

= ka Ia +
n∑

l=1

Il[kd(N ·L) + ks(N ·H)ns] (18)

Surface Light Emissions
Some surfaces in a scene could be emitting light, as well as reflecting light from
their surfaces. For example, a room scene can contain lamps or overhead lighting,
and outdoor night scenes could include streetlights, store signs, and automobile
headlights. We can empirically model surface light emissions by simply including
an emission term Isurfemission in the illumination model in the same way that we

Illumination Models and Surface-Rendering Methods

505

simulated background lighting using an ambient light level. This surface emission
is then added to the surface reflections resulting from the light-source and the
background-lighting illumination.

To illuminate other objects from a light-emitting surface, we could posi-
tion a directional light source behind the surface to produce a cone of light
through the surface. Alternatively, we could simulate the emission with a set
of point light sources distributed over the surface. In general, however, an emit-
ting surface is usually not used in the basic illumination model to illuminate
other surfaces because of the added calculation time. Rather, surface emissions
are used as a simple means for approximating the appearance of the surface of an
extended light-source. This produces a glowing effect for the surface.

Basic Illumination Model with Intensity
Attenuation and Spotlights
We can formulate a general, monochromatic illumination model for surface
reflections that includes multiple point light sources, attenuation factors, direc-
tional light effects (spotlight), infinite sources, and surface emissions as

I = Isurfemission + Iambdiff +
n∑

l=1

fl,radatten fl,angatten(Il,diff + Il,spec) (19)

The radial attenuation function fl , radatten is evaluated using Equation 2, and
the angular attenuation function is evaluated using Equation 5. For each light
source, we calculate the diffuse reflection from a surface point as

Il,diff =
{

0.0, if N ·Ll ≤ 0.0 (light source behind object)

kd Il(N ·Ll), otherwise
(20)

The specular reflection term, due to a point-source illumination, is calculated with
similar expressions:

Il,spec =
⎧

⎨

⎩

0.0, if N ·Ll ≤ 0.0
(light source behind object)

ks Il max{0.0, (N ·Hl)
ns }, otherwise

(21)

To ensure that any pixel intensity does not exceed the maximum allowable
value, we can apply some type of normalization procedure. A simple approach
is to set a maximum magnitude for each term in the intensity equation. If any
calculated term exceeds the maximum, we simply set it to the maximum value.
Another way to compensate for intensity overflow is to normalize the individual
terms by dividing each by the magnitude of the largest term. A more complicated
procedure is to calculate all pixel intensities for the scene, then scale this set of
intensities onto the intensity range from 0.0 to 1.0.

Also, the values for the coefficients in the radial attenuation function, and
the optical surface parameters for a scene, can be adjusted to prevent calculated
intensities from exceeding the maximum allowable value. This is an effective
method for limiting intensity values when a single light source illuminates a
scene. In general, however, calculated intensities are never allowed to exceed the
value 1.0, and negative intensity values are adjusted to the value 0.0.

Illumination Models and Surface-Rendering Methods

506

RGB Color Considerations
For an RGB color description, each intensity specification in the illumina-
tion model is a three-element vector that designates the red, green, and blue
components of that intensity. Thus, for each light source, Il = (Il R, IlG , Il B).
Similarly, the reflection coefficients are also specified with RGB components:
ka = (ka R, kaG , ka B), kd = (kd R, kdG , kd B), and ks = (ks R, ksG , ks B). Each component
of the surface color is then calculated with a separate expression. For example,
the blue component of the diffuse and specular reflections for a point source are
computed from modified expressions 20 and 21 as

Il B,diff = kd B Il B(N ·Ll) (22)

and

Il B,spec = ks B Il B max{0.0, (N ·Hl)
ns } (23)

Surfaces are most often illuminated with white light sources, but, for special effects
or indoor lighting, we might use other colors for the light sources. We then set
the reflectivity coefficients to model a particular surface color. For example, if we
want an object to have a blue surface, we select a nonzero value in the range
from 0.0 to 1.0 for the blue reflectivity component, kd B , while the red and green
reflectivity components are set to zero (kd R = kdG = 0.0). Any nonzero red or green
components in the incident light are absorbed, and only the blue component is
reflected.

In his original specular-reflection model, Phong set parameter ks to a constant
value independent of the surface color. This produces specular reflections that
are the same color as the incident light (usually white), which gives the surface a
plastic appearance. For a nonplastic material, the color of the specular reflection
is actually a function of the surface properties and may be different from both
the color of the incident light and the color of the diffuse reflections. We can
approximate specular effects on such surfaces by making the specular-reflection
coefficient color-dependent, as in Equation 23. Color Plate 14 illustrates color
reflections from a matte surface, and Color Plates 15 and 16 show color reflections
from metal surfaces.

Another method for setting surface color is to specify the components of
diffuse and specular color vectors for each surface, while retaining the reflectiv-
ity coefficients as single-valued constants. For an RGB color representation, for
instance, the components of these two surface-color vectors could be denoted as
(Sd R, SdG , Sd B) and (Ss R, SsG , Ss B). The blue component of the diffuse reflection
(Eq. 22) is then calculated as

Il B,diff = kd Sd B Il B(N ·Ll) (24)

This approach provides somewhat greater flexibility, because surface color
parameters and reflectivity values can be set independently.

In some graphics packages, additional lighting parameters are supplied by
allowing a light source to be assigned multiple colors, where each color con-
tributes to one of the surface lighting effects. For example, one of the colors can
be used as a contribution to the general background lighting in a scene. Similarly,
another light-source color can be used as the light intensity for the diffuse-
reflection calculations, and a third light-source color can be used in the specular-
reflection calculations.

Illumination Models and Surface-Rendering Methods

507

Other Color Representations
We can describe colors using a variety of models other than the RGB represen-
tation. For example, a color can be represented using cyan, magenta, and yellow
components, or a color could be described in terms of a particular hue along
with the perceived brightness and saturation of the color. We can incorporate
any of these representations, including color specifications with more than three
components, into an illumination model. As an example, Equation 24 can be
expressed in terms of any spectral color with wavelength λ as

Ilλ,diff = kd Sdλ Ilλ(N ·Ll) (25)

Luminance
Another characteristic of color is luminance, which is sometimes also called
luminous energy. Luminance provides information about the lightness or darkness
level of a color, and it is a psychological measure of our perception of brightness
that varies with the amount of illumination we are viewing.

Physically, color is described in terms of the frequency range for visible radiant
energy (light), and luminance is calculated as a weighted sum of the intensity
components in a particular illumination. Because any actual illumination contains
a continuous range of frequencies, a luminance value is computed as

luminance =
∫

visible f
p(f) I (f) d f (26)

Parameter I (f) in this calculation represents the intensity of the light component
with a frequency f that is radiating in a particular direction. Parameter p(f)

is an experimentally determined proportionality function that varies with both
frequency and illumination level. The integration is performed for all intensities
over the frequency range contained in the light.

For grayscale and monochromatic displays, we need only the luminance val-
ues to describe object lighting. And some graphics packages do allow the lighting
parameters to be expressed in terms of luminance. Green components of a light
source contribute most to the luminance, and blue components contribute least.
Therefore, the luminance of an RGB color source is typically computed as

luminance = 0.299R + 0.587G + 0.114B (27)

Sometimes, better lighting effects are achieved by increasing the contribution for
the green component of each RGB color. One recommendation for this calculation
is 0.2125R + 0.7154G + 0.0721B. The luminance parameter is most often repre-
sented with the symbol Y, which corresponds to the Y component in the XYZ
color model.

4 Transparent Surfaces
We describe an object, such as a glass windowpane, as transparent if we can
see things that are behind that object. Similarly, if we cannot see things that are
behind an object, it is opaque. In addition, some transparent objects, such as frosted
glass and certain plastic materials, are translucent so that the transmitted light
is diffused in all directions. Objects viewed through translucent materials appear
blurred and are often not clearly identifiable.

Illumination Models and Surface-Rendering Methods

508

A transparent surface, in general, produces both reflected and transmitted
light. The light transmitted through the surface is the result of emissions and
reflections from the objects and sources behind the transparent object. Figure 19
illustrates the intensity contributions to the surface lighting for a transparent object
that is in front of an opaque object.

Incident
light

Transparent
object

F I G U R E 1 9
Light emission from a transparent
surface is in general a combination of
reflected and transmitted light.

Translucent Materials
Both diffuse and specular transmission can take place at the surfaces of a trans-
parent object. Diffuse effects are important when translucent materials are to
be modeled. Light passing through a translucent material is scattered so that
background objects are seen as blurred images. We can simulate diffuse transmis-
sions by distributing intensity contributions from background objects over a finite
area, or we can use ray-tracing methods to simulate translucency. These manip-
ulations are time-consuming, and basic illumination models ordinarily compute
only specular-transparency effects.

Light Refraction
Realistic displays of a transparent material are obtained by modeling the
refraction path of a ray of light through the material. When a light beam is incident
upon a transparent surface, part of it is reflected and part is transmitted through
the material as refracted light, as shown in Figure 20. Because the speed of light
is different in different materials, the path of the refracted light is different from
that of the incident light. The direction of the refracted light, specified by the angle
of refraction with respect to the surface normal vector, is a function of the index of
refraction of the material and the incoming direction of the incident light. Index
of refraction is defined as the ratio of the speed of light in a vacuum to the speed
of light in the material. Angle of refraction θr is calculated from Snell’s law as

sin θr = ηi

ηr
sin θi (28)

where θi is the angle of incidence, ηi is the index of refraction for the incident
material, and ηr is the index of refraction for the refracting material.

N
L R

T

Refraction
direction

Reflection
direction

To Light
Source

ui ui

ur

hi

hr

F I G U R E 2 0
Reflection direction R and refraction
(transmission) direction T for a ray of
light incident upon a surface with
index of refraction ηr .

Actually, the index of refraction also depends on other factors, such as the
temperature of the material and the wavelength of the incident light. Thus, the
various color components of incident white light, for example, are refracted at
different angles, which vary with temperature. Furthermore, within anisotropic
materials such as crystalline quartz, the speed of light depends on direction, and
some transparent materials exhibit double refraction, in which two refracted light
rays are generated. For most applications, however, we can use a single average
index of refraction for each material, as listed in Table 1. Using the index of
refraction for air (approximately 1.0) surrounding a pane of heavy crown glass
(refractive index ≈ 1.61) in Equation 28, with an angle of incidence of 30 ◦, we
obtain a refraction angle of about 18◦ for the light passing through the crown glass.

Incident
light Air Glass Air

F I G U R E 2 1
Refraction of light through a pane of
glass. The emerging refracted ray
travels along a path that is parallel to
the incident light path (dashed line).

Refraction occurs whenever a ray moves through the boundary between ma-
terials, so in a situation where the ray passes completely through an object, the ray
will be refracted twice—one refraction for each boundary transition. Figure 21
illustrates the refraction changes for a ray of light passing through a thin sheet of
glass. The overall effect of the refraction is to shift the incident light to a parallel
path as it emerges from the material. Because the evaluations for the trigonometric
functions in Equation 28 are time-consuming, these refraction effects could be
approximated by simply shifting the path of the incident light by an appropriate
amount for a given material.

Illumination Models and Surface-Rendering Methods

509

T A B L E 1

Average Index of Refraction for Common Materials

Material Index of Refraction

Vacuum, air or other gas 1.00

Ordinary crown glass 1.52

Heavy crown glass 1.61

Ordinary flint glass 1.61

Heavy flint glass 1.92

Rock salt 1.55

Quartz 1.54

Water 1.33

Ice 1.31

From Snell’s law and the diagram in Figure 20, we can obtain the unit
transmission vector T in the refraction direction θr as follows:

T =
(

ηi

ηr
cos θi − cos θr

)

N − ηi

ηr
L (29)

where N is the unit surface normal and L is the unit vector in the direction from
the surface position to the light source. Transmission vector T can be used to locate
intersections of the refraction path with objects behind the transparent surface.
Including refraction effects in a scene can produce highly realistic displays, but
the determination of refraction paths and object intersections requires consider-
able computation. Most scan-line image-space methods model light transmission
with approximations that reduce processing time. Accurate refraction effects are
displayed using ray-tracing algorithms.

Basic Transparency Model
A simpler procedure for modeling transparent objects is to ignore the path shifts
due to refraction. In effect, this approach assumes there is no change in the index of
refraction from one material to another, so that the angle of refraction is always the
same as the angle of incidence. This method speeds up the calculation of intensities
and can produce reasonable transparency effects for thin, polygonal surfaces.

Projection Plane

P

Background
Object

Transparent
Object

F I G U R E 2 2
The intensity of a background object at
point P can be combined with the
reflected intensity off the surface of a
transparent object along a
perpendicular projection line (dashed).

We can combine the transmitted intensity Itrans through a transparent sur-
face from a background object with the reflected intensity Irefl from the surface
(Figure 22) using a transparency coefficient kt.We assign parameter kt avalue
between 0.0 and 1.0 to specify how much of the background light is to be trans-
mitted. Total surface intensity is then calculated as

I = (1 − kt)Irefl + kt Itrans (30)

The term (1 − kt) is the opacity factor. For example, if the transparency factor is
assigned the value 0.3, then 30 percent of the background light is combined with
70 percent of the reflected surface illumination.

Illumination Models and Surface-Rendering Methods

510

This procedure can be used to combine the lighting effects from any number of
transparent and opaque objects, so long as we process the surfaces in a depth-first
order (i.e., back to front). For example, looking through an empty drinking glass,
we can see opaque objects that are behind its two transparent surfaces. Similarly,
when we look through the windshield of an automobile, objects inside the car are
visible, as well as objects that may be behind the back window.

For highly transparent objects, we assign kt a value near 1.0. Nearly opaque
objects transmit very little light from background objects, and we can set kt to a
value near 0.0 for these materials. It is also possible to allow kt to be a function of
position over the surface such that different parts of an object can transmit more
or less of the light from the background surfaces.

A depth-sorting visibility algorithm can be modified to handle transparency
by first sorting surfaces in depth order, then determining whether any visible
surface is transparent. If it is, its reflected surface intensity is combined with the
surface intensity of objects behind it to obtain the pixel intensity at each projected
surface point.

Transparency effects could also be implemented using a modified depth-
buffer approach. We can divide the surfaces in a scene into two groups so that all
the opaque surfaces are processed first. At this point, the frame buffer contains the
intensities of the visible surfaces, and the depth buffer contains their depths. Then,
the depth positions of the transparent objects are compared to the values previ-
ously stored in the depth buffer. If any transparent surface is visible, its reflected
intensity is calculated and combined with the opaque surface intensity previously
stored in the frame buffer. This method can be modified to produce more accu-
rate displays by using additional storage for the depth and other parameters of
the transparent surfaces. This allows depth values for the transparent surfaces
to be compared to each other, as well as to the depth values of the opaque sur-
faces. Visible transparent surfaces are then rendered by combining their surface
intensities with those of the visible and opaque surfaces behind them.

Another approach is the A-buffer method. For each pixel position in the
A-buffer, surface patches for all overlapping surfaces are saved and sorted in
depth order. Then, intensities for the transparent and opaque surface patches that
overlap in depth are combined in the proper visibility order to produce the final
averaged intensity for the pixel.

5 Atmospheric Effects
Another factor that is sometimes included in an illumination model is the effect
of the atmosphere on an object’s color. A hazy atmosphere makes colors fade and
objects appear dimmer. Thus, we could specify a function to modify surface colors
according to the amount of dust, smoke, or smog that we want to simulate in the
atmosphere. The hazy-atmosphere effect is often simulated with an exponential
attenuation function such as

fatmo(d) = e−ρd (31)

or
fatmo(d) = e−(ρd)2

(32)

The value assigned to d is the distance of the object from the viewing position.
In addition, we use parameter ρ in either of these exponential functions to set a
positive density value for the atmosphere. Higher values for ρ produce a denser
atmosphere and cause surface colors to be more muted. After the surface color of
an object has been computed, we multiply that color by one of the atmosphere

Illumination Models and Surface-Rendering Methods

511

functions to decrease its intensity by an amount that depends on the value we set
for the density of the atmosphere.

Instead of an exponential function, we could simplify the atmospheric atten-
uation calculations by using the linear depth-cueing functio . This decreases
the intensity of surface colors for distant objects, but we then have no provision
for varying the density of the atmosphere.

Sometimes we might also want to simulate an atmosphere color. For example,
the air in a smoky room could be modeled with a slate-gray color, or perhaps a pale
blue. The following calculation could then be used to combine the atmosphere
color with an object’s color:

I = fatmo(d)Iobj + [1 − fatmo(d)]Iatmo (33)

where fatmo is an exponential or linear atmosphere-attenuation function.

6 Shadows
Visibility detection methods can be used to locate regions that are not illumi-
nated by light sources. With the viewing position at the location of a light source,
we can determine which surface sections in the scene are not visible. These
are the shadow areas. Once we have determined the shadow areas for all light
sources, the shadows could be treated as surface patterns and stored in pattern
arrays.

Shadow patterns generated by a visible-surface detection method are valid
for any selected viewing position, so long as the light-source positions are not
changed. Surfaces that are visible from the view position are shaded according to
the lighting model, which can be combined with texture patterns. We can display
shadow areas with ambient light intensity only, or we could combine the ambient
light with specified surface textures.

7 Camera Parameters
The viewing and illumination procedures we have considered so far produce
sharp images that are equivalent to photographing a scene with a pinhole cam-
era. When we photograph an actual scene, however, we can adjust the camera so
that only selected objects are in focus. Other objects are then more or less out of
focus, depending on the depth distribution of the objects in the scene. We can sim-
ulate the appearance of out-of-focus positions in a computer-graphics program,
by projecting each position to an area covering multiple pixel positions, with the
object colors merged into other objects to produce a blurred projection pattern.
This procedure is similar to the methods used in antialiasing, and we can incorpo-
rate the camera effects into either a scan-line or a ray-tracing algorithm. Computer-
generated scenes appear more realistic when focusing effects are included, but
the focusing calculations are time-consuming.

8 Displaying Light Intensities
A surface intensity calculated by an illumination model can have any value in the
range from 0.0 to 1.0, but a computer-graphics system can display only a limited set
of intensities. Therefore, a calculated intensity value must be converted to one of

Illumination Models and Surface-Rendering Methods

n

512

the allowable system values. In addition, the allowable number of system intensity
levels can be distributed so that they correspond to the way that our eyes per-
ceive intensity differences. When we display scenes on a bilevel system, we could
convert calculated intensities into halftone patterns, as discussed in Section 9.

Distributing System Intensity Levels
For any system, the allowable number of intensity levels can be distributed over
the range from 0.0 to 1.0 so that this distribution corresponds to our perception
of equal intensity intervals between levels. We perceive relative light intensities
the same way that we perceive relative sound intensities: on a logarithmic scale.
This means that if the ratio of two intensity values is the same as the ratio of two
other intensities, we perceive the difference between each pair of intensities to be
the same. For example, we perceive the difference between intensities 0.20 and
0.22 to be the same as the difference between 0.80 and 0.88. Therefore, to display
n + 1 successive intensity levels with equal perceived brightness, the intensity
levels on the monitor should be spaced so that the ratio of successive intensities
is constant, as follows:

I1

I0
= I2

I1
= · · · = In

In−1
= r (34)

where I represents the intensity of one of the color components of a light. The low-
est level that can be displayed is represented as I0 and the highest is represented
as In. Any intermediate intensity can then be expressed in terms of I0 as

Ik = rk I0 (35)

We can calculate the value of r , given the values of I0 and n for a particular system,
by substituting k = n in the previous expression. Because In = 1.0, we have

r =
(

1.0
I0

)1/n

(36)

Thus, the calculation for Ik in Equation 35 can be rewritten as

Ik = I (n−k)/n
0 (37)

For example, if I0 = 1
8 for a system with n = 3, we have r = 2 and the four intensity

values are 1
8 , 1

4 , 1
2 , and 1.0.

The lowest intensity value I0 depends on the characteristics of the monitor
and is typically in the range from 0.005 to around 0.025. This residual intensity
on a video monitor is due to reflected light from the screen phosphors. Therefore,
a “black” region on the screen will always have some intensity value above 0.0.
For a grayscale display with 8 bits per pixel (n = 255) and I0 = 0.01, the ratio of
successive intensities is approximately r = 1.0182. The approximate values for the
256 intensities on this system are 0.0100, 0.0102, 0.0104, 0.0106, 0.0107, 0.0109, . . . ,
0.9821, and 1.0000.

Similar methods are used with RGB color components. For example, we can
express the intensity of the blue component of a color at level k in terms of the
lowest attainable blue value as

IBk = rk
B IB0 (38)

where

rB =
(

1.0
IB0

)1/n

(39)

and n is the number of intensity levels.

Illumination Models and Surface-Rendering Methods

513

Gamma Correction and Video Lookup Tables
When we display color or monochromatic images on a video monitor, the per-
ceived brightness variations are nonlinear, but illumination models produce a
linear variation for intensity values. The RGB color (0.25, 0.25, 0.25) obtained
from a lighting model represents one-half the intensity of the color (0.5, 0.5, 0.5).
Usually, these calculated intensities are then stored in an image file as integer val-
ues ranging from 0 to 255, with one byte for each of the three RGB components.
This intensity file is also linear, so a pixel with the value (64, 64, 64) represents half
the intensity of a pixel with the value (128, 128, 128). The electron-gun voltages,
which control the number of electrons striking the phosphor screen, produce
brightness levels as determined by the monitor response curve shown in Fig-
ure 23. Therefore, the displayed intensity value (64, 64, 64) would not appear
to be half as bright as the value (128, 128, 128).

To compensate for monitor nonlinearities, graphics systems use a video
lookup table that adjusts the linear input intensity values. The monitor response
curve is described with the exponential function

I = a Vγ (40)

Parameter I is displayed intensity and parameter V is the corresponding electron-
gun voltage. Values for parameters a and γ depend on the characteristics of the
monitor used in the graphics system. Thus, if we want to display a particular
intensity value I , the voltage value to produce this intensity is

V =
(

I
a

)1/γ

(41)

This calculation is referred to as the gamma correction of intensity, and gamma
values are typically in the range from about 1.7 to 2.3. The National Television
System Committee (NTSC) signal standard is γ = 2.2. Figure 24 shows a
gamma-correction curve using the NTSC gamma value with both intensity and
voltage normalized on the interval from 0 to 1.0. Equation 41 is used to set up

0.5

1.0

in
te

ns
it

y

1.00.50

normalized electron-gun voltage

F I G U R E 2 3
A typical monitor response curve, showing the variation in
displayed intensity (or “brightness”) as a function of the
normalized electron-gun voltage.

0.5

1.0

no
rm

al
iz

ed
 e

le
ct

ro
n-

gu
n

vo
lt

ag
e

1.00.50
intensity

g � 2.2

F I G U R E 2 4
A video lookup correction curve for mapping a normalized
intensity value to a normalized electron-gun voltage, using
gamma correction with γ = 2.2.

Illumination Models and Surface-Rendering Methods

514

the video lookup table that converts integer intensity values in an image file to
values that control the electron-gun voltages.

We can combine gamma correction with logarithmic intensity mapping to
produce a lookup table. If I is an input intensity value from an illumination
model, we first locate the nearest intensity Ik from a table of values created with
Equation 34 or Equation 37. Alternatively, we could determine the level
number for this intensity value with the calculation

k = round
[

logr

(
I
I0

)]

(42)

then we compute the intensity value at this level using Equation 37. Once we
have the intensity value Ik , we can calculate the electron-gun voltage as

Vk =
(

Ik

a

)1/γ

(43)

Values Vk can then be placed in the lookup tables, with values for k stored in
the frame-buffer pixel positions. If a particular system has no lookup table, com-
puted values for Vk could be stored directly in the frame buffer. The combined
conversion to a logarithmic intensity scale followed by calculation of the Vk using
Equation 43 is also sometimes referred to as gamma correction.

If the video amplifiers of a monitor are designed to convert the linear intensity
values to electron-gun voltages, we cannot combine the two intensity conversion
processes. In this case, gamma correction is built into the hardware, and the log-
arithmic values Ik must be precomputed and stored in the frame buffer (or the
color table).

Displaying Continuous-Tone Images
High-quality computer graphics systems generally provide 256 intensity levels
for each color component, but acceptable displays can be obtained for many appli-
cations with fewer levels. A four-level system provides minimum shading capa-
bility for continuous-tone images, while photo-realistic images can be generated
on systems that are capable of from 32 to 256 intensity levels per pixel.

Figure 25 shows a continuous-tone photograph displayed with various
intensity levels. When a small number of intensity levels are used to reproduce a
continuous-tone image, the borders between the different intensity regions (called
contours) are clearly visible. In the 2-level reproduction, the facial features in the
photograph are just barely identifiable. Using 4 intensity levels, we begin to iden-
tify the original shading patterns, but the contouring effects are glaring. With
8 intensity levels, contouring effects are still obvious, but we begin to have a bet-
ter indication of the original shading. At 16 or more intensity levels, contouring
effects diminish and the reproductions are very close to the original. Reproduc-
tions of continuous-tone images using more than 32 intensity levels show only
very subtle differences from the original.

9 Halftone Patterns and
Dithering Techniques

With a system that has very few available intensity levels, we can create an
apparent increase in the number of available intensities by incorporating mul-
tiple pixel positions into the display of each intensity value for a scene. When we
view a small region consisting of several pixel positions, our eyes tend to integrate

Illumination Models and Surface-Rendering Methods

515

(a)

(b)

(c)

(d)

F I G U R E 2 5
A continuous-tone photograph (a) printed with two intensity levels (b), four intensity levels (c), and eight intensity
levels (d).

or average the fine detail into an overall intensity. Bilevel monitors and printers, in
particular, can take advantage of this visual effect to produce pictures that appear
to be displayed with multiple intensity values.

Continuous-tone photographs are reproduced for publication in newspapers,
magazines, and books with a printing process called halftoning, and the repro-
duced pictures are called halftones. For a black-and-white photograph, each
constant intensity area is reproduced as a set of small black circles on a white
background. The diameter of each circle is proportional to the darkness required
for that intensity region. Darker regions are printed with larger circles, and lighter
regions are printed with smaller circles (more white space). Figure 26 shows an
enlarged section of a grayscale halftone reproduction. Color halftones are printed
using small circular dots of various sizes and colors. Book and magazine halftones
are printed on high-quality paper using approximately 60 to 80 circles of varying
diameter per centimeter. Newspapers use lower-quality paper and lower resolu-
tion (about 25 to 30 dots per centimeter).

F I G U R E 2 6
An enlarged section of a photograph
reproduced with a halftoning method,
showing how tones are represented
with “dots” of varying sizes.

Illumination Models and Surface-Rendering Methods

516

2
0.4 � I � 0.6

3
0.6 � I � 0.8

4
0.8 � I � 1.0

1
0.2 � I � 0.4

0
0.0 � I � 0.2

F I G U R E 2 7
A set of 2 × 2 pixel grid patterns that can be used to display five intensity levels on a
bilevel system, showing the “on” pixels as green circles. The intensity values that are
mapped to each of the grid patterns are listed below the pixel arrays.

Halftone Approximations
In computer graphics, halftone reproductions are simulated using rectangu-
lar pixel regions that are called halftone approximation patterns, or just pixel
patterns. The number of intensity levels that we can display with this method
depends on how many pixels we include in the rectangular grids and how many
levels a system can display. With n×n pixels for each grid on a bilevel system, we
can represent n2 + 1 intensity levels. Figure 27 shows one way to set up pixel
patterns to represent five intensity levels that could be used with a bilevel system.
In pattern 0, all pixels are turned off; in pattern 1, one pixel is turned on; and in
pattern 4, all four pixels are turned on. An intensity value I in a scene is mapped
to a particular pattern according to the range listed below each grid shown in the
figure. Pattern 0 is used for 0.0 ≤ I < 0.2, pattern 1 for 0.2 ≤ I < 0.4, and pattern
4 is used for 0.8 ≤ I ≤ 1.0.

With 3 × 3 pixel grids on a bilevel system, we can display 10 intensity levels.
One way to set up the 10 pixel patterns for these levels is shown in Figure 28.
Pixel positions are chosen at each level so that the patterns approximate the
increasing circle sizes used in halftone reproductions. That is, the “on” pixel posi-
tions are near the center of the grid for lower intensity levels and expand outward
as the intensity level increases.

For any pixel-grid size, we can represent the pixel patterns for the various
possible intensities with a mask (matrix) of pixel position numbers. For example,
the following mask can be used to generate the nine 3×3 grid patterns for intensity
levels above 0 shown in Figure 28:

⎡

⎣

8 3 7
5 1 2
4 9 6

⎤

⎦ (44)

To display a particular intensity with level number k, we turn on each pixel whose
position number is less than or equal to k.

2
0.2 � I � 0.3

3
0.3 � I � 0.4

4
0.4 � I � 0.5

1
0.1 � I � 0.2

0
0.0 � I � 0.1

7
0.7 � I � 0.8

8
0.8 � I � 0.9

9
0.9 � I � 1.0

6
0.6 � I � 0.7

5
0.5 � I � 0.6

F I G U R E 2 8
A set of 3 × 3 pixel grid patterns that
can be used to display 10 intensities
on a bilevel system, showing the “on”
pixels as green circles. The intensity
values that are mapped to each of the
grid patterns are listed below the
pixel arrays.

Illumination Models and Surface-Rendering Methods

517

Although the use of n × n pixel patterns increases the number of intensities
that can be represented, the resolution of the display area is reduced by a factor
of 1/n in the x and y directions. Using 2 × 2 grid patterns on a 512 × 512 screen
area, for instance, reduces the resolution to 256×256 intensity positions; and with
3 × 3 patterns, we reduce the resolution of the 512 × 512 area to 128 × 128.

Another problem with pixel grids is that subgrid patterns become apparent
as the grid size increases. The grid size that can be used without distorting the
intensity variations depends on the size of a displayed pixel. Therefore, for sys-
tems with lower resolution (fewer pixels per centimeter), we must be satisfied
with fewer intensity levels. On the other hand, high-quality displays require at
least 64 intensity levels. This means that we need 8×8 pixel grids. And to achieve
a resolution equivalent to that of halftones in books and magazines, we must dis-
play 60 dots per centimeter. Thus, we need to be able to display 60 × 8 = 480 dots
per centimeter. Some devices, such as high-quality film recorders, can display this
resolution.

Pixel-grid patterns for halftone approximations must also be constructed to
minimize contouring and other visual effects not present in the original scene.
We can minimize contouring by evolving each successive grid pattern from the
previous pattern. That is, we form the pattern at level k by adding an “on” position
to the grid pattern used for level k − 1. Thus, if a pixel position is on for one grid
level, it is on for all higher levels (Figs. 27 and 28). We can minimize the
introduction of other visual effects by avoiding symmetrical patterns. With a
3 × 3 pixel grid, for instance, the third intensity level above zero would be better
represented by the pattern in Figure 29(a) than by any of the symmetrical
arrangements in Figure 29(b). The symmetrical patterns in this figure would
produce either vertical, horizontal, or diagonal streaks in any large area shaded
with intensity level 3. For hardcopy output on devices such as film recorders
and some printers, isolated pixels are not effectively reproduced. Therefore a grid
pattern with a single “on” pixel or with isolated “on” pixels, as in Figure 30,
should be avoided.

Halftone-approximation methods can be applied also to increase the number
of intensity options on systems that are capable of displaying more than two inten-
sities per pixel. For example, on a grayscale system that can display four intensity
values per pixel, we can use 2 × 2 pixel grids to represent 13 different intensity
levels. Figure 31 illustrates one way to set up the 13 pixel-grid patterns, where
each pixel can be set to intensity level 0, 1, 2, or 3.

Similarly, we can use pixel-grid patterns to increase the number of intensities
that can be represented on a color system. A three-bit-per-pixel RGB system, for
example, uses one bit per pixel for each color gun. Thus, a pixel is displayed with
three phosphor dots, so that the pixel can be assigned any one of eight different

F I G U R E 2 9
For a 3 × 3 pixel grid, the pattern in (a) is
better than any of the symmetrical
patterns in (b) for representing the third
intensity level above 0. (a) (b)

F I G U R E 3 0
Halftone grid patterns with isolated
pixels that cannot be reproduced
effectively on some hardcopy devices.

Illumination Models and Surface-Rendering Methods

518

0 0

0 0

0

0 1

0 0

1

0 1

1 0

2

1 1

1 0

3

1 1

1 1

4

1 2

1 1

5

1 2

2 1

6

2 2

2 1

7

2 2

2 2

8

2 3

2 2

9

2 3

3 2

10

3 3

3 2

11

3 3

3 3

12

F I G U R E 3 1
Intensity representations 0 through 12
obtained with halftone- approximation
patterns using 2 × 2 pixel grids on a
four-level system, with pixel-intensity
levels labeled 0 through 3.

colors (including black and white). But with 2 × 2 pixel-grid patterns, we have
12 phosphor dots that we can use to represent a color, as shown in Figure 32.
The red electron gun can activate any combination of the four red dots in the grid
pattern, and this provides five possible settings for the red color of the pattern.
The same is true for the green and blue guns, which gives us a total of 125 different
color combinations that can be represented with our 2 × 2 grid patterns.

F I G U R E 3 2
A 2 × 2 pixel-grid pattern for
displaying RGB colors.

Dithering Techniques
The term dithering is used in various contexts. Primarily, it refers to techniques
for approximating halftones without reducing resolution, as pixel-grid patterns
do. However, dithering is sometimes used also as a synonym for any halftone-
approximation scheme, and sometimes it is used as another term for color halftone
approximations.

Random values added to pixel intensities to break up contours are often
referred to as dither noise. Various algorithms have been used to generate the
random distributions. The effect is to add noise over an entire picture, which
tends to soften intensity boundaries.

A method called ordered dither generates intensity variations with a one-
to-one mapping of points in a scene to pixel positions using a dither matrix Dn

to select an intensity level. Matrix Dn contains n x n elements that are assigned
distinct positive integer values in the range from 0 to n2 − 1. For example, we can
generate four intensity levels with

D2 =
[

3 1
0 2

]

(45)

and we can generate nine intensity levels with

D3 =
⎡

⎣

7 2 6
4 0 1
3 8 5

⎤

⎦ (46)

The matrix elements for D2 and D3 are in the same order as the pixel mask for
setting up 2 × 2 and 3 × 3 pixel grids, respectively. With a bilevel system, we
determine the display intensity values by comparing input intensities to the
matrix elements. Each input intensity is first scaled to the range 0 ≤ I ≤ n2. If
the intensity I is to be applied to screen position (x, y), we calculate the reference
position (row and column) in the dither matrix as

j = (x mod n) + 1, k = (y mod n) + 1 (47)

If I > Dn(j, k), we turn on the pixel at position (x, y). Otherwise, the pixel is off.
For RGB color applications, this procedure is implemented for the intensity of
each of the individual color components (red, green, and blue).

Illumination Models and Surface-Rendering Methods

519

Elements of the dither matrix are assigned in accordance with the guidelines
discussed for pixel grids. That is, we want to minimize artificial visual effects,
such as contouring. Order dither produces constant intensity areas identical to
those generated with pixel-grid patterns when the values of the matrix elements
correspond to those in the halftone-approximation grid mask. Variations from the
pixel-grid displays occur at the boundary of two different intensity areas.

Typically, the number of intensity levels is taken to be a multiple of 2. Higher-
order dither matrices, n ≥ 4, are then obtained from lower-order matrices using
the recurrence relation

Dn =
[

4Dn/2 + D2(1, 1) Un/2 4Dn/2 + D2(1, 2) Un/2

4Dn/2 + D2(2, 1) Un/2 4Dn/2 + D2(2, 2) Un/2

]

(48)

Parameter Un/2 represents the “unity” matrix (all elements are 1). For example, if
D2 is specified as in Equation 45, then recurrence relation 48 yields

D4 =

⎡

⎢
⎢
⎣

15 7 13 5
3 11 1 9

12 4 10 6
0 8 2 10

⎤

⎥
⎥
⎦

(49)

Another method for mapping a picture with m × n points to a display area
with m × n pixels is error diffusion. Here, the error between an input intensity
value and the selected intensity level at a given pixel position is dispersed, or
diffused, to pixel positions to the right and below the current pixel position.
Starting with a matrix M of intensity values obtained by scanning a photograph,
we want to construct an array I of pixel intensity values for an area of the screen.
We do this by first scanning across the rows of M, from left to right, starting
with the top row, and determining the nearest available pixel-intensity level for
each element of M. Then the error between the value stored in matrix M and
the displayed intensity level at each pixel position is distributed to neighboring
elements using the following simplified algorithm:

for (j = 0; j < m; j++)
for (k = 0; k < n; k++) {

/* Determine the available system intensity value
* that is closest to the value of M [j][k] and
* assign this value to I [j][k].
*/
error = M [j][k] - I [j][k];
I [j][k+1] = M [j][k+1] + alpha * error;
I [j+1][k-1] = M [j+1][k-1] + beta * error;
I [j+1][k] = M [j+1][k] + gamma * error;
I [j+1][k+1] = M [j+1][k+1] + delta * error;

}

Once the elements of matrix I have been assigned intensity-level values, we then
map the matrix to an area of a display device such as a printer or video monitor. Of
course, we cannot disperse the error past the last matrix column (k = n) or below
the last matrix row (j = m), and for a bilevel system, the system intensity values
are just 0 and 1. Parameters for distributing the error can be chosen to satisfy the
following relationship:

α + β + γ + δ ≤ 1 (50)

Illumination Models and Surface-Rendering Methods

520

7
16

3
16

5
16

1
16

column k

row j

row j � 1

F I G U R E 3 3
Fraction of intensity error that can be
distributed to neighboring pixel
positions using an error-diffusion
scheme.

34

42

50

38

28

20

12

24

48

58

62

46

14

4

0

16

40

56

61

54

22

6

3

8

32

53

45

37

30

11

19

27

29

21

13

25

35 49

43

51

39

15

5

1

17

59

63

47

41

23

7

2

9

57

60

55

33

31

10

18

26

52

44

36

F I G U R E 3 4
One possible distribution scheme for
dividing the intensity array into 64
dot-diffusion classes numbered from
0 through 63.

One choice for the error-diffusion parameters that produces fairly good
results is (α, β, γ , δ) = (7

16 , 3
16 , 5

16 , 1
16). Figure 33 illustrates the error distribu-

tion using these parameter values. Error diffusion sometimes produces “ghosts”
in a picture by repeating, or echoing, certain parts of the picture, particularly with
facial features such as hairlines and nose outlines. Ghosting can often be reduced
in these cases by choosing values for the error-diffusion parameters that sum to a
value less than 1 and by rescaling the matrix values after the dispersion of errors.
One way to rescale is to multiply all matrix elements by 0.8 and then add 0.1.
Another method for improving picture quality is to alternate the scanning of
matrix rows from right to left and left to right.

A variation on the error-diffusion method is dot diffusion. In this method,
the m × n array of intensity values is divided into 64 classes numbered from 0 to
63, as shown in Figure 34. The error between a matrix value and the displayed
intensity is then distributed only to those neighboring matrix elements that have
a larger class number. Distribution of the 64 class numbers is based on minimizing
the number of elements that are completely surrounded by elements with a lower
class number, because this would tend to direct all errors of the surrounding
elements to that one position.

10 Polygon Rendering Methods
Intensity calculations from an illumination model can be applied to surface ren-
dering in various ways. We could use an illumination model to determine the sur-
face intensity at every projected pixel position, or we could apply the illumination
model to a few selected points and approximate the intensity at the other surface
positions. Graphics packages typically perform surface rendering using scan-line
algorithms that reduce processing time by dealing only with polygon surfaces and
by calculating surface intensity only at the vertices. The vertex intensities are then

Illumination Models and Surface-Rendering Methods

521

interpolated to the other positions on the polygon surface. Other, more accurate
polygon scan-line rendering methods have been developed, and ray-tracing
algorithms calculate the intensity at each projected surface point for curved or pla-
nar surfaces. In this section, we consider the scan-line surface-rendering schemes
that are applied to polygons.

Constant-Intensity Surface Rendering
The simplest method for rendering a polygon surface is to assign the same color
to all projected surface positions. In this case, we use the illumination model to
determine the intensity for the three RGB color components at a single surface
position, such as a vertex or the polygon centroid. This approach, called constant-
intensity surface rendering or flat surface rendering, provides a fast and simple
method for displaying polygon facets on an object, which can be useful for quickly
generating the general appearance of a curved surface, as in Color Plate 17(b).
Flat rendering is also useful in design or other applications where we might
want quickly to identify the individual polygonal facets used to model a curved
surface.

In general, flat surface rendering of a polygon provides an accurate display
of the surface if all of the following assumptions are valid:

• The polygon is one face of a polyhedron and not a section of a curved-
surface approximation mesh.

• All light sources illuminating the polygon are sufficiently far from the
surface that N ·L and the attenuation function are constant over the area
of the polygon.

• The viewing position is sufficiently far from the polygon that V ·R is con-
stant over the area of the polygon.

Even if some of these conditions are not true, we can still reasonably approximate
surface lighting effects using constant-intensity surface rendering if the polygon
facets of an object are small.

Gouraud Surface Rendering
The Gouraud surface rendering scheme, devised by Henri Gouraud and also
referred to as intensity-interpolation surface rendering, linearly interpolates ver-
tex intensity values across the polygon faces of an illuminated object. Developed
for rendering a curved surface that is approximated with a polygon mesh, the
Gouraud method smoothly transitions the intensity values for each polygon facet
into the values for adjacent polygons along the common edges. This interpolation
of intensities across the polygon area eliminates the intensity discontinuities that
can occur in flat surface rendering.

Each polygon section of a tessellated curved surface is processed by the
Gouraud surface-rendering method using the following procedures:

1. Determine the average unit normal vector at each vertex of the polygon.
2. Apply an illumination model at each polygon vertex to obtain the light

intensity at that position.
3. Interpolate the vertex intensities linearly over the projected area of the

polygon.

Illumination Models and Surface-Rendering Methods

522

N1

N2

N3

N4
V

F I G U R E 3 5
The normal vector at vertex V is calculated as the
average of the surface normals for each polygon sharing
that vertex.

scan line1

4

2

5

3

p

x

y

F I G U R E 3 6
For Gouraud surface rendering, the intensity at point 4
is linearly interpolated from the intensities at vertices 1 and 2.
The intensity at point 5 is linearly interpolated from intensities
at vertices 2 and 3. An interior point p is then assigned an
intensity value that is linearly interpolated from intensities at
positions 4 and 5.

At each polygon vertex, we obtain a normal vector by averaging the normal
vectors of all polygons in the surface mesh that share that vertex, as illustrated in
Figure 35. Thus, for any vertex position V, we obtain the unit vertex normal
with the calculation

NV =
∑n

k=1 Nk
∣
∣
∑n

k=1 Nk
∣
∣

(51)

Once we have obtained the normal vector at a vertex, we invoke the illumination
model to obtain the surface intensity at that point.

After all vertex intensities have been computed for a polygonal facet, we can
interpolate the vertex values to obtain the intensities at positions along scan lines
that intersect the projected area of the polygon, as demonstrated in Figure 36.
For each scan line, the intensity at the intersection of the scan line with a polygon
edge is linearly interpolated from the intensities at the endpoints of that edge. For
the example in Figure 36, the polygon edge with endpoint vertices at positions
1 and 2 is intersected by the scan line at point 4. A fast method for obtaining the
intensity at point 4 is to interpolate between the values at vertices 1 and 2 using
only the vertical displacement of the scan line, as follows:

I4 = y4 − y2

y1 − y2
I1 + y1 − y4

y1 − y2
I2 (52)

In this expression, the symbol I represents the intensity for one of the RGB color
components. Similarly, the intensity at the right intersection of this scan line
(point 5) is interpolated from intensity values at vertices 2 and 3. From these
two boundary intensities, we linearly interpolate to obtain the pixel intensities
for positions across the scan line. The intensity for one of the RGB color compo-
nents at point p in Figure 36, for instance, is calculated from the intensities at
points 4 and 5 as

Ip = x5 − xp

x5 − x4
I4 + xp − x4

x5 − x4
I5 (53)

In the implementation of Gouraud rendering, we can perform the inten-
sity calculations represented by Equations 52 and 53 efficiently by using

Illumination Models and Surface-Rendering Methods

523

F I G U R E 3 7
Incremental interpolation of intensity
values along a polygon edge for
successive scan lines.

scan lines

I1

I�

I2

I
y

y � 1

x x � 1

incremental methods. Starting from a scan line that intersects one of the polygon
vertices, we can incrementally obtain intensity values for other scan lines that
intersect an edge that is connected to that vertex. Assuming that the polygon
facets are convex, each scan line crossing the polygon has two edge intersections,
such as points 4 and 5 in Figure 36. Once we have obtained the intensities at
the two edge intersections for a scan line, we apply the incremental procedures
to obtain pixel intensities across the scan line.

As an example of the incremental calculation of intensities, we consider scan
lines y and y − 1 in Figure 37, which intersect the left edge of a polygon. If scan
line y is the next scan line below the vertex at y1 with intensity I1, that is y = y1 −1,
then we can compute the intensity I on scan line y from Equation 52 as

I = I1 + I2 − I1

y1 − y2
(54)

Continuing down the polygon edge, the intensity along this edge for the next scan
line, y − 1, is

I ′ = I + I2 − I1

y1 − y2
(55)

Thus, each successive intensity value down the edge is computed simply by
adding the constant term (I2 − I1)/(y1 − y2) to the previous intensity value. Simi-
lar incremental calculations are used to obtain intensities at successive horizontal
pixel positions along each scan line.

Gouraud surface rendering can be combined with a hidden-surface algorithm
to fill in the visible polygons along each scan line. An example of a three-
dimensional object rendered with the Gouraud method appears in Color
Plate 17(c).

This intensity-interpolation method eliminates the discontinuities associated
with flat rendering, but it has some other deficiencies. Highlights on the sur-
face are sometimes displayed with anomalous shapes, and the linear intensity
interpolation can cause bright or dark intensity streaks, called Mach bands, to
appear on the surface. These effects can be reduced by dividing the surface into a
greater number of polygon faces or by using more precise intensity calculations.

Phong Surface Rendering
A more accurate interpolation method for rendering a polygon mesh was sub-
sequently developed by Phong Bui Tuong. This approach, called Phong surface
rendering or normal-vector interpolation rendering, interpolates normal vectors
instead of intensity values. The result is a more accurate calculation of intensity
values, a more realistic display of surface highlights, and a great reduction in the

Illumination Models and Surface-Rendering Methods

524

scan line y

N2

N3N1

N

F I G U R E 3 8
Interpolation of surface normals along a polygon edge.

Mach-band effect. However, the Phong method requires more computation than
the Gouraud method.

Each polygon section of a tessellated curved surface is processed by the Phong
surface-rendering method using the following procedures:

1. Determine the average unit normal vector at each vertex of the polygon.
2. Interpolate the vertex normals linearly over the projected area of the

polygon.
3. Apply an illumination model at positions along scan lines to calculate

pixel intensities using the interpolated normal vectors.

Interpolation procedures for normal vectors in the Phong method are the
same as those for the intensity values in the Gouraud method. The normal vector
N in Figure 38 is interpolated vertically from the normal vectors at vertices 1
and 2 as

N = y − y2

y1 − y2
N1 + y1 − y

y1 − y2
N2 (56)

This result must be re-normalized before we perform our shading calculations.
We apply the same incremental methods for obtaining normal vectors on succes-
sive scan lines and at successive pixel positions along scan lines. The difference
between the two surface-rendering approaches is that we must now apply the
illumination model at every projected pixel position along the scan lines to obtain
the surface intensity values.

Fast Phong Surface Rendering
We can reduce processing time in the Phong-rendering method by approximat-
ing some of the illumination-model calculations. Fast Phong surface rendering
performs the intensity calculations using a truncated Taylor-series expansion and
limiting the polygon facets to triangular surface patches.

Because the Phong method interpolates normal vectors from the vertex nor-
mals, we can write the expression for calculating the surface normal N at position
(x, y) in a triangular patch as

N = Ax + By + C (57)

where vectors A, B, and C are determined from the three vertex equations:

Nk = Axk + Byk + C, for k = 1, 2, 3 (58)

with (xk , yk) denoting a projected triangle vertex position on the pixel plane.

Illumination Models and Surface-Rendering Methods

525

Omitting the reflectivity and attentuation parameters, we can write the cal-
culation for light-source diffuse reflection from a surface point (x, y) as

Idiff(x, y) = L ·N
|L||N|

= L · (Ax + By + C)

|L||Ax + By + C|

= (L ·A)x + (L ·B)y + L ·C
|L||Ax + By + C| (59)

This expression can be written in the form

Idiff(x, y) = ax + by + c
[dx2 + exy + f y2 + gx + hy + i]1/2 (60)

where parameters such as a , b, c, and d are used to represent the various dot
products. For example,

a = L ·A
|L| (61)

Finally, we can express the denominator in Equation 60 as a Taylor series
expansion and retain terms up to the second degree in x and y. This yields

Idiff(x, y) = T5 x2 + T4 xy + T3 y2 + T2 x + T1 y + T0 (62)

where each Tk is a function of the various parameters in Equation 60, such as
a , b, and c.

Using forward differences, we then evaluate Equation 62 with only two
additions for each pixel position (x, y) once the initial forward-difference parame-
ters have been evaluated. Although the simplifications in the fast-Phong approach
reduce the Phong surface-rendering calculations, it still takes approximately twice
as long to render a surface with the fast-Phong method as it does with Gouraud
surface rendering. And the basic Phong method, using forward-difference calcu-
lations, takes about 6 to 7 times longer than Gouraud rendering.

Fast-Phong rendering for diffuse reflection can be extended to include spec-
ular reflections, using similar approximations for evaluating the specular terms
such as (N ·H)ns . In addition, we can generalize the algorithm to include a finite
viewing position and polygons other than triangles.

11 OpenGL Illumination and
Surface-Rendering Functions

A variety of routines are available in OpenGL for setting up point light sources,
selecting surface-reflection coefficients, and choosing values for other parameters
in the basic illumination model. In addition, we can simulate transparency, and
objects can be displayed using either flat surface rendering or Gouraud surface
rendering.

OpenGL Point Light-Source Function
Multiple point light sources can be included in an OpenGL scene description, and
various properties, such as position, type, color, attenuation, and spotlight effects,

Illumination Models and Surface-Rendering Methods

526

are associated with each light source. We set a property value for a light source
with the function

glLight* (lightName, lightProperty, propertyValue);

A suffix code of i or f is appended to the function name, depending on the
data type of the property value. For vector data, the suffix code v is also
appended and parameterpropertyValue is then a pointer to an array. Each light
source is referenced with an identifier, and parameter lightName is assigned one
of the OpenGL symbolic identifiers GL LIGHT0, GL LIGHT1, GL LIGHT2, . . . ,
GL LIGHT7, although some implementations of OpenGL may allow more than
8 light sources. Similarly, parameterlightPropertymust be assigned one of the
10 OpenGL symbolic property constants. After all properties have been assigned
to a light source, we turn on that light with the command

glEnable (lightName);

However, we also need to activate the OpenGL lighting routines, and we do that
with the command

glEnable (GL_LIGHTING);

Object surfaces are then rendered using lighting calculations that include contri-
butions from each light source that has been enabled.

Specifying an OpenGL Light-Source Position and Type
The OpenGL symbolic property constant for designating a light-source position
is GL POSITION. Actually, this symbolic constant is used to set two light-source
properties at the same time: the light-source position and the light-source type.
Two general classifications of light sources are available in OpenGL to illuminate
a scene. A point light source can be classified as near the objects to be illuminated
(a local source), or it can be treated as if it were infinitely far from the scene.
And this classification is independent of the position that we assign to a light
source. For a nearby light source, the emitted light radiates in all directions, and
the position of the light source is included in the lighting calculations. However,
the emitted light from a distant source is allowed to emanate in one direction
only, and this direction is applied to all surfaces in the scene, independently of
the assigned light-source position. The direction for the emitted rays from a light
that is classified as a distant source is calculated as the direction from the assigned
position of the light source to the coordinate origin.

A four-element floating-point vector is used to designate both the type of
light and the coordinate values for the light position. The first three elements of
this vector give the world-coordinate position, and the fourth element is used to
designate the light-source type. If we assign the value 0.0 to the fourth element
of the position vector, the light is considered to be a very distant source (referred
to in OpenGL as a “directional” light), and the light-source position is then used
only to determine the light direction. Otherwise, the light is taken to be a local
point source (referred to in OpenGL as a “positional” light), and the light position
is used by the lighting routines to determine the light direction to each object in
the scene. In the following code example, light 1 is designated as a local source

Illumination Models and Surface-Rendering Methods

527

at location (2.0, 0.0, 3.0), and light 2 is a distant source with light emission in the
negative y direction:

GLfloat light1PosType [] = {2.0, 0.0, 3.0, 1.0};
GLfloat light2PosType [] = {0.0, 1.0, 0.0, 0.0};

glLightfv (GL_LIGHT1, GL_POSITION, light1PosType);
glEnable (GL_LIGHT1);

glLightfv (GL_LIGHT2, GL_POSITION, light2PosType);
glEnable (GL_LIGHT2);

If we do not specify a position and type for a light source, the default values are
(0.0, 0.0, 1.0, 0.0), which indicates a distant source with light rays traveling in the
negative z direction.

The position of a light source is included in the scene description, and it
is transformed to viewing coordinates along with the object positions by the
OpenGL geometric-transformation and viewing-transformation matrices. There-
fore, if we want to keep the light source at a fixed position relative to the objects
in a scene, we set its position after the specification of the geometric and viewing
transformations in the program. However, if we want the light source to move
as the viewpoint moves, we set its position before the specification of the viewing
transformation. Also, we can apply a translation or rotation to a light source to
move it around in a stationary scene.

Specifying OpenGL Light-Source Colors
Unlike an actual light source, an OpenGL light has three different color proper-
ties. In this empirical scheme, the three light-source colors provide options for
varying the lighting effects in a scene. We set these colors using the symbolic
color-property constants GL AMBIENT, GL DIFFUSE, and GL SPECULAR. Each
of these colors is assigned by specifying a four-element floating-point set of val-
ues representing the red, green, blue, and alpha (RGBA) components of the color,
specified in that order. The alpha component controls color-blending, and is used
only if the OpenGL color-blending routines are activated. As we might guess
from the names of the symbolic color-property constants, one of the light-source
colors contributes to the background (ambient) light in a scene, another color
is used in diffuse-lighting calculations, and the third color is used to compute
specular-lighting effects for a surface. Realistically, a light source has just one
color, but we can use the three OpenGL light-source colors to create various light-
ing effects. In the following code example, we set the ambient color for a local light
source, labeledGL LIGHT3, to black, and we set the diffuse and specular colors to
white:

GLfloat blackColor [] = {0.0, 0.0, 0.0, 1.0};
GLfloat whiteColor [] = {1.0, 1.0, 1.0, 1.0};

glLightfv (GL_LIGHT3, GL_AMBIENT, blackColor);
glLightfv (GL_LIGHT3, GL_DIFFUSE, whiteColor);
glLightfv (GL_LIGHT3, GL_SPECULAR, whiteColor);

The default colors for light source 0 are black for the ambient color and white for
the diffuse and specular colors. All the other light sources have a default color of
black for each of the ambient, diffuse, and specular color properties.

Illumination Models and Surface-Rendering Methods

528

Specifying Radial-Intensity Attenuation Coefficients
for an OpenGL Light Source
We can apply radial-intensity attenuation to the light emitted from an OpenGL
local light source, and the OpenGL lighting routines calculate this attenuation
using Equation 2, with d l as the distance from a light-source position to
an object position. The three OpenGL property constants for radial intensity
attenuation are GL CONSTANT ATTENUATION, GL LINEAR ATTENUATION,
and GL QUADRATIC ATTENUATION, which correspond to the coefficients a0,
a1, and a2 in Equation 2. Either a positive integer value or a positive floating-
point value can be used to set each attenuation coefficient. For example, we could
assign the radial-attenuation coefficient values as

glLightf (GL_LIGHT6, GL_CONSTANT_ATTENUATION, 1.5);
glLightf (GL_LIGHT6, GL_LINEAR_ATTENUATION, 0.75);
glLightf (GL_LIGHT6, GL_QUADRATIC_ATTENUATION, 0.4);

Once the values for the attenuation coefficients have been set, the radial attenua-
tion function is applied to all three colors (ambient, diffuse, and specular) of the
light source. Default values for the attenuation coefficients are a0 = 1.0, a1 = 0.0,
and a2 = 0.0. Thus, the default is no radial attenuation: fl,radatten = 1.0. Although
radial attenuation can produce more realistic displays, the calculations are time-
consuming.

OpenGL Directional Light Sources (Spotlights)
For local light sources (those not considered to be at infinity), we can also spec-
ify a directional, or spotlight, effect. This limits the light that is emitted from
a source to a cone-shaped region of space. We define the conical region with a
direction vector along the axis of the cone and an angular spread θl from the cone
axis, as shown in Figure 39. In addition, we can specify an angular-attenuation
exponent al for the light source that determines how much the light intensity
decreases as we move from the center of the cone toward the cone surface.
Along any direction within the light cone, the angular attenuation factor is cosal α

(Eq. 5), where cos α is calculated as the dot product of the cone axis vector and
the vector from the light source to an object position. We compute the value for
each of the ambient, diffuse, and specular light colors at angle α by multiplying
the intensity components by this angular attenuation factor. If α > θl , the object is
outside the light-source cone, and the object is not illuminated by this light source.
For light rays within the cone, we can also attenuate the intensity values radially.

There are three OpenGL property constants for directional effects:GL SPOT
DIRECTION, GL SPOT CUTOFF, and GL SPOT EXPONENT. We specify the light
direction as either an integer or a floating-point world-coordinate vector. The cone
angle θl is given as an integer or floating-point value in degrees, and this angle
can be either 180◦ or any value in the range from 0◦ to 90◦. When the cone angle is
set to 180◦, the light source emits rays in all directions (360◦). We set the exponent
value for intensity attenuation either as an integer or floating-point number in the
range from 0 to 128. The following statements set the directional effects for light
source 3 so that the cone axis is in the positive x direction, the cone angle θl is 30◦,
and the attenuation exponent is 2.5:

GLfloat dirVector [] = {1.0, 0.0, 0.0};

glLightfv (GL_LIGHT3, GL_SPOT_DIRECTION, dirVector);
glLightf (GL_LIGHT3, GL_SPOT_CUTOFF, 30.0);
glLightf (GL_LIGHT3, GL_SPOT_EXPONENT, 2.5);

Illumination Models and Surface-Rendering Methods

529

F I G U R E 3 9
A circular cone of light emitted from
an OpenGL light source. The angular
extent of the light cone, measured
from the cone axis, is θl , and the angle
from the axis to an object direction
vector is labeled as α.

Light
Source

ul

a

To Object
Vertex

Cone Axis
Vector

If we do not specify a direction for a light source, the default direction is parallel
to the negative z axis; that is, (0.0, 0.0, −1.0). Also, the default cone angle is 180◦

and the default attenuation exponent is 0. Thus, the default is a point light source
that radiates in all directions, with no angular attenuation.

OpenGL Global Lighting Parameters
Several OpenGL lighting parameters can be specified at the global level. These
values are used to control the way that some lighting calculations are performed,
and a global parameter value is set with the following function:

glLightModel* (paramName, paramValue);

We append a suffix code of i or f, depending on the data type of the parame-
ter value. In addition, for vector data, we append the suffix code v. Parameter
paramName is assigned an OpenGL symbolic constant that identifies the global
property to be set, and parameter paramValue is assigned a single value or set
of values. Using the glLightModel function, we can set a global ambient-light
level, we can specify how specular highlights are to be calculated, and we can
choose to apply the illumination model to the back faces of polygon surfaces.

In addition to the ambient color for individual light sources, we can set an
independent value for the OpenGL background lighting as a global value. This
provides just one more option in the empirical lighting calculations. To set this
option, we use the symbolic constant GL LIGHT MODEL AMBIENT. The follow-
ing statement, for example, sets the general background lighting for a scene to a
low-intensity (dark) blue color, with an alpha value of 1.0:

globalAmbient [] = {0.0, 0.0, 0.3, 1.0);

glLightModelfv (GL_LIGHT_MODEL_AMBIENT, globalAmbient);

Illumination Models and Surface-Rendering Methods

530

If we do not set a global ambient-light level, the default is the low-intensity white
(dark gray) color (0.2, 0.2, 0.2, 1.0).

Specular-reflection calculations require the determination of several vectors,
including the vector V from a surface position to the viewing position. To speed up
specular calculations, the OpenGL lighting routines can use a constant direction
for vector V, regardless of the surface position relative to the view point. This
constant unit vector is in the positive z direction, (0.0, 0.0, 1.0), and this is the
default value for V. However, if we want to turn off this default and use the
actual viewing position (which is the viewing-coordinate origin) to calculate V,
we issue the following command:

glLightModeli (GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

Although the specular calculations take more time when we use the actual viewing
position to calculate V, we do obtain more realistic displays. We turn off the surface
calculations for vector V when we use the default value GL FALSE (or 0, or 0.0)
for the local-viewer parameter.

When surface textures are added to the OpenGL lighting calculations, surface
highlights can be dulled and the texture patterns may be distorted by the spec-
ular terms. Therefore, as an option, texture patterns can be applied only to the
nonspecular terms that contribute to a surface color. These nonspecular terms
include ambient effects, surface emissions, and diffuse reflections. Using this
option, the OpenGL lighting routines generate two colors for each surface light-
ing calculation: a specular color and the nonspecular color contributions. Texture
patterns are combined only with the nonspecular color, and then the two colors
are combined. We select this two-color option with

glLightModeli (GL_LIGHT_MODEL_COLOR_CONTROL,
GL_SEPARATE_SPECULAR_COLOR);

We need not separate the color terms if we are not using texture patterns, and
the lighting calculations are performed more efficiently if this option is not
invoked. The default value for this property is GL SINGLE COLOR, which does
not separate the specular color from the other surface-color components.

In some applications, we may want to display back-facing surfaces of an
object. An example is the inside, cutaway view of a solid, in which some back-
facing surfaces, in addition to the front-facing surfaces, are to be displayed. How-
ever, by default, the lighting calculations use the assigned material properties
only for the front faces. To apply the lighting calculations to both the front and
back faces, using the corresponding front-face and back-face material properties,
we issue the command

glLightModeli (GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

The surface normal vectors for the back faces are then reversed, and the lighting
calculations are applied using the material properties that have been assigned to
the back faces. To turn off the two-sided lighting calculations, we use the value
GL FALSE (or 0, or 0.0) in the glLightModel function, which is the default.

OpenGL Surface-Property Function
Reflection coefficients and other optical properties for surfaces are set using the
function

glMaterial* (surfFace, surfProperty, propertyValue);

Illumination Models and Surface-Rendering Methods

531

A suffix code of i or f is appended to the function, depending on the data type
for the property value, and we also append the code v when we supply vector-
valued properties. ParametersurfFace is assigned one of the symbolic constants
GL FRONT, GL BACK, or GL FRONT AND BACK; parameter surfProperty is
a symbolic constant identifying a surface parameter such as Isurf, ka , kd , ks , or ns ;
and parameter propertyValue is set to the corresponding value. All properties
except the specular-reflection exponent ns are specified as vector values. We use
a sequence of glMaterial functions to set all the illumination properties for an
object before we issue the commands that describe the object geometry.

An RGBA value for the surface emission color, Isurf, is selected using the
OpenGL symbolic surface-property constant GL EMISSION. For example, the
following statement sets the emission color for front surfaces to a light gray
(off-white):

surfEmissionColor [] = {0.8, 0.8, 0.8, 1.0};

glMaterialfv (GL_FRONT, GL_EMISSION, surfEmissionColor);

The default emission color for a surface is black (0.0, 0.0, 0.0, 1.0). Although an
emission color can be assigned to a surface, this emission does not illuminate
other objects in the scene. To do that, we must define the surface as a light source
using the methods discussed in Section 3.

We use the OpenGL symbolic property names GL AMBIENT, GL DIFFUSE,
andGL SPECULAR to set values for the surface reflection coefficients. Realistically,
the ambient and diffuse coefficients should be assigned the same vector values,
and we can do that using the symbolic constant GL AMBIENT AND DIFFUSE.
The default values for the ambient coefficient are (0.2, 0.2, 0.2, 1.0), the default
values for the diffuse coefficient are (0.8, 0.8, 0.8, 1.0), and the default values
for the specular coefficient are (1.0, 1.0, 1.0, 1.0). To set the specular-reflection
exponent, we use the constant GL SHININESS. We can assign any value in the
range from 0 to 128 to this property, and the default value is 0. For example,
the following statements set the values for the three reflection coefficients and
the specular exponent. The diffuse and ambient coefficients are set so that the
surface is displayed as a light-blue color when it is illuminated with white light;
specular reflection is the color of the incident light; and the specular exponent is
assigned a value of 25.0.

diffuseCoeff [] = {0.2, 0.4, 0.9, 1.0};
specularCoeff [] = {1.0, 1.0, 1.0, 1.0};

glMaterialfv (GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
diffuseCoeff);

glMaterialfv (GL_FRONT_AND_BACK, GL_SPECULAR, specularCoeff);
glMaterialf (GL_FRONT_AND_BACK, GL_SHININESS, 25.0);

Components for the reflection coefficients can also be set using color-table
values, and the OpenGL symbolic constant GL COLOR INDEXES is provided
for this purpose. We assign the color-table indices as a three-element integer or
floating-point array, and the default is (0, 1, 1).

OpenGL Illumination Model
Surface lighting effects are calculated by OpenGL using the basic illumina-
tion model 19, with some variations in the way that the parameters are

Illumination Models and Surface-Rendering Methods

532

specified. The ambient light level is the sum of the light-source ambient com-
ponents and the global ambient setting. Diffuse-reflection calculations use the
diffuse-intensity component of the light sources, and specular-reflection calcula-
tions use the specular-intensity component of each light source.

Also, the unit vector V, specifying the direction from a surface position to
a viewing position, can be set to the constant value (0.0, 0.0, 0.0) if the local-
viewer option is not used. For a light source positioned at “infinity,” the unit
light-direction vector L is in the opposite direction to the assigned direction for
the light rays from that source.

OpenGL Atmospheric Effects
After the OpenGL illumination model has been applied to obtain surface colors,
we can assign a color to the atmosphere in a scene and combine the surface colors
with the atmosphere color. Also, we can use an atmosphere intensity-attenuation
function to simulate viewing the scene through a hazy or smoky atmosphere. The
various atmosphere parameters are set using the glFog function:

glEnable (GL_FOG);

glFog* (atmoParameter, paramValue);

A suffix code of i or f is appended to indicate data-value type, and the suffix
code v is used with vector data.

To set an atmosphere color, we assign the OpenGL symbolic constant
GL FOG COLOR to parameter atmoParameter. For example, we can designate
the atmosphere as having a bluish-gray color with

GLfloat atmoColor [4] = {0.8, 0.8, 1.0, 1.0};

glFogfv (GL_FOG_COLOR, atmoColor);

The default value for the atmosphere color is black (0.0, 0.0, 0.0, 0.0).
We can next choose the atmosphere-attenuation function that is to be used to

combine the object color with the atmosphere color. This is accomplished using
the symbolic constant GL FOG MODE:

glFogi (GL_FOG_MODE, atmoAttenFunc);

If parameter atmoAttenFunc is assigned the value GL EXP, Equation 31
is used as the atmosphere-attenuation function. With the value GL EXP2, we
select Equation 32 as the atmosphere-attenuation function. For either of the
exponential functions, we select an atmosphere density value with

glFog (GL_FOG_DENSITY, atmoDensity);

A third option for atmospheric attenuation is the linear depth-cueing
function. In this case, parameter atmoAttenFunc is assigned the value
GL LINEAR. The default value for parameter atmoAttenFunc is GL EXP.

Once an atmosphere-attenuation function has been selected, this function is
used to calculate a blended atmosphere-surface color for the object. Equation 33
is used by the OpenGL atmosphere routines to calculate this blended color.

Illumination Models and Surface-Rendering Methods

533

OpenGL Transparency Functions
Some simulated transparency effects are possible in OpenGL using color-

We designate objects in a scene as transparent using the alpha parameter in
the OpenGL RGBA surface-color commands such as glMaterial and glColor.
A surface alpha parameter can be set to the value of the transparency coefficient
(Eq. 30) for that object. For example, if we specify the color for a transparent
surface with the function

glColor4f (R, G, B, A);

then we set the alpha parameter to the value A = kt. A completely transparent
surface is assigned the alpha value A = 1.0, and an opaque surface has the alpha
value A = 0.0.

Once we have assigned the transparency values, we activate the color-
blending features of OpenGL and process the surfaces, starting with the most
distant objects and proceeding in order to the objects closest to the viewing
position. With color blending activated, each surface color is combined with any
overlapping surfaces that are already in the frame buffer, using the assigned sur-
face alpha values.

We set the color-blending factors so that all color components of the current
surface (the “source” object) are multiplied by (1 − A) = (1 − kt), and all color
components of the corresponding frame-buffer positions (the “destination”) are
multiplied by the factor A = kt:

glEnable (GL_BLEND);

glBlendFunc (GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA);

The two colors are then blended using Equation 30 with the alpha parameter
set to kt, where the frame-buffer colors are those for a surface that is behind
the transparent object being processed. For instance, if A = 0.3, then the new
frame-buffer color is the sum of 30 percent of the current frame-buffer color and
70 percent of the object reflection color, for each surface position. (Alternatively, we
could use the alpha color parameter as an opacity factor, instead of a transparency
factor. If we set A to an opacity value, though, we also must interchange the two
arguments in the function glBlendFunc.)

Illumination Models and Surface-Rendering Methods

blending routines. However, the implementation of transparency in an OpenGL
program, in general, is not straightforward. We can combine object colors for a
simple scene containing a few opaque and transparent surfaces by using the
alpha blending value to specify the degree of transparency and by processing
surfaces in a depth-first order. The OpenGL color-blending operations ignore
refraction effects, however, and dealing with transparent surfaces in complex
scenes with a variety of lighting conditions or animations can be formidable.
Also, OpenGL provides no direct provisions for simulating the surface appear-
ance of a translucent object (such as a grainy sheet of plastic or a pane of frosted
glass), which diffusely scatters the light transmissions through the semitranspar-
ent material. Thus, to display translucent surfaces or the lighting effects result-
ing from refraction, we would need to write our own routines. To simulate light-
ing effects through a translucent object, we could use a combination of values for
surface texture and material properties. For refraction effects, we could shift the
pixel positions for surfaces behind a transparent object using Equation 29 to cal-
culate the amount of offset needed.

Visibility testing can be accomplished using the OpenGL depth-buffer func-
tions. As each visible opaque surface is processed, both the surface colors and the

534

If we process all objects in depth order, the depth-buffer write mode is turned
off and then back on again as we process each transparent surface. Alternatively,
we could separate the two object classes, as in the following code outline:

glEnable (GL_DEPTH_TEST);
/* Process all opaque surfaces. */

glEnable (GL_BLEND);
glDepthMask (GL_FALSE);
glBlendFunc (GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA);
/* Process all transparent surfaces. */

glDepthMask (GL_TRUE);
glDisable (GL_BLEND);

glutSwapBuffers ();

If the transparent objects are not processed in a strictly back-to-front order, this
approach will not accumulate surface colors accurately for all cases. But for simple
scenes, this is a fast and effective method for generating an approximate repre-
sentation for the transparency effects.

OpenGL Surface-Rendering Functions
Surfaces can be displayed with OpenGL routines using either constant-intensity
surface rendering or Gouraud surface rendering. No OpenGL routines are pro-
vided for applying Phong surface rendering, ray tracing, or radiosity methods. A
rendering method is selected with

glShadeModel (surfRenderingMethod);

We select constant-intensity surface rendering by assigning the symbolic value
GL FLAT to parameter surfRenderingMethod. For Gouraud shading (the
default), we use the symbolic constant GL SMOOTH.

When the glShadeModel function is applied to a tessellated curved surface,
such as a sphere that is approximated with a polygon mesh, the OpenGL rendering
routines use the surface-normal vectors at the polygon vertices to calculate the
polygon color. The Cartesian components of a surface-normal vector in OpenGL
are specified with the command

glNormal3* (Nx, Ny, Nz);

Suffix codes for this function are b (byte), s (short), i (integer), f (float), and
d (double). In addition, we append the suffix code vwhen the vector components
are designated with an array. Byte, short, and integer values are converted to
floating-point values in the range from −1.0 to 1.0. The glNormal function sets
the components for the surface-normal vector as state values that apply to all
subsequentglVertex commands, and the default normal vector is in the positive
z direction: (0.0, 0.0, 1.0).

Illumination Models and Surface-Rendering Methods

glDepthMask

surface depth values are stored. However, when we process a visible transparent
surface, we want to save only its colors because the surface does not obscure
background surfaces. Therefore, as we process each transparent surface, we put the
depth buffer into a read-only status using the function.

535

For flat surface rendering, we need only one surface normal for each polygon.
Thus, we can set each polygon normal as, for example,

glNormal3fv (normalVector);
glBegin (GL_TRIANGLES);

glVertex3fv (vertex1);
glVertex3fv (vertex2);
glVertex3fv (vertex3);

glEnd ();

If we want to apply the Gouraud surface-rendering procedure to the above trian-
gle, we need to designate a normal vector for each vertex as follows:

glBegin (GL_TRIANGLES);
glNormal3fv (normalVector1);
glVertex3fv (vertex1);
glNormal3fv (normalVector2);
glVertex3fv (vertex2);
glNormal3fv (normalVector3);
glVertex3fv (vertex3);

glEnd ();

Although normal vectors need not be specified as unit vectors, we can
reduce computations if do state all surface normals as unit vectors. Any non-unit
surface normal is converted to a unit normal automatically if we have issued the
command

glEnable (GL_NORMALIZE);

This command also renormalizes surface vectors if they have been modified by
geometric transformations such as scaling or shear.

Another available option is the designation of a list of normal vectors that
are to be combined or associated with a vertex array. The statements for creat-

glEnableClientState (GL_NORMAL_ARRAY);

glNormalPointer (dataType, offset, normalArray);

Parameter dataType is assigned the constant value GL BYTE, GL SHORT,
GL INT, GL FLOAT (the default value), or GL DOUBLE. The number of bytes
between successive normal vectors in the array normalArray is given by
parameter offset, which has a default value of 0.

OpenGL Halftoning Operations
A variety of colors and gray-scale effects are possible on some systems using
OpenGL halftone routines. The halftone-approximation patterns and operations
are hardware dependent, and they typically have no effect on systems with full-
color graphics capabilities. However, when a system has only a small number of
bits per pixel, RGBA color settings can be approximated with halftone patterns.
We activate the halftone routines with

glEnable (GL_DITHER);

which is the default, and the halftoning routines are deactivated with the function

glDisable (GL_DITHER);

Illumination Models and Surface-Rendering Methods

ing an array of normal vectors are

536

12 Summary
In general, an object is illuminated with radiant energy from light emitters and
from the reflective surfaces in a scene. Light sources can be modeled as point
objects or they can have an extended size. In addition, light sources can be
directional, and they can be treated as infinitely distant sources or as local light
sources. Radial attenuation is typically applied to transmitted light using an
inverse quadratic function of distance, and spotlights can be angularly attenu-
ated as well. Reflecting surfaces in a scene are opaque, completely transparent,
or partially transparent; and lighting effects are described in terms of diffuse and
specular components for both reflections and refractions.

Light intensity at a surface position is calculated using an illumination model,
and the basic illumination model in most graphics packages uses simplified
approximations of physical laws. These lighting calculations provide a light-
intensity value for each RGB component of the reflected light from a surface
position, and for the transmitted light through a transparent object. The basic
illumination model typically accommodates multiple light sources as point emit-
ters, but they can be distant sources, local sources, or spotlights. Ambient light
for a scene is described with a fixed intensity for each RGB color component and
for all surfaces. Diffuse-intensity reflections from a surface are taken to be pro-
portional to the cosine of the angular distance from the direction of the surface
normal. Specular-intensity reflections are computed using the Phong model. In
addition, transparency effects are usually approximated using a simple trans-
parency coefficient for a material, although accurate refraction effects can be
modeled using Snell’s law. Shadow effects from the individual light sources
can be added by identifying the regions in a scene that are not visible from the
light source. Also, the calculations necessary for obtaining light reflections and
transmission effects for translucent materials are not usually part of a basic illumi-
nation model, but we can model them using methods that disperse the diffuse light
components.

Intensity values calculated with an illumination model are mapped to the
intensity levels available on the display system in use. A logarithmic intensity
scale is used by systems to provide a set of intensity levels that increase with
equal perceived brightness differentials. Gamma correction is applied to intensity
values to correct for the nonlinearity of display devices. With bilevel monitors,
we can use halftone patterns and dithering techniques to simulate a range of
intensity values. Halftone approximations can also be used to increase the number
of intensity options on systems that are capable of displaying more than two
intensities per pixel. Ordered-dither, error-diffusion, and dot-diffusion methods
are used to simulate a range of intensities when the number of points to be plotted
in a scene is equal to the number of pixels on the display device.

Surface rendering in graphics packages is accomplished by applying the cal-
culations from the basic illumination model to scan-line procedures that extrapo-
late the intensity values from a few surface points to all projected pixel positions
of a surface. With constant-intensity surface rendering, also called flat rendering,
we use one calculated color to display all points of a surface. Flat surface ren-
dering is accurate for polyhedrons or curved-surface polygon meshes when the
viewing and light-source positions are far from the objects in a scene. Gouraud
surface rendering approximates light reflections from tessellated curved surfaces
by calculating intensity values at polygon vertices and linearly interpolating these
intensity values across the polygon facets. A more accurate, but slower, surface-
rendering procedure is Phong surface rendering, which interpolates the aver-
age normal vectors for polygon vertices over the polygon facets. Then, the basic

Illumination Models and Surface-Rendering Methods

537

illumination model is employed to compute surface intensities at each projected
surface position, using the interpolated values for the surface normal vectors. Fast
Phong surface rendering uses Taylor series approximations to reduce processing
time for the intensity calculations.

The core library of OpenGL contains an extensive set of functions for setting
up point light sources, specifying the various parameters in the basic illumination
model, selecting a surface-rendering method, activating halftone-approximation
routines, and for applying texture array patterns to objects. Table 2 provides a
summary of these OpenGL illumination and surface-rendering functions.

T A B L E 2

Summary of OpenGL Illumination and Surface-Rendering Functions

Function Description

glLight Specifies a light-source property value.

glEnable (lightName) Activates a light source.

glLightModel Specifies global-lighting parameter values.

glMaterial Specifies a value for an optical surface parameter.

glFog Specifies a value for an atmosphere parameter;
activates atmospheric effects with the
glEnable function.

glColor4f (R, G, B, A) Specifies an alpha value for a surface to simulate
transparency. In the function glBlendFunc, sets
the source blending factor to GL SRC ALPHA
and the destination blending factor to
GL ONE MINUS SRC ALPHA.

glShadeModel Specifies either Gouraud surface rendering
or single-color surface rendering.

glNormal3 Specifies a surface-normal vector.

glEnable (GL NORMALIZE) Specifies that surface normals are to be converted
to unit vectors.

glEnableClientState Activates processing routines for an array of
(GL NORMAL ARRAY) surface-normal vectors.

glNormalPointer Creates a list of surface-normal vectors that are
to be used with a vertex array.

glEnable (GL DITHER) Activates operations for applying surface
rendering as halftone approximation
patterns.

Illumination Models and Surface-Rendering Methods

538

REFERENCES
Basic illumination models and surface-rendering tech-
niques are discussed in Gouraud (1971) and Phong
(1975), Freeman (1980), Bishop and Wiemer (1986), Birn
(2000), Akenine-Möller and Haines (2002), and Olano,
et al. (2002). Implementation algorithms for illumination
models and rendering methods are presented in Glassner
(1990), Arvo (1991), Kirk (1992), Heckbert (1994), Paeth
(1995), and Sakaguchi, et al. (2001). Halftoning methods
are given in Velho and Gomes (1991). For further infor-
mation on ordered dither, error diffusion, and dot diffu-
sion see Knuth (1987).

Additional programming examples using OpenGL
illumination and rendering functions are given in
Woo, et al. (1999). Programming examples for the
OpenGL lighting and rendering functions are also avail-
able at Nate Robins’s tutorial website: http://www.
xmission.com/∼nate/opengl.html. Finally, a complete
listing of OpenGL illumination and rendering functions
is provided in Shreiner (2000).

EXERCISES
1 Write a routine to implement Equation 12 for

diffuse reflection using a single point light source
and constant surface rendering for the faces of a
tetrahedron. The object description is to be given
in polygon tables, including surface normal vec-
tors for each of the polygon faces. Additional
input parameters include the ambient intensity,
light-source intensity, and surface reflection coef-
ficients. All coordinate information can be speci-
fied directly in the viewing reference frame.

2 Modify the routine in Exercise 1 to render the
polygon facets of a tessellated spherical surface.

3 Modify the routine in Exercise 2 to display
the spherical surface using Gouraud surface
rendering.

4 Modify the routine in Exercise 3 to display the
spherical surface using Phong surface rendering.

5 Use the routines developed in the previous exer-
cises to write a program that displays an input
set of objects given as polygon meshes using the
same parameters as described in Exercise 1.
The program should allow the user to switch
between constant surface rendering, Gouraud
shading, and Phong shading via keyboard input.
Run the program with a sample set of objects and
the light source in various positions and examine
the visual differences between the three different
rendering schemes.

6 Write a routine to implement Equation 17 for
diffuse and specular reflections using a single
point light source and Gouraud surface render-
ing for the polygon facets of a tessellated spheri-
cal surface. The object description is to be given in

polygon tables, including surface normal vectors
for each of the polygon faces. Additional input
includes values for the ambient intensity, light-
source intensity, surface reflection coefficients,
and specular-reflection parameter. All coordinate
information can be specified directly in the view-
ing reference frame.

7 Modify the routine in preceding exercise to dis-
play the polygon facets using Phong surface ren-
dering.

8 Modify the routine in the preceding exercise to
include a linear intensity attenuation function.

9 Modify the routine in the preceding exercise to
include two light sources in the scene.

10 Modify the routine in the preceding exercise so
that the spherical surface is viewed through a
pane of glass.

11 Discuss the differences you might expect to see in
the appearance of specular reflections modeled
with (N ·H)ns compared to specular reflections
modeled with (V ·R)ns .

12 Verify that 2α = φ in Figure 18 when all vectors
are coplanar, but that, in general, 2α 	= φ.

13 Discuss how the different visible-surface detec-
tion methods can be combined with an intensity
model for displaying a set of polyhedrons with
opaque surfaces.

14 Discuss how the various visible-surface detection
methods can be modified to process transparent
objects. Are there any visible-surface detection
methods that cannot handle transparent surfaces?

15 Set up an algorithm, based on one of the visible-
surface detection methods, that will identify
shadow areas in a scene illuminated by a distant
point source.

16 How many intensity levels can be displayed with
halftone approximations using n × n pixel grids,
where each pixel can be displayed with m differ-
ent intensities?

17 How many different color combinations can be
generated using halftone approximations on a
four-level RGB system with a 3 x 3 pixel grid?

18 How many different color combinations can be
generated using halftone approximations on a
two-level RGB system with a 4 x 4 pixel grid?

19 Write a routine to display a given set of surface-
intensity variations using halftone approxima-
tions with 4 x 4 pixel grids and two intensity levels
(0 and 1) per pixel.

20 Write a routine to generate ordered-dither
matrices using the recurrence relation in
Equation 48.

Illumination Models and Surface-Rendering Methods

539

21 Write a procedure to display a given array of
intensity values using the ordered-dither method.

22 Write a procedure to implement the error-
diffusion algorithm for a given m × n array of
intensity values.

23 Write an OpenGL program to display a scene
containing a sphere, a cube, and a tetrahedron
illuminated by two light sources: one is to be a
local green source and the other a distant white-
light source. Set surface parameters for both
diffuse and specular reflections with Gouraud
surface rendering, and apply a linear intensity-
attenuation function.

24 Modify the program in the preceding exercise so
that the single local green source is replaced with
two spotlights: one green and one blue.

25 Modify the program in the preceding exercise so
that a smoky atmosphere is added to the scene.

26 Modify the program in the preceding exercise so
that the scene is viewed through a semitranspar-
ent pane of glass.

IN MORE DEPTH
1 Using the techniques presented in this chapter,

choose a lighting scheme appropriate to your
application and write out its specification in
detail. Decide what types of light sources are most

appropriate (point sources, directional sources,
ambient sources, etc.) and what their colors,
positions, and orientations should be, if appli-
cable. In addition, include appropriate lighting
effects, such as intensity attenuation, shadows,
or atmospheric effects where appropriate. Next,
choose appropriate surface properties for the
objects in your scene based on the material that
they represent and include these properties in
your specification. If transparency is an important
aspect in your scene, be sure to specify the trans-
parency properties of the objects in your scene as
well.

2 Implement the specification that you developed
in the previous exercise using the OpenGL illu-
mination and surface-rendering functions. Cre-
ate and position/orient light sources accordingly
within the scene and turn on any atmospheric
effects if necessary. If you are using attenua-
tion functions, then experiment with the dif-
ferent models and parameters that define their
visual appearance. Next, set the material proper-
ties of the surfaces in your scene, including diffuse
and specular reflection parameters, and turn on
appropriate color-blending routines for transpar-
ent surfaces if applicable. Finally, render the scene
using Gouraud shading and experiment with
modifying each of the parameters discussed here
to produce the most visually appealing result.

Illumination Models and Surface-Rendering Methods

540

(a) (b)

(c) (d)

C o l o r P l a t e 1 2
A wire-frame scene (a) is displayed in (b) using ambient lighting only, with a different color for each object. Diffuse
reflections resulting from illumination with ambient light and a single point source are illustrated in (c). For this
display, ks = 0 for all surfaces. In (d), both diffuse and specular reflections are shown for the illumination from a
point source and the background lighting.

C o l o r P l a t e 1 3
Diffuse reflections from a spherical
surface illuminated by a point source
emitting white light, with values of the
diffuse reflectivity coefficient in the
interval 0 ≤ kd ≤ 1.

Illumination Models and

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

Surface-
Color PlatesRendering Methods

541

Color Models and Color Applications

1 Properties of Light

2 Color Models

3 Standard Primaries and
the Chromaticity Diagram

4 The RGB Color Model

5 The YIQ and Related Color Models

6 The CMY and CMYK Color Models

7 The HSV Color Model

8 The HLS Color Model

9 Color Selection and Applications

10 Summary

O ur discussions of color up to this point have concentrated

on methods involving red, green, and blue (RGB) com-

ponents, which we use for generating displays on video

monitors. Several other color descriptions are useful as well in

computer-graphics applications. Some methods are used to describe

color output on printers and plotters, some are used for transmitting

and storing color information, and others are used to provide a more

intuitive color-parameter interface to a program.

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

19 .

569

1 Properties of Light

The Electromagnetic Spectrum
In physical terms, color is electromagnetic radiation within a narrow frequency
band. Some of the other frequency groups in the electromagnetic spectrum are
referred to as radio waves, microwaves, infrared waves, and X-rays. Figure 1
shows the approximate frequency ranges for these various aspects of electromag-
netic radiation.

Each frequency value within the visible region of the electromagnetic
spectrum corresponds to a distinct spectral color. At the low-frequency end
(approximately 3.8 × 1014 hertz) are the red colors, and at the high-frequency end
(approximately 7.9 × 1014 hertz) are the violet colors. Actually, the human eye
is sensitive to some frequencies into the infrared and ultraviolet bands. Spectral
colors range from shades of red through orange and yellow, at the low-frequency
end, to shades of green, blue, and violet at the high end.

In the wave model of electromagnetic radiation, light can be described as
oscillating transverse electric and magnetic fields propagating through space.
The electric and magnetic fields are oscillating in directions that are perpendicu-
lar to each other and to the direction of propagation. For each spectral color, the
rate of oscillation of the field magnitude is given by the frequency f . Figure 2

F I G U R E 1
Electromagnetic spectrum. 102 104 106 108 1010 1012 1014 1016 1018 1020

A
M

 R
ad

io

F
M

 R
ad

io
 a

nd
 T

V

M
ic

ro
w

av
es

In
fr

ar
ed

V
is

ib
le

U
lt

ra
vi

ol
et

X
-r

ay
s

Frequency
(hertz)

F I G U R E 2
Time variations for the amplitude of
the electric field for one frequency
component of a plane-polarized
electromagnetic wave. The time
between two consecutive amplitude
peaks or two consecutive amplitude
minimums is called the period of
the wave.

A
m

pl
it

ud
e

t

T

Color Models and Color Applications

Light exhibits many different characteristics, and we describe the properties of
light in different ways in different contexts. Physically, we can characterize light
as radiant energy, but we also need other concepts to describe our perception of
light.

570

illustrates the time-varying oscillations for the magnitude of the electric field
within one plane. The time between any two consecutive positions on the wave
that have the same amplitude is called the period (T) of the wave, which is the
inverse of the frequency (i.e., T = 1/ f). And the distance that the wave has trav-
eled from the beginning of one oscillation to the beginning of the next oscillation
is called the wavelength (λ). For one spectral color (a monochromatic wave), the
wavelength and frequency are inversely proportional to each other, with the pro-
portionality constant as the speed of light (c):

c = λ f (1)

Frequency for each spectral color is a constant for all materials, but the speed of
light and the wavelength are material dependent. In a vacuum, the speed of light is
very nearly c = 3 × 1010 cm/sec. Light wavelengths are very small, so length units
for designating spectral colors are usually given in angstroms (1

◦
A = 10−8 cm)

or in nanometers (1 nm = 10−7 cm). An equivalent term for nanometer is milli-
micron. Light at the low-frequency end of the spectrum (red) has a wavelength
of approximately 780 nanometers (nm), and the wavelength at the other end of
the spectrum (violet) is about 380 nm. Because wavelength units are somewhat
more convenient to deal with than frequency units, spectral colors are typically
specified in terms of the wavelength values in a vacuum.

A light source such as the sun or a standard household light bulb emits all
frequencies within the visible range to produce white light. When white light
is incident upon an opaque object, some frequencies are reflected and some are
absorbed. The combination of frequencies present in the reflected light determines
what we perceive as the color of the object. If low frequencies are predominant
in the reflected light, the object is described as red. In this case, we say that the
perceived light has a dominant frequency (or dominant wavelength) at the red
end of the spectrum. The dominant frequency is also called the hue, or simply the
color, of the light.

Psychological Characteristics of Color
Other properties besides frequency are needed to characterize our perception of
light. When we view a source of light, our eyes respond to the color (or dominant
frequency) and two other basic sensations. One of these we call the brightness,
which corresponds to the total light energy and can be quantified as the luminance

Radiation emitted by a white light source has an energy distribution that can
be represented over the visible frequencies as in Figure 3. Each frequency com-
ponent within the range from red to violet contributes more or less equally to the
total energy, and the color of the source is described as white. When a dominant fre-
quency is present, the energy distribution for the source takes a form such as that in
Figure 4. We would describe this light as a red color (the dominant frequency),
with a relatively high value for the purity. The energy density of the dominant
light component is labeled as ED in this figure, and the contributions from the
other frequencies produce white light of energy density EW. We can calculate the
brightness of the source as the area under the curve, which gives the total energy
density emitted. Purity (saturation) depends on the difference between ED and

Color Models and Color Applications

of the light. The third perceived characteristic is called the purity, or the satura-
tion, of the light. Purity describes how close a light appears to be to a pure spec-
tral color, such as red. Pastels and pale colors have low purity (low saturation)
and they appear to be nearly white. Another term, chromaticity, is used to refer
collectively to the two properties describing color characteristics: purity and
dominant frequency (hue).

571

Energy

Frequency
Red Violet

F I G U R E 3
Energy distribution for a white light source.

Energy

Frequency
Red

Dominant
Frequency

Violet

ED

EW

F I G U R E 4
Energy distribution for a light source with a dominant
frequency near the red end of the frequency range.

EW. The larger the energy ED of the dominant frequency compared to the
white-light component EW, the higher the purity of the light. We have a purity of
100 percent when EW = 0 and a purity of 0 percent when EW = ED.

2 Color Models
Any method for explaining the properties or behavior of color within some par-
ticular context is called a color model. No single model can explain all aspects
of color, so we make use of different models to help describe different color
characteristics.

Primary Colors
When we combine the light from two or more sources with different dominant
frequencies, we can vary the amount (intensity) of light from each source to gen-
erate a range of additional colors. This represents one method for forming a color
model. The hues that we choose for the sources are called the primary colors, and
the color gamut for the model is the set of all colors that we can produce from the
primary colors. Two primaries that produce white are referred to as complemen-
tary colors. Examples of complementary color pairs are red and cyan, green and
magenta, and blue and yellow.

No finite set of real primary colors can be combined to produce all possible
visible colors. Nevertheless, three primaries are sufficient for most purposes, and
colors not in the color gamut for a specified set of primaries can still be described
using extended methods. Given a set of three primary colors, we can characterize
any fourth color using color-mixing processes. Thus, a mixture of one or two of
the primaries with the fourth color can be used to match some combination of the
remaining primaries. In this extended sense, a set of three primary colors can be
considered to describe all colors. Figure 5 shows a set of color-matching functions
for three primaries and the amount of each needed to produce any spectral color.
The curves plotted in Figure 5 were obtained by averaging the judgments of a
large number of observers. Colors in the vicinity of 500 nm can be matched only
by “subtracting” an amount of red light from a combination of blue and green
lights. This means that a color around 500 nm is described only by combining
that color with an amount of red light to produce the blue-green combination
specified in the diagram. Thus, an RGB color monitor cannot display colors in the
neighborhood of 500 nm.

Color Models and Color Applications

572

C
ol

or
-M

at
ch

in
g

R
G

B
 A

m
ou

nt
s

0.4

0.2

0
400 500 600 700

fB

fG

fR

l (nm)

F I G U R E 5
Three color-matching functions for
displaying spectral frequencies within
the approximate range from 400 nm to
700 nm.

Intuitive Color Concepts
An artist creates a color painting by mixing color pigments with white and black
pigments to form the various shades, tints, and tones in the scene. Starting with
the pigment for a “pure color” (“pure hue”), the artist adds a black pigment
to produce different shades of that color. The more black pigment, the darker
the shade. Similarly, different tints of the color are obtained by adding a white
pigment to the original color, making it lighter as more white is added. Tones of
the color are produced by adding both black and white pigments.

To many, these color concepts are more intuitive than describing a color as a
set of three numbers that give the relative proportions of the primary colors. It is
generally much easier to think of creating a pastel red color by adding white to
pure red and producing a dark blue color by adding black to pure blue. Therefore,
graphics packages providing color palettes to a user often employ two or more
color models. One model provides an intuitive color interface for the user, and
the others describe the color components for the output devices.

3 Standard Primaries and
the Chromaticity Diagram

Because no finite set of light sources can be combined to display all possible
colors, three standard primaries were defined in 1931 by the International
Commission on Illumination, referred to as the CIE (Commission Internationale
de l’Éclairage). The three standard primaries are imaginary colors. They are
defined mathematically with positive color-matching functions (Figure 6) that

C
ol

or
-M

at
ch

in
g

C
IE

 A
m

ou
nt

s

1.0

1.5

0.5

0
400 500 600 700 l (nm)

fZ

fY
fX

F I G U R E 6
The three color-matching functions for
the CIE primaries.

Color Models and Color Applications

573

specify the amount of each primary needed to describe any spectral color. This
provides an international standard definition for all colors, and the CIE primaries
eliminate negative-value color-matching and other problems associated with
selecting a set of real primaries.

The XYZ Color Model
The set of CIE primaries is generally referred to as the XYZ color model, where
parameters X, Y, and Z represent the amount of each CIE primary needed to
produce a selected color. Thus, a color is described with the XYZ model in the
same way that we described a color using the RGB model.

In the three-dimensional XYZ color space, we represent any color C(λ) as

C(λ) = (X, Y, Z) (2)

where X, Y, and Z are calculated from the color-matching functions (Figure 6):

X = k
∫

visible λ

fX(λ) I (λ) dλ

Y = k
∫

visible λ

fY(λ) I (λ) dλ (3)

Z = k
∫

visible λ

fZ(λ) I (λ) dλ

Parameter k in these calculations has the value 683 lumens/watt, where lumen
is a unit of measure for light radiation per unit solid angle from a “standard”
point light source (once called a candle). The function I (λ) represents the spec-
tral radiance, which is the selected light intensity in a particular direction, and
the color-matching function fY is chosen so that parameter Y is the luminance

Any color can be represented in the XYZ color space as an additive combina-
tion of the primaries using unit vectors X, Y, Z. Thus, we can write Equation 2 as

C(λ) = X X + Y X + Z X (4)

Normalized XYZ Values
In discussing color properties, it is convenient to normalize the amounts in Equa-
tion 3 against the sum X + Y + Z, which represents the total light energy.
Normalized amounts are thus calculated as

x = X
X + Y + Z

, y = Y
X + Y + Z

, z = Z
X + Y + Z

(5)

Because x + y+ z = 1, any color can be represented with just the x and y amounts.
Also, we have normalized against total energy, so parameters x and y depend only
on hue and purity and are called the chromaticity values. However, the x and
y values alone do not allow us to describe all properties of the color completely,
and we cannot obtain the amounts X, Y, and Z. Therefore, a complete description
of a color is typically given with three values: x, y, and the luminance Y. The
remaining CIE amounts are then calculated as

X = x
y

Y, Z = z
y

Y (6)

where z = 1 − x − y. Using chromaticity coordinates (x, y), we can represent all
colors on a two-dimensional diagram.

Color Models and Color Applications

for that color. Luminance values are normally adjusted to the range from 0 to
100.0, where 100.0 represents the luminance of white light.

574

y

0.8
520

540

560

500

480

C

580

600

700 (Red)

x

0.7

0.6

0.5

0.4

0.3 (Blue)

(Cyan)

(Green)

(Yellow)

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(Purple Line)

Spectral
Colors

400 (Violet)
F I G U R E 7
CIE chromaticity diagram for the spectral colors
from 400 nm to 700 nm.

The CIE Chromaticity Diagram
When we plot the normalized amounts x and y for colors in the visible spectrum,
we obtain the tongue-shaped curve shown in Figure 7. This curve is called the
CIE chromaticity diagram. Points along the curve are the spectral colors (pure
colors). The line joining the red and violet spectral points, referred to as the purple
line, is not part of the spectrum. Interior points represent all possible visible color
combinations. Point C in the diagram corresponds to the white-light position.
Actually, this point is plotted for a white light source known as illuminant C,
which is used as a standard approximation for average daylight.

y

x

C3

C4

C2
C1

C5

F I G U R E 8
Color gamuts defined on the
chromaticity diagram for a two-color
and a three-color system of primaries.

y

x

C1

C

C2

F I G U R E 9
Representing complementary colors on
the chromaticity diagram.

Luminance values are not available in the chromaticity diagram because of
normalization. Colors with different luminance but with the same chromaticity
map to the same point. The chromaticity diagram is useful for:

• Comparing color gamuts for different sets of primaries.
• Identifying complementary colors.
• Determining purity and dominant wavelength for a given color.

Color Gamuts
We identify color gamuts on the chromaticity diagram as straight-line segments
or polygon regions. All colors along the straight line joining points C1 and C2
in Figure 8 can be obtained by mixing appropriate amounts of the colors C1
and C2. If a greater proportion of C1 is used, the resultant color is closer to C1
than to C2 . The color gamut for three points, such C3, C4, and C5 in Figure 8,
is a triangle with vertices at the three color positions. These three primaries can
generate only the colors inside or on the bounding edges of the triangle. Thus, the
chromaticity diagram helps us to understand why no set of three primaries can be
additively combined to generate all colors, because no triangle within the diagram
can encompass all colors. Color gamuts for video monitors and hard-copy devices
are compared conveniently on the chromaticity diagram.

Complementary Colors
Because the color gamut for two points is a straight line, complementary colors
must be represented on the chromaticity diagram as two points on opposite sides
of C and collinear with C , as in Figure 9. The distances of the two colors C1
and C2 to C determine the amounts of each needed to produce white light.

Color Models and Color Applications

575

Dominant Wavelength
To determine the dominant wavelength of a color, we draw a straight line from
C through that color point to a spectral color on the chromaticity curve. The
spectral color Cs in Figure 10 is the dominant wavelength for color C 1 in this
diagram. Thus, color C1 can be represented as a combination of white light C and
the spectral color Cs . This method for determining dominant wavelength will
not work for color points that are between C and the purple line. Drawing a line
from C through point C2 in Figure 10 takes us to point C p on the purple line,
which is not in the visible spectrum. In this case, we take the compliment of C p

on the spectral curve, which is the point Csp, as the dominant wavelength. Colors
such as C2 in this diagram have spectral distributions with subtractive dominant
wavelengths. We can describe such colors by subtracting the spectral dominant
wavelength from white light.

y

x

Cs

Csp

C
C2

Cp

C1

F I G U R E 1 0
Determining dominant wavelength and
purity using the chromaticity diagram.

Purity
For a color point such as C1 in Figure 10, we determine the purity as the relative
distance of C1 from C along the straight line joining C to Cs . If dc1 denotes the
distance from C to C1 and dcs is the distance from C to Cs , we can represent purity
as the ratio dc1/dcs . Color C1 in this figure is about 25 percent pure, because it is
situated at about one-fourth the total distance from C to Cs . At position Cs , the
color point would be 100 percent pure.

4 The RGB Color Model
According to the tristimulus theory of vision, our eyes perceive color through the
stimulation of three visual pigments in the cones of the retina. One of the pigments
is most sensitive to light with a wavelength of about 630 nm (red), another has its
peak sensitivity at about 530 nm (green), and the third pigment is most receptive
to light with a wavelength of about 450 nm (blue). By comparing intensities in a
light source, we perceive the color of the light. This theory of vision is the basis for
displaying color output on a video monitor using the three primaries red, green,
and blue, which is referred to as the RGB color model.

We can represent this model using the unit cube defined on R, G, and B axes,
as shown in Figure 11. The origin represents black and the diagonally opposite

F I G U R E 1 1
The RGB color model. Any color within
the unit cube can be described as an
additive combination of the three
primary colors.

Gray Scale Green
(0, 1, 0)

G

R

B

Yellow
(1, 1, 0)

White
(1, 1, 1)

Red
(1, 0, 0)

Magenta
(1, 0, 1)

Blue
(0, 0, 1)

Black
(0, 0, 0)

Cyan
(0, 1, 1)

Color Models and Color Applications

576

T A B L E 1

RGB (x, y) Chromaticity Coordinates

NTSC Standard CIE Model Approx. Color Monitor Values

R (0.670, 0.330) (0.735, 0.265) (0.628, 0.346)
G (0.210, 0.710) (0.274, 0.717) (0.268, 0.588)
B (0.140, 0.080) (0.167, 0.009) (0.150, 0.070)

vertex, with coordinates (1, 1, 1), is white. Vertices of the cube on the axes represent
the primary colors, and the remaining vertices are the complementary color points
for each of the primary colors.

As with the XYZ color system, the RGB color scheme is an additive model.
Each color point within the unit cube can be represented as a weighted vector
sum of the primary colors, using unit vectors R, G, and B:

C(λ) = (R, G, B) = R R + G G + B B (7)

where parameters R, G, and B are assigned values in the range from 0 to 1.0.
For example, the magenta vertex is obtained by adding maximum red and blue
values to produce the triple (1, 0, 1), and white at (1, 1, 1) is the sum of the
maximum values for red, green, and blue. Shades of gray are represented along
the main diagonal of the cube from the origin (black) to the white vertex. Points
along this diagonal have equal contributions from each primary color, and a gray
shade halfway between black and white is represented as (0.5, 0.5, 0.5). The color
graduations along the front and top planes of the RGB cube are illustrated in Color
Plate 22.

Chromaticity coordinates for the National Television System Committee
(NTSC) standard RGB phosphors are listed in Table 1. Also listed are the RGB
chromaticity coordinates within the CIE color model and the approximate values
used for phosphors in color monitors. Figure 12 shows the approximate color
gamut for the NTSC standard RGB primaries.

y

0.8
520

540

560

500

580

600

700

x

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

400

480

C

F I G U R E 1 2
The RGB color gamut for NTSC chromaticity
coordinates. Illuminant C is at position (0.310,
0.316), with a luminance value of Y = 100.0.

Color Models and Color Applications

577

5 The YIQ and Related Color Models
Although an RGB graphics monitor requires separate signals for the red, green,
and blue components of an image, a television monitor uses a composite signal.
NTSC color encoding for forming the composite video signal is called the YIQ
color model.

The YIQ Parameters
In the YIQ color model, parameter Y is the same as the Y component in the
CIE XYZ color space. Luminance (brightness) information is conveyed by the Y
parameter, while chromaticity information (hue and purity) is incorporated into
the I and Q parameters. A combination of red, green, and blue is chosen for
the Y parameter to yield the standard luminosity curve. Because Y contains the
luminance information, black-and-white television monitors use only the Y signal.
Parameter I contains orange-cyan color information that provides the flesh-tone
shading, and parameter Q carries green-magenta color information.

The NTSC composite color signal is designed to provide information in a
form that can be received by black-and-white television monitors, which ob-
tain grayscale information for a picture within a 6-MHz bandwidth. Thus, the
YI Q information is also encoded within a 6-MHz bandwidth, but the luminance
and chromaticity values are encoded on separate analog signals. In this way, the
luminance signal is unchanged for black-and-white monitors, and the color
information is simply added within the same bandwidth. Luminance informa-
tion, the Y value, is conveyed as an amplitude modulation on a carrier signal with
a bandwidth of about 4.2 MHz. Chromaticity information, the I and Q values,
is combined on a second carrier signal that has a bandwidth of about 1.8 MHz.
The parameter names I and Q refer to the modulation methods used to encode
the color information on this carrier. An amplitude-modulation encoding (the
“in-phase” signal) transmits the I value, using about 1.3 MHz of the band-
width. And a phase-modulation encoding (the “quadrature” signal), using about
0.5 MHz, carries the Q value.

Luminance values are encoded at a higher precision in the NTSC sig-
nal (4.2 MHz bandwidth) than the chromaticity values (1.8 MHz bandwidth),
because we can detect small brightness changes more easily compared to small
color changes. However, the lower precision for the chromaticity encoding does
result in some degradation of the color quality for an NTSC picture.

Y = 0.299 R + 0.587 G + 0.114 B

I = R − Y (8)

Q = B − Y

Transformations Between RGB and YIQ Color Spaces
An RGB color is converted to a set of YIQ values using an NTSC encoder that
implements the calculations in Equation 9 and modulates the carrier signals.
The conversion from RGB space to YIQ space is accomplished using the following
transformation matrix:

⎡

⎣

Y
I
Q

⎤

⎦ =
⎡

⎣

0.299 0.587 0.114
0.701 −0.587 −0.114

−0.299 −0.587 0.886

⎤

⎦ ·
⎡

⎣

R
G
B

⎤

⎦ (9)

Color Models and Color Applications

We can calculate the luminance value for an RGB color. One method for pro-
ducing chromaticity values is to subtract the luminance from the red and blue
components of the color. Thus,

578

Conversely, an NTSC video signal is converted to RGB color values using an
NTSC decoder, which first separates the video signal into the YIQ components,
and then converts the YIQ values to RGB values. The conversion from YIQ space
to RGB space is accomplished with the inverse of transformation 9:

⎡

⎣

R
G
B

⎤

⎦ =
⎡

⎣

1.000 1.000 0.000
1.000 −0.509 −0.194
1.000 0.000 1.000

⎤

⎦ ·
⎡

⎣

Y
I
Q

⎤

⎦ (10)

The YUV and YCrCb Systems
Because of the lower bandwidth assigned to the chromaticity information in the
NTSC composite analog video signal, the color quality of an NTSC picture is
somewhat impaired. Therefore, variations of the YIQ encoding have been devel-
oped to improve the color quality of video transmissions. One such encoding is
the YUV set of color parameters, which provides the composite color information
for video transmissions by systems such as Phase Alternation Line (PAL) Broad-
casting, used in most of Europe, as well as Africa, Australia, and Eurasia. Another
variation of YIQ is the digital encoding called YCrCb. This color representation is
used for digital video transformations, and it is incorporated into various graphics
file formats, such as the JPEG syste .

6 The CMY and CMYK Color Models
A video monitor displays color patterns by combining light that is emitted from
the screen phosphors, which is an additive process. However, hard-copy devices,
such as printers and plotters, produce a color picture by coating a paper with
color pigments. We see the color patterns on the paper by reflected light, which
is a subtractive process.

The CMY Parameters
A subtractive color model can be formed with the three primary colors cyan,
magenta, and yellow. As we have noted, cyan can be described as a combi-
nation of green and blue. Therefore, when white light is reflected from cyan-
colored ink, the reflected light contains only the green and blue components,
and the red component is absorbed, or subtracted, by the ink. Similarly, magenta
ink subtracts the green component from incident light, and yellow subtracts the
blue component. A unit cube representation for the CMY model is illustrated in
Figure 13.

M

C

Y

Magenta
Blue

Cyan

Yellow

White

Black
Red

Green

Gray Scale

F I G U R E 1 3
The CMY color model. Positions within
the unit cube are described by
subtracting the specified amounts of
the primary colors from white.

In the CMY model, the spatial position (1, 1, 1) represents black, because
all components of the incident light are subtracted. The origin represents white
light. Equal amounts of each of the primary colors produce shades of gray along
the main diagonal of the cube. A combination of cyan and magenta ink pro-
duces blue light, because the red and green components of the incident light are
absorbed. Similarly, a combination of cyan and yellow ink produces green light,
and a combination of magenta and yellow ink yields red light.

The CMY printing process often uses a collection of four ink dots, which are
arranged in a close pattern somewhat as an RGB monitor uses three phosphor
dots. Thus, in practice, the CMY color model is referred to as the CMYK model,
where K is the black color parameter. One ink dot is used for each of the pri-
mary colors (cyan, magenta, and yellow), and one ink dot is black. A black dot is
included because reflected light from the cyan, magenta, and yellow inks typically
produce only shades of gray. Some plotters produce different color combinations

Color Models and Color Applications

m

579

by spraying the ink for the three primary colors over each other and allowing
them to mix before they dry. For black-and-white or grayscale printing, only the
black ink is used.

Transformations Between CMY and RGB Color Spaces
We can express the conversion from an RGB representation to a CMY represen-
tation using the following matrix transformation:

⎡

⎣

C
M
Y

⎤

⎦ =
⎡

⎣

1
1
1

⎤

⎦ −
⎡

⎣

R
G
B

⎤

⎦ (11)

where the white point in RGB space is represented as the unit column vector. And
we convert from a CMY color representation to an RGB representation using the
matrix transformation

⎡

⎣

R
G
B

⎤

⎦ =
⎡

⎣

1
1
1

⎤

⎦ −
⎡

⎣

C
M
Y

⎤

⎦ (12)

In this transformation, the unit column vector represents the black point in the
CMY color space.

For the conversion from RGB to the CMYK color space, we first set K =
max(R, G , B). Then K is subtracted from each of C , M, and Y in Equation 11.
Similarly, for the transformation from CMYK to RGB, we first set K = min(R, G, B).
Then K is subtracted from each of R, G , and B in Equation 12. In practice, these
transformation equations are often modified to improve the printing quality for
a particular system.

7 The HSV Color Model
Interfaces for selecting colors often use a color model based on intuitive concepts,
rather than a set of primary colors. We can give a color specification in an intuitive
model by selecting a spectral color and the amounts of white and black that are
to be added to that color to obtain different shades, tints, and tones (Section 2).

The HSV Parameters
Color parameters in this model are called hue (H), saturation (S), and value (V). We
derive this three-dimensional color space by relating the HSV parameters to the
directions in the RGB cube. If we imagine viewing the cube along the diagonal
from the white vertex to the origin (black), we see an outline of the cube that has the
hexagon shape shown in Figure 14. The boundary of the hexagon represents
the various hues, and it is used as the top of the HSV hexcone (Figure 15).
In HSV space, saturation S is measured along a horizontal axis, and the value
parameter V is measured along a vertical axis through the center of the hexcone.

Hue is represented as an angle about the vertical axis, ranging from 0◦ at red
through 360◦. Vertices of the hexagon are separated by 60◦ intervals. Yellow is at
60◦, green at 120◦, and cyan (opposite the red point) is at H = 180◦. Complemen-
tary colors are 180◦ apart.

Saturation parameter S is used to designate the purity of a color. A pure color
(spectral color) has the value S = 1.0, and decreasing S values tend toward the
grayscale line (S = 0) at the center of the hexcone.

Color Models and Color Applications

580

G

RB

White

RGB Color Cube

Green

Magenta

Color Hexagon

YellowCyan

RedBlue

(a) (b)

F I G U R E 1 4
When the RGB color cube (a) is viewed along the diagonal
from white to black, the color-cube outline is a hexagon (b).

Gray
Scale

V � 0
(Black)

V � 1
(White)

H (Hue Angle)

S (Saturation)

Magenta

Cyan

Yellow

Red
(0�)

Green
(120�)

V (Value)

Blue
(240�)

F I G U R E 1 5
The HSV hexcone.

Value V varies from 0 at the apex of the hexcone to 1.0 at the top plane. The
apex of the hexcone is the black point. At the top plane, colors have their maximum
intensity. When V = 1.0 and S = 1.0, we have the pure hues. Parameter values
for the white point are V = 1.0 and S = 0.

For most users, this is a more convenient model for selecting colors. Starting
with a selection for a pure hue, which specifies the hue angle H and sets V = S =
1.0, we describe the color we want in terms of adding either white or black to the
pure hue. Adding black decreases the setting for V while S is held constant. To
get a dark blue, for instance, V could be set to 0.4 with S = 1.0 and H = 240◦.
Similarly, when white is to be added to the selected hue, parameter S is decreased
while keeping V constant. A light blue could be designated with S = 0.3 while
V = 1.0 and H = 240◦. By adding some black and some white, we decrease both
V and S. An interface for this model typically presents the HSV parameter choices
in a color palette containing sliders and a color wheel.

Selecting Shades, Tints, and Tones
Color regions for selecting shades, tints, and tones are represented in the cross-
sectional plane of the HSV hexcone shown in Figure 16. Adding black to a
spectral color decreases V along the side of the hexcone toward the black point.
Thus, various shades are represented with the values S = 1.0 and 0.0 ≤ V ≤ 1.0.
Adding white to spectral colors produces the tints across the top plane of the
hexcone, where parameter values are V = 1.0 and 0 ≤ S ≤ 1.0. Various tones
are obtained by adding both black and white to spectral colors, which generates
color points within the triangular cross-sectional area of the hexcone.

The human eye can distinguish about 128 different hues and about 130 differ-
ent tints (saturation levels). For each of these, a number of shades (value settings)
can be detected, depending on the hue selected. About 23 shades are discernible
with yellow colors, and about 16 different shades can be seen at the blue end of
the spectrum. This means that we can distinguish about 128 × 130 × 23 = 382,720
different colors. For most graphics applications, 128 hues, 8 saturation levels, and

Color Models and Color Applications

581

F I G U R E 1 6
Cross section of the HSV hexcone, showing regions
for shades, tints, and tones.

Black

White

Tints

Tones

Shades

Pure Hue
(S � 1, V � 1)

S

V

16 value settings are sufficient. With this range of parameters in the HSV color
model, 16,384 colors are available to a user. These color values can be stored in
14 bits per pixel, or we could use color-lookup tables and fewer bits per pixel.

Transformations Between HSV and RGB Color Spaces
To determine the operations required for the transformations between the HSV
and RGB spaces, we first consider how the HSV hexcone can be constructed from
the RGB cube. The diagonal of the RGB cube from black (the origin) to white
corresponds to the V axis of the hexcone. Also, each subcube of the RGB cube cor-
responds to a hexagonal cross-sectional area of the hexcone. At any cross section,
all sides of the hexagon and all radial lines from the V axis to any vertex have
the value V. Thus, for any set of RGB values, V is equal to the value of the max-
imum RGB component. The HSV point corresponding to this set of RGB values
lies on the hexagonal cross section at value V. Parameter S is then determined as
the relative distance of this point from the V axis. Parameter H is determined by
calculating the relative position of the point within each sextant of the hexagon.
An algorithm for mapping any set of RGB values into the corresponding HSV
values is given in the following procedure:

class rgbSpace {public: float r, g, b;};
class hsvSpace {public: float h, s, v;};

const float noHue = -1.0;
inline float min(float a, float b) {return (a < b)? a : b;}
inline float max(float a, float b) {return (a > b)? a : b;}

void rgbTOhsv (rgbSpace& rgb, hsvSpace& hsv)
{

/* RGB and HSV values are in the range from 0 to 1.0 */
float minRGB = min (r, min (g, b)), maxRGB = max (r, max (g, b));
float deltaRGB = maxRGB - minRGB;

v = maxRGB;
if (maxRGB != 0.0)

s = deltaRGB / maxRGB;
else

s = 0.0;

Color Models and Color Applications

582

if (s <= 0.0)
h = noHue;

else {
if (r == maxRGB)

h = (g - b) / deltaRGB;
else

if (g == maxRGB)
h = 2.0 + (b - r) / deltaRGB;

else
if (b == maxRGB)

h = 4.0 + (r - g) / deltaRGB;
h *= 60.0;
if (h < 0.0)

h += 360.0;
h /= 360.0;

}
}

We obtain the transformation from HSV space to RGB space by determining
the inverse of the operations in the preceding procedure. These inverse operations
are carried out for each sextant of the hexcone, and the resulting transformation
equations are summarized in the following algorithm:

class rgbSpace {public: float r, g, b;};
class hsvSpace {public: float h, s, v;};

void hsvT0rgb (hsvSpace& hsv, rgbSpace& rgb)
{

/* HSV and RGB values are in the range from 0 to 1.0 */
int k
float aa, bb, cc, f;

if (s <= 0.0)
r = g = b = v; // Have gray scale if s = 0.

else {
if (h == 1.0)

h = 0.0;
h *= 6.0;
k = floor (h);
f = h - k;
aa = v * (1.0 - s);
bb = v * (1.0 - (s * f));
cc = v * (1.0 - (s * (1.0 - f)));
switch (k)
{

case 0: r = v; g = cc; b = aa; break;
case 1: r = bb; g = v; b = aa; break;
case 2: r = aa; g = v; b = cc; break;
case 3: r = aa; g = bb; b = v; break;
case 4: r = cc; g = aa; b = v; break;
case 5: r = v; g = aa; b = bb; break;

}
}

}

Color Models and Color Applications

583

8 The HLS Color Model
Another model based on intuitive color parameters is the HLS system used by
the Tektronix Corporation. This color space has the double-cone representation
shown in Figure 17. The three parameters in this color model are called hue
(H), lightness (L), and saturation (S).

Hue has the same meaning as in the HSV model. It specifies an angle about
the vertical axis that locates a hue (spectral color). In this model, H = 0◦ corre-
sponds to blue. The remaining colors are specified around the perimeter of the
cone in the same order as in the HSV model. Magenta is located at H = 60◦, red is
at H = 120◦, and cyan is at H = 300◦. Again, complementary colors are 180◦ apart
on the double cone.

The vertical axis in this model is called lightness, L . At L = 0, we have black,
and at L = 1.0, we have white. Grayscale values are along the L axis, and the
pure colors lie on the L = 0.5 plane.

Saturation parameter S again specifies the purity of a color. This parameter
varies from 0 to 1.0, and pure colors are those for which S = 1.0 and L = 0.5. As
S decreases, more white is added to a color. The grayscale line is at S = 0.

To specify a color, we begin by selecting hue angle H. Then a particular shade,
tint, or tone for that hue is obtained by adjusting parameters L and S. We obtain a
lighter color by increasing L , and we obtain a darker color by decreasing L . When
S is decreased, the spatial color point moves toward the grayscale line.

F I G U R E 1 7
The HLS double cone.

L (Lightness)

H (Hue Angle)

S (Saturation)
L � 0

(Black)

Gray
Scale

L � 1
(White)

L � 0.5

Red Magenta

CyanGreen

Yellow Blue

Color Models and Color Applications

584

9 Color Selection and Applications
A graphics package can provide color capabilities in a way that aids us in making
color selections. For example, an interface can contain sliders and color wheels
instead of requiring that all color specifications be provided as numerical values
for the RGB components. In addition, some aids can be provided for choosing
harmonious color combinations and for basic color selection guidelines.

One method for obtaining a set of coordinating colors is to generate the color
combinations from a small subspace of a color model. If colors are selected at reg-
ular intervals along any straight line within the RGB or CMY cube, for example,
we can expect to obtain a set of well-matched colors. Randomly selected hues can
be expected to produce harsh and clashing color combinations. Another consid-
eration in color displays is the fact that we perceive colors at different depths.
This occurs because our eyes focus on colors according to their frequency. Blues,
in particular, tend to recede. Displaying a blue pattern next to a red pattern can
cause eye fatigue, because we continually need to refocus when our attention is
switched from one area to the other. This problem can be reduced by separating
these colors or by using colors from one-half or less of the color hexagon in the
HSV model. With this technique, a display contains either blues and greens or
reds and yellows.

As a general rule, the use of a smaller number of colors produces a better-
looking display than one with a large number of colors. Also, tints and shades
tend to blend better than the pure hues. For a background, gray or the complement
of one of the foreground colors is usually best.

10 Summary
Light can be described as electromagnetic radiation with a certain energy distri-
bution propagating through space, and the color components of light correspond
to frequencies within a narrow band of the electromagnetic spectrum. However,
light exhibits other properties, and we characterize the different aspects of light
using a variety of parameters. With the light theories for wave-particle duality, we
can explain the physical features of visible radiation. And we quantify our percep-
tions of a light source using terms such as dominant frequency (hue), luminance
(brightness), and purity (saturation). Hue and purity are referred to collectively
as the chromaticity properties of a color.

We also use color models to explain the effects of combining light sources.
One method for defining a color model is to specify a set of two or more primary
colors that are combined to produce various other colors. However, no finite set
of primary colors is capable of producing all colors or describing all features of
color. The set of colors that can be generated by a set of primaries is called a color
gamut. Two colors that combine to produce white light are called complementary
colors.

In 1931, the International Commission on Illumination (CIE) adopted a set
of three hypothetical color-matching functions as a standard. This set of colors is
referred to as the XYZ model, where X, Y, and Z represent the amounts of each color
needed to match any color in the electromagnetic spectrum. The color-matching
functions are structured so that all functions are positive and the Y amount for
any color represents the luminance value. Normalized X and Y values, called x
and y, are used to plot positions for all spectral colors on the CIE chromaticity dia-
gram. We can use the chromaticity diagram to compare color gamuts for different

Color Models and Color Applications

585

color models, to identify complementary colors, and to determinant dominant
frequency and purity for a specified color.

Other color models based on a set of three primaries are the RGB, YIQ, and
CMY models. We use the RGB model to describe colors that are displayed on
a video monitor. The YIQ model is used to describe the composite video signal
for television broadcasting. And the CMY model is used to describe color on
hard-copy devices.

User interfaces often provide intuitive color models, such as the HSV and
HLS models, for selecting color values. With these models, we specify a color as a
mixture of a selected hue and certain amounts of white and black. Adding black
produces color shades, adding white produces tints, and adding both black and
white produces tones.

Color selection is an important factor in the design of effective displays. To
avoid clashing color combinations, we can choose adjacent colors in a display that
do not differ greatly in dominant frequency. Also, we can select color combinations
from a small subspace of a color model. As a general rule, a small number of color
combinations formed with tints and shades, rather than pure hues, results in a
more harmonious color display.

REFERENCES
A comprehensive discussion of the science of color is
given in Wyszecki and Stiles (1982). Color models and
color display techniques are treated in Smith (1978),
Heckbert (1982), Durrett (1987), Schwartz, Cowan, and
Beatty (1987), Hall (1989), and Travis (1991).

Algorithms for various color applications are pre-
sented in Glassner (1990), Arvo (1991), Kirk (1992),
Heckbert (1994), and Paeth (1995). For additional infor-
mation on the human visual system and our perception
of light and color, see Glassner (1995).

EXERCISES
1 Derive the expressions for converting RGB color

parameters to HSV values.
2 Derive the expressions for converting HSV color

values to RGB values.
3 Design an interactive procedure that allows

selection of HSV color parameters from a dis-
played menu; then, the HSV values are to be
converted to RGB values for storage in a frame
buffer.

4 Write a program to select colors using a set of
three sliders to select values for the HSV color
parameters.

5 Modify the program in the preceding exercise to
display the numeric values for the RGB compo-
nents of a selected color.

6 Modify the program in the preceding exercise to
display the RGB color components and the com-
bined color in small display windows.

7 Derive expressions for converting RGB color val-
ues to HLS color parameters.

8 Derive expressions for converting HLS color val-
ues to RGB values.

9 Design an interactive procedure that allows
selection of HLS color parameters from a dis-
played menu; then, the HLS values are to be
converted to RGB values for storage in a frame
buffer.

10 Write a program that will produce a set of col-
ors that are linearly interpolated between any two
specified positions in RGB space.

11 Write an interactive routine for selecting color
values from within a specified subspace of RGB
space.

12 Write a program that will produce a set of col-
ors that are linearly interpolated between any two
specified positions in HSV space.

13 Write an interactive routine for selecting color
values from within a specified subspace of HSV
space.

14 Write a program that will produce a set of col-
ors that are linearly interpolated between any two
specified positions in HLS space.

15 Write an interactive routine for selecting color
values from within a specified subspace of HLS
space.

16 Write a program to display two adjacent RGB
color rectangles. Fill one rectangle with a set
of randomly selected RGB color points, and fill

Color Models and Color Applications

586

the other rectangle with a set of color points
that are selected from a small RGB subspace.
Experiment with different random selections and
different subspaces to compare the two color
patterns.

17 Display the two color rectangles in the preced-
ing exercise using color selections from either the
HSV or the HLS color space.

18 Write a program that will produce a randomly
selected color from within a color gamut speci-
fied by three positions in RGB space.

19 Write a program that will produce a randomly
selected color from within a color gamut speci-
fied by three positions in HSV space.

20 Write a program that will produce a randomly
selected color from within a color gamut speci-
fied by three positions in HLS space.

IN MORE DEPTH
1 Write a routine that takes in a pixel position of a

scene in your application and a color space iden-
tifier and returns a vector representing the color
value of that pixel in the selected color space.
The routine should produce correct output for the
RGB, CMY, HSV, and HLS color spaces.

2 Use the routine developed in the previous exer-
cise to write another routine that outputs to a file
a bitmap of a scene in your application in a speci-
fied color space (either RGB, CMY, HSV, or HLS).
That is, the routine should take in a color space
identifier, call the routine in the previous exercise
on each pixel to obtain the color of that pixel in
the specified color space, and write the color value
vector of each pixel out to a file. Each color value
vector should appear on a separate line, and pix-
els should be processed in row-major order.

Color Models and Color Applications

587

This page intentionally left blank

C o l o r P l a t e 2 2
Two views of the RGB color cube. View
(a) is along the gray-scale diagonal
from white to black, and view (b) is
along the gray-scale diagonal from
black to white. (a) (b)

Color Models and Color Applications Color Plates

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

589

This page intentionally left blank

