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17 Summary
A general software package for graphics applications, some-

times referred to as a computer-graphics application pro-

gramming interface (CG API), provides a library of functions

that we can use within a programming language such as C++ to cre-
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ate pictures. The set of library functions can be subdivided into several

categories. One of the first things we need to do when creating a pic-

ture is to describe the component parts of the scene to be displayed.

Picture components could be trees and terrain, furniture and walls,

storefronts and street scenes, automobiles and billboards, atoms and

molecules, or stars and galaxies. For each type of scene, we need to

describe the structure of the individual objects and their coordinate loca-

tions within the scene. Those functions in a graphics package that we

use to describe the various picture components are called the graphics
output primitives, or simply primitives. The output primitives describ-

ing the geometry of objects are typically referred to as geometric 

primitives. Point positions and straight-line segments are the simplest
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geometric primitives. Additional geometric primitives that can be available in a graphics

package include circles and other conic sections, quadric surfaces, spline curves and sur-

faces, and polygon color areas. Also, most graphics systems provide some functions for

displaying character strings. After the geometry of a picture has been specified within

a selected coordinate reference frame, the output primitives are projected to a two-

dimensional plane, corresponding to the display area of an output device, and scan con-

verted into integer pixel positions within the frame buffer.

In this chapter, we introduce the output primitives available in OpenGL, and discuss

their use.

1 Coordinate Reference Frames
To describe a picture, we first decide upon a convenient Cartesian coordinate
system, called the world-coordinate reference frame, which could be either two-
dimensional or three-dimensional. We then describe the objects in our picture by
giving their geometric specifications in terms of positions in world coordinates.
For instance, we define a straight-line segment with two endpoint positions, and
a polygon is specified with a set of positions for its vertices. These coordinate
positions are stored in the scene description along with other information about
the objects, such as their color and their coordinate extents, which are the mini-
mum and maximum x, y, and z values for each object. A set of coordinate extents
is also described as a bounding box for an object. For a two-dimensional fig-
ure, the coordinate extents are sometimes called an object’s bounding rectangle.
Objects are then displayed by passing the scene information to the viewing rou-
tines, which identify visible surfaces and ultimately map the objects to positions
on the video monitor. The scan-conversion process stores information about the
scene, such as color values, at the appropriate locations in the frame buffer, and
the objects in the scene are displayed on the output device.
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F I G U R E 1
Pixel positions referenced with respect
to the lower-left corner of a screen
area.

Screen Coordinates
Locations on a video monitor are referenced in integer screen coordinates, which
correspond to the pixel positions in the frame buffer. Pixel coordinate values give
the scan line number (the y value) and the column number (the x value along a
scan line). Hardware processes, such as screen refreshing, typically address pixel
positions with respect to the top-left corner of the screen. Scan lines are then
referenced from 0, at the top of the screen, to some integer value, ymax, at the
bottom of the screen, and pixel positions along each scan line are numbered from
0 to xmax, left to right. However, with software commands, we can set up any
convenient reference frame for screen positions. For example, we could specify
an integer range for screen positions with the coordinate origin at the lower-left
of a screen area (Figure 1), or we could use noninteger Cartesian values for a
picture description. The coordinate values we use to describe the geometry of a
scene are then converted by the viewing routines to integer pixel positions within
the frame buffer.

Scan-line algorithms for the graphics primitives use the defining coordinate
descriptions to determine the locations of pixels that are to be displayed. For
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example, given the endpoint coordinates for a line segment, a display algorithm
must calculate the positions for those pixels that lie along the line path between
the endpoints. Since a pixel position occupies a finite area of the screen, the
finite size of a pixel must be taken into account by the implementation algo-
rithms. For the present, we assume that each integer screen position references
the center of a pixel area.

Once pixel positions have been identified for an object, the appropriate color
values must be stored in the frame buffer. For this purpose, we will assume that
we have available a low-level procedure of the form

setPixel (x, y);

This procedure stores the current color setting into the frame buffer at integer
position (x, y), relative to the selected position of the screen-coordinate origin. We
sometimes also will want to be able to retrieve the current frame-buffer setting for
a pixel location. So we will assume that we have the following low-level function
for obtaining a frame-buffer color value:

getPixel (x, y, color);

In this function, parameter color receives an integer value corresponding to the
combined red, green, and blue (RGB) bit codes stored for the specified pixel at
position (x, y).

Although we need only specify color values at (x, y) positions for a two-
dimensional picture, additional screen-coordinate information is needed for
three-dimensional scenes. In this case, screen coordinates are stored as three-
dimensional values, where the third dimension references the depth of object
positions relative to a viewing position. For a two-dimensional scene, all depth
values are 0.

Absolute and Relative Coordinate Specifications
So far, the coordinate references that we have discussed are stated as absolute
coordinate values. This means that the values specified are the actual positions
within the coordinate system in use.

However, some graphics packages also allow positions to be specified
using relative coordinates. This method is useful for various graphics applica-
tions, such as producing drawings with pen plotters, artist’s drawing and painting
systems, and graphics packages for publishing and printing applications. Taking
this approach, we can specify a coordinate position as an offset from the last
position that was referenced (called the current position). For example, if loca-
tion (3, 8) is the last position that has been referenced in an application program,
a relative coordinate specification of (2, −1) corresponds to an absolute position
of (5, 7). An additional function is then used to set a current position before any
coordinates for primitive functions are specified. To describe an object, such as a
series of connected line segments, we then need to give only a sequence of relative
coordinates (offsets), once a starting position has been established. Options can be
provided in a graphics system to allow the specification of locations using either
relative or absolute coordinates. In the following discussions, we will assume
that all coordinates are specified as absolute references unless explicitly stated
otherwise.
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2 Specifying A Two-Dimensional
World-Coordinate Reference Frame
in OpenGL

glMatrixMode (GL_PROJECTION);
glLoadIdentity ( );
gluOrtho2D (xmin, xmax, ymin, ymax);

The display window will then be referenced by coordinates (xmin, ymin) at the
lower-left corner and by coordinates (xmax, ymax) at the upper-right corner, as
shown in Figure 2.

We can then designate one or more graphics primitives for display using the
coordinate reference specified in the gluOrtho2D statement. If the coordinate
extents of a primitive are within the coordinate range of the display window, all
of the primitive will be displayed. Otherwise, only those parts of the primitive
within the display-window coordinate limits will be shown. Also, when we set up
the geometry describing a picture, all positions for the OpenGL primitives must
be given in absolute coordinates, with respect to the reference frame defined in
the gluOrtho2D function.

F I G U R E 2
World-coordinate limits for a display
window, as specified in the
glOrtho2D function.
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The gluOrtho2D command is a function we can use to set up any two-
dimensional Cartesian reference frame. The arguments for this function are the
four values defining the x and y coordinate limits for the picture we want to dis-
play. Since the gluOrtho2D function specifies an orthogonal projection, we
need also to be sure that the coordinate values are placed in the OpenGL projec-
tion matrix. In addition, we could assign the identity matrix as the projection
matrix before defining the world-coordinate range. This would ensure that the
coordinate values were not accumulated with any values we may have previously
set for the projection matrix. Thus, for our initial two-dimensional examples, we
can define the coordinate frame for the screen display window with the follow-
ing statements:
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3 OpenGL Point Functions
To specify the geometry of a point, we simply give a coordinate position in the
world reference frame. Then this coordinate position, along with other geometric
descriptions we may have in our scene, is passed to the viewing routines. Unless
we specify other attribute values, OpenGL primitives are displayed with a default
size and color. The default color for primitives is white, and the default point size
is equal to the size of a single screen pixel.

We use the following OpenGL function to state the coordinate values for a
single position:

glVertex* ( );

where the asterisk (*) indicates that suffix codes are required for this function.
These suffix codes are used to identify the spatial dimension, the numerical data
type to be used for the coordinate values, and a possible vector form for the
coordinate specification. Calls to glVertex functions must be placed between a
glBegin function and a glEnd function. The argument of the glBegin function
is used to identify the kind of output primitive that is to be displayed, and glEnd
takes no arguments. For point plotting, the argument of the glBegin function is
the symbolic constant GL POINTS. Thus, the form for an OpenGL specification
of a point position is

glBegin (GL_POINTS);
glVertex* ( );

glEnd ( );

Although the term vertex strictly refers to a “corner” point of a polygon, the
point of intersection of the sides of an angle, a point of intersection of an
ellipse with its major axis, or other similar coordinate positions on geometric
structures, the glVertex function is used in OpenGL to specify coordinates for
any point position. In this way, a single function is used for point, line, and poly-
gon specifications—and, most often, polygon patches are used to describe the
objects in a scene.

Coordinate positions in OpenGL can be given in two, three, or four dimen-
sions. We use a suffix value of 2, 3, or 4 on the glVertex function to indi-
cate the dimensionality of a coordinate position. A four-dimensional specifica-
tion indicates a homogeneous-coordinate representation, where the homogeneous
parameter h (the fourth coordinate) is a scaling factor for the Cartesian-coordinate
values. Homogeneous-coordinate representations are useful for expressing

We also need to state which data type is to be used for the numerical-
value specifications of the coordinates. This is accomplished with a second
suffix code on the glVertex function. Suffix codes for specifying a numeri-
cal data type are i (integer), s (short), f (float), and d (double). Finally, the
coordinate values can be listed explicitly in the glVertex function, or a sin-
gle argument can be used that references a coordinate position as an array. If we
use an array specification for a coordinate position, we need to append v (for
“vector”) as a third suffix code.

Graphics Output Primitives

transformation operations in matrix form. Because OpenGL treats two-dimen-
sions as a special case of three dimensions, any (x, y) coordinate specification is
equivalent to a three-dimensional specification of (x, y, 0). Furthermore, OpenGL
represents vertices internally in four dimensions, so each of these specifications
are equivalent to the four-dimensional specification (x, y, 0, 1).
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F I G U R E 3
Display of three point positions generated with
glBegin (GL POINTS). x
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In the following example, three equally spaced points are plotted along a two-
dimensional, straight-line path with a slope of 2 (see Figure 3). Coordinates are
given as integer pairs:

glBegin (GL_POINTS);
glVertex2i (50, 100);
glVertex2i (75, 150);
glVertex2i (100, 200);

glEnd ( );

Alternatively, we could specify the coordinate values for the preceding points in
arrays such as

int point1 [ ] = {50, 100};
int point2 [ ] = {75, 150};
int point3 [ ] = {100, 200};

and call the OpenGL functions for plotting the three points as

glBegin (GL_POINTS);
glVertex2iv (point1);
glVertex2iv (point2);
glVertex2iv (point3);

glEnd ( );

In addition, here is an example of specifying two point positions in a three-
dimensional world reference frame. In this case, we give the coordinates as
explicit floating-point values:

glBegin (GL_POINTS);
glVertex3f (-78.05, 909.72, 14.60);
glVertex3f (261.91, -5200.67, 188.33);

glEnd ( );

We could also define a C++ class or structure (struct) for specifying point
positions in various dimensions. For example,

class wcPt2D {
public:

GLfloat x, y;
};

Graphics Output Primitives
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Using this class definition, we could specify a two-dimensional, world-coordinate
point position with the statements

wcPt2D pointPos;

pointPos.x = 120.75;
pointPos.y = 45.30;
glBegin (GL_POINTS);

glVertex2f (pointPos.x, pointPos.y);
glEnd ( );

Also, we can use the OpenGL point-plotting functions within a C++ procedure
to implement the setPixel command.

4 OpenGL Line Functions
Graphics packages typically provide a function for specifying one or more
straight-line segments, where each line segment is defined by two endpoint
coordinate positions. In OpenGL, we select a single endpoint coordinate position
using the glVertex function, just as we did for a point position. And we enclose
a list of glVertex functions between the glBegin/glEnd pair. But now we use
a symbolic constant as the argument for the glBegin function that interprets a
list of positions as the endpoint coordinates for line segments. There are three
symbolic constants in OpenGL that we can use to specify how a list of endpoint
positions should be connected to form a set of straight-line segments. By default,
each symbolic constant displays solid, white lines.

A set of straight-line segments between each successive pair of endpoints in a
list is generated using the primitive line constant GL LINES. In general, this will
result in a set of unconnected lines unless some coordinate positions are repeated,
because OpenGL considers lines to be connected only if they share a vertex; lines
that cross but do not share a vertex are still considered to be unconnected. Nothing
is displayed if only one endpoint is specified, and the last endpoint is not processed
if the number of endpoints listed is odd. For example, if we have five coordinate
positions, labeled p1 through p5, and each is represented as a two-dimensional
array, then the following code could generate the display shown in Figure 4(a):

glBegin (GL_LINES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ( );

Thus, we obtain one line segment between the first and second coordinate
positions and another line segment between the third and fourth positions. In
this case, the number of specified endpoints is odd, so the last coordinate position
is ignored.

With the OpenGL primitive constantGL LINE STRIP, we obtain a polyline.
In this case, the display is a sequence of connected line segments between the first
endpoint in the list and the last endpoint. The first line segment in the polyline is
displayed between the first endpoint and the second endpoint; the second line
segment is between the second and third endpoints; and so forth, up to the last line
endpoint. Nothing is displayed if we do not list at least two coordinate positions.

Graphics Output Primitives
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F I G U R E 4
Line segments that can be displayed in OpenGL using a list of five endpoint coordinates. (a) An unconnected set of
lines generated with the primitive line constant GL LINES. (b) A polyline generated with
GL LINE STRIP. (c) A closed polyline generated with GL LINE LOOP.

Using the same five coordinate positions as in the previous example, we obtain
the display in Figure 4(b) with the code

glBegin (GL_LINE_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ( );

The third OpenGL line primitive isGL LINE LOOP, which produces a closed
polyline. Lines are drawn as with GL LINE STRIP, but an additional line is
drawn to connect the last coordinate position and the first coordinate position.
Figure 4(c) shows the display of our endpoint list when we select this line option,
using the code

glBegin (GL_LINE_LOOP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ( );

As noted earlier, picture components are described in a world-coordinate
reference frame that is eventually mapped to the coordinate reference for the
output device. Then the geometric information about the picture is scan-converted
to pixel positions.

5 OpenGL Curve Functions
Routines for generating basic curves, such as circles and ellipses, are not in-
cluded as primitive functions in the OpenGL core library. But this library does
contain functions for displaying Bézier splines, which are polynomials that are
defined with a discrete point set. And the OpenGL Utility (GLU) library has rou-
tines for three-dimensional quadrics, such as spheres and cylinders, as well as

Graphics Output Primitives

52



(a) (b)

(c)

F I G U R E 5
A circular arc approximated with
(a) three straight-line segments,
(b) six line segments, and
(c) twelve line segments.

routines for producing rational B-splines, which are a general class of splines
that include the simpler Bézier curves. Using rational B-splines, we can display
circles, ellipses, and other two-dimensional quadrics. In addition, there are rou-
tines in the OpenGL Utility Toolkit (GLUT) that we can use to display some
three-dimensional quadrics, such as spheres and cones, and some other shapes.
However, all these routines are more involved than the basic primitives we in-
troduce in this chapter.

Another method we can use to generate a display of a simple curve is to
approximate it using a polyline. We just need to locate a set of points along the
curve path and connect the points with straight-line segments. The more line
sections we include in the polyline, the smoother the appearance of the curve. As
an example, Figure 5 illustrates various polyline displays that could be used for
a circle segment.

A third alternative is to write our own curve-generation functions based on the
algorithms presented in following chapters.

6 Fill-Area Primitives
Another useful construct, besides points, straight-line segments, and curves, for
describing components of a picture is an area that is filled with some solid color or
pattern. A picture component of this type is typically referred to as a fill area or a
filled area. Most often, fill areas are used to describe surfaces of solid objects, but
they are also useful in a variety of other applications. Also, fill regions are usually
planar surfaces, mainly polygons. But, in general, there are many possible shapes
for a region in a picture that we might wish to fill with a color option. Figure 6
illustrates a few possible fill-area shapes. For the present, we assume that all
fill areas are to be displayed with a specified solid color.

Although any fill-area shape is possible, graphics libraries generally do not
support specifications for arbitrary fill shapes. Most library routines require that
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F I G U R E 6
Solid-color fill areas specified with
various boundaries. (a) A circular fill
region. (b) A fill area bounded by a
closed polyline. (c) A filled area
specified with an irregular curved
boundary. (a) (c)(b)

a fill area be specified as a polygon. Graphics routines can more efficiently pro-
cess polygons than other kinds of fill shapes because polygon boundaries are
described with linear equations. Moreover, most curved surfaces can be approx-
imated reasonably well with a set of polygon patches, just as a curved line can
be approximated with a set of straight-line segments. In addition, when light-
ing effects and surface-shading procedures are applied, an approximated curved
surface can be displayed quite realistically. Approximating a curved surface with
polygon facets is sometimes referred to as surface tessellation, or fitting the sur-
face with a polygon mesh. Figure 7 shows the side and top surfaces of a metal
cylinder approximated in an outline form as a polygon mesh. Displays of such
figures can be generated quickly as wire-frame views, showing only the polygon
edges to give a general indication of the surface structure. Then the wire-frame
model could be shaded to generate a display of a natural-looking material surface.
Objects described with a set of polygon surface patches are usually referred to as
standard graphics objects, or just graphics objects.

F I G U R E 7
Wire-frame representation for a
cylinder, showing only the front
(visible) faces of the polygon mesh
used to approximate the surfaces.

In general, we can create fill areas with any boundary specification, such as a
circle or connected set of spline-curve sections. And some of the polygon methods
discussed in the next section can be adapted to display fill areas with a nonlinear
border.

7 Polygon Fill Areas
Mathematically defined, a polygon is a plane figure specified by a set of three
or more coordinate positions, called vertices, that are connected in sequence by
straight-line segments, called the edges or sides of the polygon. Further, in basic
geometry, it is required that the polygon edges have no common point other than
their endpoints. Thus, by definition, a polygon must have all its vertices within
a single plane and there can be no edge crossings. Examples of polygons include
triangles, rectangles, octagons, and decagons. Sometimes, any plane figure with
a closed-polyline boundary is alluded to as a polygon, and one with no crossing
edges is referred to as a standard polygon or a simple polygon. In an effort to avoid
ambiguous object references, we will use the term polygon to refer only to those
planar shapes that have a closed-polyline boundary and no edge crossings.

For a computer-graphics application, it is possible that a designated set of
polygon vertices do not all lie exactly in one plane. This can be due to round-
off error in the calculation of numerical values, to errors in selecting coordinate
positions for the vertices, or, more typically, to approximating a curved surface
with a set of polygonal patches. One way to rectify this problem is simply to divide
the specified surface mesh into triangles. But in some cases, there may be reasons

Graphics Output Primitives

54



F I G U R E 9
Identifying a concave polygon by
calculating cross-products of
successive pairs of edge vectors.
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Another way to identify a concave polygon is to look at the polygon vertex
positions relative to the extension line of any edge. If some vertices are on one
side of the extension line and some vertices are on the other side, the polygon is
concave.

Splitting Concave Polygons
Once we have identified a concave polygon, we can split it into a set of convex
polygons. This can be accomplished using edge vectors and edge cross-products;
or, we can use vertex positions relative to an edge extension line to determine
which vertices are on one side of this line and which are on the other. For the
following algorithms, we assume that all polygons are in the xy plane. Of course,
the original position of a polygon described in world coordinates may not be in
the xy plane, but we can always move it into that plan
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0 1 2 3
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F I G U R E 1 0
Splitting a concave polygon using the
vector method.

With the vector method for splitting a concave polygon, we first need to form
the edge vectors. Given two consecutive vertex positions, Vk and Vk+1, we define
the edge vector between them as

Ek = Vk+1 − Vk

Next we calculate the cross-products of successive edge vectors in order around
the polygon perimeter. If the z component of some cross-products is positive
while other cross-products have a negative z component, the polygon is concave.
Otherwise, the polygon is convex. This assumes that no series of three successive
vertices are collinear, in which case the cross-product of the two edge vectors for
these vertices would be zero. If all vertices are collinear, we have a degenerate
polygon (a straight line). We can apply the vector method by processing edge vec-
tors in counterclockwise order. If any cross-product has a negative z component
(as in Figure 9), the polygon is concave and we can split it along the line of the
first edge vector in the cross-product pair. The following example illustrates this
method for splitting a concave polygon.

E X A M P L E 1 The Vector Method for Splitting Concave Polygons

Figure 10 shows a concave polygon with six edges. Edge vectors for this
polygon can be expressed as

E1 = (1, 0, 0) E2 = (1, 1, 0)

E3 = (1, −1, 0) E4 = (0, 2, 0)

E5 = (−3, 0, 0) E6 = (0, −2, 0)
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(a) (b)

F I G U R E 8
A convex polygon (a), and a concave
polygon (b).

to retain the original shape of the mesh patches, so methods have been devised
for approximating a nonplanar polygonal shape with a plane figure. We discuss
how these plane approximations are calculated in the section on plane equations.

Polygon Classifications
An interior angle of a polygon is an angle inside the polygon boundary that is
formed by two adjacent edges. If all interior angles of a polygon are less than
or equal to 180◦, the polygon is convex. An equivalent definition of a convex
polygon is that its interior lies completely on one side of the infinite extension
line of any one of its edges. Also, if we select any two points in the interior of a
convex polygon, the line segment joining the two points is also in the interior. A
polygon that is not convex is called a concave polygon. Figure 8 gives examples
of convex and concave polygons.

The term degenerate polygon is often used to describe a set of vertices that
are collinear or that have repeated coordinate positions. Collinear vertices gener-
ate a line segment. Repeated vertex positions can generate a polygon shape with
extraneous lines, overlapping edges, or edges that have a length equal to 0. Some-
times the term degenerate polygon is also applied to a vertex list that contains
fewer than three coordinate positions.

To be robust, a graphics package could reject degenerate or nonplanar vertex
sets. But this requires extra processing to identify these problems, so graphics
systems usually leave such considerations to the programmer.

Concave polygons also present problems. Implementations of fill algorithms
and other graphics routines are more complicated for concave polygons, so it is
generally more efficient to split a concave polygon into a set of convex polygons
before processing. As with other polygon preprocessing algorithms, concave poly-
gon splitting is often not included in a graphics library. Some graphics packages,
including OpenGL, require all fill polygons to be convex. And some systems
accept only triangular fill areas, which greatly simplifies many of the display
algorithms.

Identifying Concave Polygons
A concave polygon has at least one interior angle greater than 180◦. Also, the
extension of some edges of a concave polygon will intersect other edges, and some
pair of interior points will produce a line segment that intersects the polygon
boundary. Therefore, we can use any one of these characteristics of a concave
polygon as a basis for constructing an identification algorithm.

If we set up a vector for each polygon edge, then we can use the cross-product
of adjacent edges to test for concavity. All such vector products will be of the same
sign (positive or negative) for a convex polygon. Therefore, if some cross-products
yield a positive value and some a negative value, we have a concave polygon. Fig-
ure 9 illustrates the edge-vector, cross-product method for identifying concave
polygons.
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where the z component is 0, since all edges are in the xy plane. The cross-
product E j × Ek for two successive edge vectors is a vector perpendicular to
the xy plane with z component equal to E jx Eky − Ekx E jy:

E1 × E2 = (0, 0, 1) E2 × E3 = (0, 0, −2)

E3 × E4 = (0, 0, 2) E4 × E5 = (0, 0, 6)

E5 × E6 = (0, 0, 6) E6 × E1 = (0, 0, 2)

Since the cross-product E2 × E3 has a negative z component, we split the
polygon along the line of vector E2. The line equation for this edge has a
slope of 1 and a y intercept of −1. We then determine the intersection of this
line with the other polygon edges to split the polygon into two pieces. No
other edge cross-products are negative, so the two new polygons are both
convex. y

x

V1

V2 V3

V4

F I G U R E 1 1
Splitting a concave polygon using the
rotational method. After moving V2 to
the coordinate origin and rotating V3
onto the x axis, we find that V4 is
below the x axis. So we split the
polygon along the line of V2V3, which
is the x axis.

We can also split a concave polygon using a rotational method. Proceeding
counterclockwise around the polygon edges, we shift the position of the polygon
so that each vertex Vk in turn is at the coordinate origin. Then, we rotate the
polygon about the origin in a clockwise direction so that the next vertex Vk+1 is
on the x axis. If the following vertex, Vk+2, is below the x axis, the polygon is
concave. We then split the polygon along the x axis to form two new polygons,
and we repeat the concave test for each of the two new polygons. These steps are

Splitting a Convex Polygon into a Set of Triangles
Once we have a vertex list for a convex polygon, we could transform it into a
set of triangles. This can be accomplished by first defining any sequence of three
consecutive vertices to be a new polygon (a triangle). The middle triangle vertex
is then deleted from the original vertex list. Then the same procedure is applied to
this modified vertex list to strip off another triangle. We continue forming triangles
in this manner until the original polygon is reduced to just three vertices, which
define the last triangle in the set. A concave polygon can also be divided into
a set of triangles using this approach, although care must be taken that the new
diagonal edge formed by joining the first and third selected vertices does not cross
the concave portion of the polygon, and that the three selected vertices at each
step form an interior angle that is less than 180◦ (a “convex” angle).

Inside-Outside Tests
Various graphics processes often need to identify interior regions of objects. Iden-
tifying the interior of a simple object, such as a convex polygon, a circle, or
a sphere, is generally a straightforward process. But sometimes we must deal
with more complex objects. For example, we may want to specify a complex fill
region with intersecting edges, as in Figure 12. For such shapes, it is not always
clear which regions of the xy plane we should call “interior” and which regions
we should designate as “exterior” to the object boundaries. Two commonly used
algorithms for identifying interior areas of a plane figure are the odd-even rule
and the nonzero winding-number rule.

We apply the odd-even rule, also called the odd-parity rule or the even-odd
rule, by first conceptually drawing a line from any position P to a distant point
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repeated until we have tested all vertices in the polygon list. Figure 11 illustrates
the rotational method for splitting a concave polygon.
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F I G U R E 1 2
Identifying interior and exterior regions
of a closed polyline that contains
self-intersecting segments.

Odd-Even Rule

(a)

Nonzero Winding-Number Rule

(b)

A

D

E

B

F

C

exterior

interior

G

A

D

E

B

F

C

exterior

interior

G

outside the coordinate extents of the closed polyline. Then we count the number of
line-segment crossings along this line. If the number of segments crossed by this
line is odd, then P is considered to be an interior point. Otherwise, P is an exterior
point. To obtain an accurate count of the segment crossings, we must be sure
that the line path we choose does not intersect any line-segment endpoints. Fig-
ure 12(a) shows the interior and exterior regions obtained using the odd-even
rule for a self-intersecting closed polyline. We can use this procedure, for example,
to fill the interior region between two concentric circles or two concentric polygons
with a specified color.

Another method for defining interior regions is the nonzero winding-number
rule, which counts the number of times that the boundary of an object “winds”
around a particular point in the counterclockwise direction. This count is called
the winding number, and the interior points of a two-dimensional object can be
defined to be those that have a nonzero value for the winding number. We apply
the nonzero winding number rule by initializing the winding number to 0 and
again imagining a line drawn from any position P to a distant point beyond the
coordinate extents of the object. The line we choose must not pass through any
endpoint coordinates. As we move along the line from position P to the distant
point, we count the number of object line segments that cross the reference line
in each direction. We add 1 to the winding number every time we intersect a
segment that crosses the line in the direction from right to left, and we subtract 1
every time we intersect a segment that crosses from left to right. The final value of
the winding number, after all boundary crossings have been counted, determines
the relative position of P. If the winding number is nonzero, P is considered to
be an interior point. Otherwise, P is taken to be an exterior point. Figure 12(b)
shows the interior and exterior regions defined by the nonzero winding-number
rule for a self-intersecting, closed polyline. For simple objects, such as polygons
and circles, the nonzero winding-number rule and the odd-even rule give the
same results. But for more complex shapes, the two methods may yield different
interior and exterior regions, as in the example of Figure 12.

One way to determine directional boundary crossings is to set up vectors
along the object edges (or boundary lines) and along the reference line. Then
we compute the vector cross-product of the vector u, along the line from P to
a distant point, with an object edge vector E for each edge that crosses the line.
Assuming that we have a two-dimensional object in the xy plane, the direction of
each vector cross-product will be either in the +z direction or in the −z direction.
If the z component of a cross-product u × E for a particular crossing is positive,
that segment crosses from right to left and we add 1 to the winding number.
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Otherwise, the segment crosses from left to right and we subtract 1 from the
winding number.

A somewhat simpler way to compute directional boundary crossings is to
use vector dot products instead of cross-products. To do this, we set up a vector
that is perpendicular to vector u and that has a right-to-left direction as we look
along the line from P in the direction of u. If the components of u are denoted
as (ux, uy), then the vector that is perpendicular to u has components (−uy, ux).

The nonzero winding-number rule tends to classify as interior some areas
that the odd-even rule deems to be exterior, and it can be more versatile in some
applications. In general, plane figures can be defined with multiple, disjoint com-
ponents, and the direction specified for each set of disjoint boundaries can be used
to designate the interior and exterior regions. Examples include characters (such
as letters of the alphabet and punctuation symbols), nested polygons, and concen-
tric circles or ellipses. For curved lines, the odd-even rule is applied by calculating
intersections with the curve paths. Similarly, with the nonzero winding-number
rule, we need to calculate tangent vectors to the curves at the crossover intersec-
tion points with the reference line from position P.

Variations of the nonzero winding-number rule can be used to define interior
regions in other ways. For example, we could define a point to be interior if its
winding number is positive or if it is negative; or we could use any other rule to
generate a variety of fill shapes. Sometimes, Boolean operations are used to specify
a fill area as a combination of two regions. One way to implement Boolean opera-
tions is by using a variation of the basic winding-number rule. With this scheme,
we first define a simple, nonintersecting boundary for each of two regions. Then
if we consider the direction for each boundary to be counterclockwise, the union
of two regions would consist of those points whose winding number is positive
(Figure 13). Similarly, the intersection of two regions with counterclockwise
boundaries would contain those points whose winding number is greater than
1, as illustrated in Figure 14. To set up a fill area that is the difference of two
regions (say, A − B), we can enclose region A with a counterclockwise border and
B with a clockwise border. Then the difference region (Figure 15) is the set of all
points whose winding number is positive.

F I G U R E 1 3
A fill area defined as a region that
has a positive value for the winding
number. This fill area is the union
of two regions, each with a
counterclockwise border direction.

F I G U R E 1 4
A fill area defined as a region with a
winding number greater than 1. This
fill area is the intersection of two
regions, each with a counterclockwise
border direction.
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Now, if the dot product of this perpendicular vector and a boundary-line vector
is positive, that crossing is from right to left and we add 1 to the winding number.
Otherwise, the boundary crosses our reference line from left to right, and we sub-
tract 1 from the winding number.
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F I G U R E 1 5
A fill area defined as a region with a positive
value for the winding number. This fill area is
the difference, A − B, of two regions, where
region A has a positive border direction
(counterclockwise) and region B has a
negative border direction (clockwise).

A � B

Region A
Region B

Polygon Tables
Typically, the objects in a scene are described as sets of polygon surface facets.
In fact, graphics packages often provide functions for defining a surface shape
as a mesh of polygon patches. The description for each object includes coordi-
nate information specifying the geometry for the polygon facets and other sur-
face parameters such as color, transparency, and light-reflection properties. As
information for each polygon is input, the data are placed into tables that are to
be used in the subsequent processing, display, and manipulation of the objects in
the scene. These polygon data tables can be organized into two groups: geometric
tables and attribute tables. Geometric data tables contain vertex coordinates and
parameters to identify the spatial orientation of the polygon surfaces. Attribute
information for an object includes parameters specifying the degree of trans-
parency of the object and its surface reflectivity and texture characteristics.

Geometric data for the objects in a scene are arranged conveniently in three
lists: a vertex table, an edge table, and a surface-facet table. Coordinate values for
each vertex in the object are stored in the vertex table. The edge table contains
pointers back into the vertex table to identify the vertices for each polygon edge.
And the surface-facet table contains pointers back into the edge table to iden-
tify the edges for each polygon. This scheme is illustrated in Figure 16 for two

F I G U R E 1 6
Geometric data-table representation
for two adjacent polygon surface
facets, formed with six edges and five
vertices.

V1

V5

V4

V2

V3

E1

E2

E4 E5

E3 E6

S1

S2

VERTEX TABLE

V1:      x1, y1, z1

V2:      x2, y2, z2

V3:      x3, y3, z3

V4:      x4, y4, z4

V5:      x5, y5, z5

E1:      V1, V2

E2:      V2, V3

E3:      V3, V1

E4:      V3, V4

E5:      V4, V5

E6:      V5, V1

S1:      E1, E2, E3

S2:      E3, E4, E5, E6

EDGE TABLE SURFACE-FACET
TABLE
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adjacent polygon facets on an object surface. In addition, individual objects and
their component polygon faces can be assigned object and facet identifiers for
easy reference.

Listing the geometric data in three tables, as in Figure 16, provides a conve-
nient reference to the individual components (vertices, edges, and surface facets)
for each object. Also, the object can be displayed efficiently by using data from
the edge table to identify polygon boundaries. An alternative arrangement is to
use just two tables: a vertex table and a surface-facet table. But this scheme is
less convenient, and some edges could get drawn twice in a wire-frame dis-
play. Another possibility is to use only a surface-facet table, but this dupli-
cates coordinate information, since explicit coordinate values are listed for each
vertex in each polygon facet. Also the relationship between edges and facets
would have to be reconstructed from the vertex listings in the surface-facet
table.

We can add extra information to the data tables of Figure 16 for faster
information extraction. For instance, we could expand the edge table to include
forward pointers into the surface-facet table so that a common edge between
polygons could be identified more rapidly (Figure 17). This is particularly useful
for rendering procedures that must vary surface shading smoothly across the
edges from one polygon to the next. Similarly, the vertex table could be expanded
to reference corresponding edges, for faster information retrieval.

Additional geometric information that is usually stored in the data tables
includes the slope for each edge and the coordinate extents for polygon edges,
polygon facets, and each object in a scene. As vertices are input, we can calculate
edge slopes, and we can scan the coordinate values to identify the minimum and
maximum x, y, and z values for individual lines and polygons. Edge slopes and
bounding-box information are needed in subsequent processing, such as surface
rendering and visible-surface identification algorithms.

E1:      V1, V2, S1
E2:      V2, V3, S1
E3:      V3, V1, S1, S2
E4:      V3, V4, S2
E5:      V4, V5, S2
E6:      V5, V1, S2

F I G U R E 1 7
Edge table for the surfaces of
Figure 16 expanded to include
pointers into the surface-facet table.

Because the geometric data tables may contain extensive listings of vertices
and edges for complex objects and scenes, it is important that the data be checked
for consistency and completeness. When vertex, edge, and polygon definitions
are specified, it is possible, particularly in interactive applications, that certain
input errors could be made that would distort the display of the objects. The
more information included in the data tables, the easier it is to check for errors.
Therefore, error checking is easier when three data tables (vertex, edge, and sur-
face facet) are used, since this scheme provides the most information. Some of
the tests that could be performed by a graphics package are (1) that every vertex
is listed as an endpoint for at least two edges, (2) that every edge is part of at
least one polygon, (3) that every polygon is closed, (4) that each polygon has at
least one shared edge, and (5) that if the edge table contains pointers to polygons,
every edge referenced by a polygon pointer has a reciprocal pointer back to the
polygon.

Plane Equations
To produce a display of a three-dimensional scene, a graphics system processes
the input data through several procedures. These procedures include transfor-
mation of the modeling and world-coordinate descriptions through the viewing
pipeline, identification of visible surfaces, and the application of rendering rou-
tines to the individual surface facets. For some of these processes, information
about the spatial orientation of the surface components of objects is needed. This
information is obtained from the vertex coordinate values and the equations that
describe the polygon surfaces.
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Each polygon in a scene is contained within a plane of infinite extent. The
general equation of a plane is

A x + B y + C z + D = 0 (1)

where (x, y, z) is any point on the plane, and the coefficients A, B, C , and D (called
plane parameters) are constants describing the spatial properties of the plane. We
can obtain the values of A, B, C , and D by solving a set of three plane equa-
tions using the coordinate values for three noncollinear points in the plane. For
this purpose, we can select three successive convex-polygon vertices, (x1, y1, z1),
(x2, y2, z2), and (x3, y3, z3), in a counterclockwise order and solve the following set
of simultaneous linear plane equations for the ratios A/D, B/D, and C/D:

(A/D)xk + (B/D)yk + (C/D)zk = −1, k = 1, 2, 3 (2)

The solution to this set of equations can be obtained in determinant form, using
Cramer’s rule, as

A =
∣
∣
∣
∣
∣
∣

1 y1 z1
1 y2 z2
1 y3 z3

∣
∣
∣
∣
∣
∣

B =
∣
∣
∣
∣
∣
∣

x1 1 z1
x2 1 z2
x3 1 z3

∣
∣
∣
∣
∣
∣

C =
∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

D = −
∣
∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣

(3)

Expanding the determinants, we can write the calculations for the plane coeffi-
cients in the form

A = y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2)

B = z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2)

C = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

D = −x1(y2z3 − y3z2) − x2(y3z1 − y1z3) − x3(y1z2 − y2z1)

(4)

These calculations are valid for any three coordinate positions, including those
for which D = 0. When vertex coordinates and other information are entered into
the polygon data structure, values for A, B, C , and D can be computed for each
polygon facet and stored with the other polygon data.

It is possible that the coordinates defining a polygon facet may not be con-
tained within a single plane. We can solve this problem by dividing the facet into
a set of triangles; or we could find an approximating plane for the vertex list. One
method for obtaining an approximating plane is to divide the vertex list into sub-
sets, where each subset contains three vertices, and calculate plane parameters A,
B, C , D for each subset. The approximating plane parameters are then obtained as
the average value for each of the calculated plane parameters. Another approach
is to project the vertex list onto the coordinate planes. Then we take parameter A
proportional to the area of the polygon projection on the yz plane, parameter B
proportional to the projection area on the xz plane, and parameter C proportional
to the projection area on the xy plane. The projection method is often used in
ray-tracing applications.

Front and Back Polygon Faces
Because we are usually dealing with polygon surfaces that enclose an object
interior, we need to distinguish between the two sides of each surface. The side
of a polygon that faces into the object interior is called the back face, and the vis-
ible, or outward, side is the front face. Identifying the position of points in space
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relative to the front and back faces of a polygon is a basic task in many graphics
algorithms, as, for example, in determining object visibility. Every polygon is con-
tained within an infinite plane that partitions space into two regions. Any point
that is not on the plane and that is visible to the front face of a polygon surface
section is said to be in front of (or outside) the plane, and, thus, outside the object.
And any point that is visible to the back face of the polygon is behind (or inside)
the plane. A point that is behind (inside) all polygon surface planes is inside the
object. We need to keep in mind that this inside/outside classification is relative
to the plane containing the polygon, whereas our previous inside/outside tests
using the winding-number or odd-even rule were in reference to the interior of
some two-dimensional boundary.

Plane equations can be used to identify the position of spatial points relative
to the polygon facets of an object. For any point (x, y, z) not on a plane with
parameters A, B, C , D, we have

A x + B y + C z + D �= 0

Thus, we can identify the point as either behind or in front of a polygon sur-
face contained within that plane according to the sign (negative or positive) of
Ax + By + Cz + D:

if A x + B y + C z + D < 0, the point (x, y, z) is behind the plane
if A x + B y + C z + D > 0, the point (x, y, z) is in front of the plane

These inequality tests are valid in a right-handed Cartesian system, provided
the plane parameters A, B, C , and D were calculated using coordinate positions
selected in a strictly counterclockwise order when viewing the surface along a
front-to-back direction. For example, in Figure 18, any point outside (in front of)
the plane of the shaded polygon satisfies the inequality x −1 > 0, while any point
inside (in back of) the plane has an x-coordinate value less than 1.

x

y

z

1
1

1

F I G U R E 1 8
The shaded polygon surface of the
unit cube has the plane equation
x − 1 = 0.

Orientation of a polygon surface in space can be described with the normal
vector for the plane containing that polygon, as shown in Figure 19. This sur-
face normal vector is perpendicular to the plane and has Cartesian components
(A, B, C), where parameters A, B, and C are the plane coefficients calculated in
Equations 4. The normal vector points in a direction from inside the plane to
the outside; that is, from the back face of the polygon to the front face. x

z

y
N�(A, B, C)

F I G U R E 1 9
The normal vector N for a plane
described with the equation
Ax + B y + C z + D = 0 is
perpendicular to the plane and has
Cartesian components ( A , B , C ) .

As an example of calculating the components of the normal vector for a poly-
gon, which also gives us the plane parameters, we choose three of the vertices
of the shaded face of the unit cube in Figure 18. These points are selected in
a counterclockwise ordering as we view the cube from outside looking toward
the origin. Coordinates for these vertices, in the order selected, are then used in
Equations 4 to obtain the plane coefficients: A = 1, B = 0, C = 0, D = −1. Thus,
the normal vector for this plane is N = (1, 0, 0), which is in the direction of the
positive x axis. That is, the normal vector is pointing from inside the cube to the
outside and is perpendicular to the plane x = 1.

The elements of a normal vector can also be obtained using a vector cross-
product calculation. Assuming we have a convex-polygon surface facet and a
right-handed Cartesian system, we again select any three vertex positions, V1, V2,
and V3, taken in counterclockwise order when viewing from outside the object
toward the inside. Forming two vectors, one from V1 to V2 and the second from
V1 to V3, we calculate N as the vector cross-product:

N = (V2 − V1) × (V3 − V1) (5)

This generates values for the plane parameters A, B, and C . We can then obtain the
value for parameter D by substituting these values and the coordinates for one of
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the polygon vertices into Equation 1 and solving for D. The plane equation can
be expressed in vector form using the normal N and the position P of any point
in the plane as

N ·P = −D (6)

For a convex polygon, we could also obtain the plane parameters using the
cross-product of two successive edge vectors. And with a concave polygon, we
can select the three vertices so that the two vectors for the cross-product form an
angle less than 180◦. Otherwise, we can take the negative of their cross-product
to get the correct normal vector direction for the polygon surface.

8 OpenGL Polygon Fill-Area Functions
With one exception, the OpenGL procedures for specifying fill polygons are sim-
ilar to those for describing a point or a polyline. A glVertex function is used
to input the coordinates for a single polygon vertex, and a complete polygon is
described with a list of vertices placed between a glBegin/glEnd pair. How-
ever, there is one additional function that we can use for displaying a rectangle
that has an entirely different format.

By default, a polygon interior is displayed in a solid color, determined by

In OpenGL, a fill area must be specified as a convex polygon. Thus, a vertex list
for a fill polygon must contain at least three vertices, there can be no crossing edges,
and all interior angles for the polygon must be less than 180◦. And a single polygon
fill area can be defined with only one vertex list, which precludes any specifications
that contain holes in the polygon interior, such as that shown in Figure 20. We
could describe such a figure using two overlapping convex polygons.

Each polygon that we specify has two faces: a back face and a front face.
In OpenGL, fill color and other attributes can be set for each face separately,
and back/front identification is needed in both two-dimensional and three-
dimensional viewing routines. Therefore, polygon vertices should be specified
in a counterclockwise order as we view the polygon from “outside.” This identi-
fies the front face of that polygon.

F I G U R E 2 0
A polygon with a complex interior that cannot be specified with a
single vertex list.
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the current color settings. As options, we can fill a polygon with a pattern and we
can display polygon edges as line borders around the interior fill. There are six
different symbolic constants that we can use as the argument in the glBegin
function to describe polygon fill areas. These six primitive constants allow us to
display a single fill polygon, a set of unconnected fill polygons, or a set of con-
nected fill polygons.
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F I G U R E 2 1
The display of a square fill area using the glRect function.

Because graphics displays often include rectangular fill areas, OpenGL pro-
vides a special rectangle function that directly accepts vertex specifications in the
xy plane. In some implementations of OpenGL, the following routine can be more
efficient than generating a fill rectangle using glVertex specifications:

glRect* (x1, y1, x2, y2);

One corner of this rectangle is at coordinate position (x1, y1), and the opposite
corner of the rectangle is at position (x2, y2). Suffix codes for glRect specify
the coordinate data type and whether coordinates are to be expressed as array
elements. These codes are i (for integer), s (for short), f (for float), d (for dou-
ble), and v (for vector). The rectangle is displayed with edges parallel to the xy
coordinate axes. As an example, the following statement defines the square shown
in Figure 21:

glRecti (200, 100, 50, 250);

If we put the coordinate values for this rectangle into arrays, we can generate the
same square with the following code:

int vertex1 [ ] = {200, 100};
int vertex2 [ ] = {50, 250};

glRectiv (vertex1, vertex2);

When a rectangle is generated with function glRect, the polygon edges are
formed between the vertices in the order (x1, y1), (x2, y1), (x2, y2), (x1, y2), and
then back to (x1, y1). Thus, in our example, we produced a vertex list with a
clockwise ordering. In many two-dimensional applications, the determination
of front and back faces is unimportant. But if we do want to assign different
properties to the front and back faces of the rectangle, then we should reverse the
order of the two vertices in this example so that we obtain a counterclockwise
ordering of the vertices.

Each of the other six OpenGL polygon fill primitives is specified with a sym-
bolic constant in the glBegin function, along with a a list of glVertex com-
mands. With the OpenGL primitive constant GL POLYGON, we can display a
single polygon fill area such as that shown in Figure 22(a). For this example,
we assume that we have a list of six points, labeled p1 through p6, specifying
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p1 p4
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p5p6

(d)

F I G U R E 2 2
Displaying polygon fill areas using a list of six vertex positions. (a) A single convex polygon fill area generated with
the primitive constant GL POLYGON. (b) Two unconnected triangles generated with GL TRIANGLES.
(c) Four connected triangles generated with GL TRIANGLE STRIP. (d) Four connected triangles generated
with GL TRIANGLE FAN.

two-dimensional polygon vertex positions in a counterclockwise ordering. Each
of the points is represented as an array of (x, y) coordinate values:

glBegin (GL_POLYGON);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ( );

A polygon vertex list must contain at least three vertices. Otherwise, nothing is
displayed.

If we reorder the vertex list and change the primitive constant in the previous
code example to GL TRIANGLES, we obtain the two separated triangle fill areas
in Figure 22(b):

glBegin (GL_TRIANGLES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ( );
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In this case, the first three coordinate points define the vertices for one triangle, the
next three points define the next triangle, and so forth. For each triangle fill area,
we specify the vertex positions in a counterclockwise order. A set of unconnected
triangles is displayed with this primitive constant unless some vertex coordinates
are repeated. Nothing is displayed if we do not list at least three vertices; and if
the number of vertices specified is not a multiple of 3, the final one or two vertex
positions are not used.

By reordering the vertex list once more and changing the primitive constant
to GL TRIANGLE STRIP, we can display the set of connected triangles shown
in Figure 22(c):

glBegin (GL_TRIANGLE_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p4);

glEnd ( );

Assuming that no coordinate positions are repeated in a list of N vertices, we
obtain N − 2 triangles in the strip. Clearly, we must have N ≥ 3 or nothing is
displayed. In this example, N = 6 and we obtain four triangles. Each successive
triangle shares an edge with the previously defined triangle, so the ordering of
the vertex list must be set up to ensure a consistent display. One triangle is defined
for each vertex position listed after the first two vertices. Thus, the first three ver-
tices should be listed in counterclockwise order, when viewing the front (outside)
surface of the triangle. After that, the set of three vertices for each subsequent
triangle is arranged in a counterclockwise order within the polygon tables. This
is accomplished by processing each position n in the vertex list in the order n = 1,
n = 2, . . . , n = N − 2 and arranging the order of the corresponding set of three
vertices according to whether n is an odd number or an even number. If n is odd,
the polygon table listing for the triangle vertices is in the order n, n + 1, n + 2. If n
is even, the triangle vertices are listed in the order n + 1, n, n + 2. In the preceding
example, our first triangle (n = 1) would be listed as having vertices (p1, p2, p6).
The second triangle (n = 2) would have the vertex ordering (p6, p2, p3). Vertex or-
dering for the third triangle (n = 3) would be (p6, p3, p5). And the fourth triangle
(n = 4) would be listed in the polygon tables with vertex ordering (p5, p3, p4).

Another way to generate a set of connected triangles is to use the “fan”
approach illustrated in Figure 22(d), where all triangles share a common
vertex. We obtain this arrangement of triangles using the primitive constant
GL TRIANGLE FAN and the original ordering of our six vertices:

glBegin (GL_TRIANGLE_FAN);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ( );

For N vertices, we again obtain N − 2 triangles, providing no vertex positions are
repeated, and we must list at least three vertices. In addition, the vertices must

Graphics Output Primitives

67



F I G U R E 2 3
Displaying quadrilateral fill areas using
a list of eight vertex positions. (a) Two
unconnected quadrilaterals generated
with GL QUADS. (b) Three
connected quadrilaterals generated
with GL QUAD STRIP.
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be specified in the proper order to define front and back faces for each triangle
correctly. The first coordinate position listed (in this case, p1) is a vertex for each
triangle in the fan. If we again enumerate the triangles and the coordinate positions
listed as n = 1, n = 2, . . . , n = N − 2, then vertices for triangle n are listed in the
polygon tables in the order 1, n + 1, n + 2. Therefore, triangle 1 is defined with
the vertex list (p1, p2, p3); triangle 2 has the vertex ordering (p1, p3, p4); triangle
3 has its vertices specified in the order (p1, p4, p5); and triangle 4 is listed with
vertices (p1, p5, p6).

Besides the primitive functions for triangles and a general polygon, OpenGL
provides for the specifications of two types of quadrilaterals (four-sided
polygons). With the GL QUADS primitive constant and the following list of eight
vertices, specified as two-dimensional coordinate arrays, we can generate the
display shown in Figure 23(a):

glBegin (GL_QUADS);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p7);
glVertex2iv (p8);

glEnd ( );
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The first four coordinate points define the vertices for one quadrilateral, the next
four points define the next quadrilateral, and so on. For each quadrilateral fill
area, we specify the vertex positions in a counterclockwise order. If no vertex
coordinates are repeated, we display a set of unconnected four-sided fill areas. We
must list at least four vertices with this primitive. Otherwise, nothing is displayed.
And if the number of vertices specified is not a multiple of 4, the extra vertex
positions are ignored.

Rearranging the vertex list in the previous quadrilateral code example and
changing the primitive constant to GL QUAD STRIP, we can obtain the set of
connected quadrilaterals shown in Figure 23(b):

glBegin (GL_QUAD_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p4);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p8);
glVertex2iv (p7);

glEnd ( );

A quadrilateral is set up for each pair of vertices specified after the first two ver-
tices in the list, and we need to list the vertices so that we generate a correct
counterclockwise vertex ordering for each polygon. For a list of N vertices, we
obtain N

2 − 1 quadrilaterals, providing that N ≥ 4. If N is not a multiple of 4,
any extra coordinate positions in the list are not used. We can enumerate these
fill polygons and the vertices listed as n = 1, n = 2, . . . , n = N

2 − 1. Then poly-
gon tables will list the vertices for quadrilateral n in the vertex order number
2n − 1, 2n, 2n + 2, 2n + 1. For this example, N = 8 and we have 3 quadrilater-
als in the strip. Thus, our first quadrilateral (n = 1) is listed as having a vertex
ordering of (p1, p2, p3, p4). The second quadrilateral (n = 2) has the vertex order-
ing (p4, p3, p6, p5), and the vertex ordering for the third quadrilateral (n = 3) is
(p5, p6, p7, p8).

Most graphics packages display curved surfaces as a set of approximating
plane facets. This is because plane equations are linear, and processing the lin-
ear equations is much quicker than processing quadric or other types of curve
equations. So OpenGL and other packages provide polygon primitives to facil-
itate the approximation of a curved surface. Objects are modeled with polygon
meshes, and a database of geometric and attribute information is set up to facilitate
the processing of the polygon facets. In OpenGL, primitives that we can use for
this purpose are the triangle strip, the triangle fan, and the quad strip. Fast hardware-
implemented polygon renderers are incorporated into high-quality graphics sys-
tems with the capability for displaying millions of shaded polygons per second
(usually triangles), including the application of surface texture and special light-
ing effects.

Although the OpenGL core library allows only convex polygons, the GLU
library provides functions for dealing with concave polygons and other noncon-
vex objects with linear boundaries. A set of GLU polygon tessellation routines is
available for converting such shapes into a set of triangles, triangle meshes, trian-
gle fans, and straight-line segments. Once such objects have been decomposed,
they can be processed with basic OpenGL functions.
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9 OpenGL Vertex Arrays
Although our examples so far have contained relatively few coordinate positions,
describing a scene containing several objects can get much more complicated. To
illustrate, we first consider describing a single, very basic object: the unit cube
shown in Figure 24, with coordinates given in integers to simplify our discus-
sion. A straightforward method for defining the vertex coordinates is to use a
double-subscripted array, such as

GLint points [8][3] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0},
{0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

Alternatively, we could first define a data type for a three-dimensional vertex
position and then give the coordinates for each vertex position as an element of a
single-subscripted array as, for example,

typedef GLint vertex3 [3];

vertex3 pt [8] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0},
{0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

Next, we need to define each of the six faces of this object. For this, we could
make six calls either to glBegin (GL POLYGON) or to glBegin (GL QUADS).
In either case, we must be sure to list the vertices for each face in a counterclockwise
order when viewing that surface from the outside of the cube. In the following
code segment, we specify each cube face as a quadrilateral and use a function call
to pass array subscript values to the OpenGL primitive routines. Figure 25 shows
the subscript values for array pt corresponding to the cube vertex positions.
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F I G U R E 2 4
A cube with an edge length of 1.
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F I G U R E 2 5
Subscript values for array pt
corresponding to the vertex
coordinates for the cube shown
in Figure 24.
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void quad (GLint n1, GLint n2, GLint n3, GLint n4)
{

glBegin (GL_QUADS);
glVertex3iv (pt [n1]);
glVertex3iv (pt [n2]);
glVertex3iv (pt [n3]);
glVertex3iv (pt [n4]);

glEnd ( );
}
void cube ( )
{

quad (6, 2, 3, 7);
quad (5, 1, 0, 4);
quad (7, 3, 1, 5);
quad (4, 0, 2, 6);
quad (2, 0, 1, 3);
quad (7, 5, 4, 6);

}

Thus, the specification for each face requires six OpenGL functions, and we
have six faces to specify. When we add color specifications and other parame-
ters, our display program for the cube could easily contain 100 or more OpenGL
function calls. And scenes with many complex objects can require much more.

As we can see from the preceding cube example, a complete scene description
could require hundreds or thousands of coordinate specifications. In addition,
there are various attribute and viewing parameters that must be set for individual
objects. Thus, object and scene descriptions could require an enormous number of
function calls, which puts a demand on system resources and can slow execution
of the graphics programs. A further problem with complex displays is that object
surfaces (such as the cube in Figure 24) usually have shared vertex coordinates.
Using the methods we have discussed up to now, these shared positions may
need to be specified multiple times.

To alleviate these problems, OpenGL provides a mechanism for reducing the
number of function calls needed in processing coordinate information. Using a
vertex array, we can arrange the information for describing a scene so that we
need only a very few function calls. The steps involved are

1. Invoke the functionglEnableClientState (GL VERTEX ARRAY) to
activate the vertex-array feature of OpenGL.

2. Use the function glVertexPointer to specify the location and data
format for the vertex coordinates.

3. Display the scene using a routine such as glDrawElements, which can
process multiple primitives with very few function calls.

Using the pt array previously defined for the cube, we implement these three
steps in the following code example:

glEnableClientState (GL_VERTEX_ARRAY);
glVertexPointer (3, GL_INT, 0, pt);

GLubyte vertIndex [ ] = (6, 2, 3, 7, 5, 1, 0, 4, 7, 3, 1, 5,
4, 0, 2, 6, 2, 0, 1, 3, 7, 5, 4, 6);

glDrawElements (GL_QUADS, 24, GL_UNSIGNED_BYTE, vertIndex);
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With the first command, glEnableClientState (GL VERTEX ARRAY),
we activate a capability (in this case, a vertex array) on the client side of a client-
server system. Because the client (the machine that is running the main program)

glDisableClientState (GL_VERTEX_ARRAY);

We next give the location and format of the coordinates for the object vertices
in the function glVertexPointer. The first parameter in glVertexPointer
(3 in this example) specifies the number of coordinates used in each vertex
description. Data type for the vertex coordinates is designated using an
OpenGL symbolic constant as the second parameter in this function. For our
example, the data type isGL INT. Other data types are specified with the symbolic
constants GL BYTE, GL SHORT, GL FLOAT, and GL DOUBLE. With the third
parameter, we give the byte offset between consecutive vertices. The purpose of
this argument is to allow various kinds of data, such as coordinates and colors,
to be packed together in one array. Because we are giving only the coordinate
data, we assign a value of 0 to the offset parameter. The last parameter in the
glVertexPointer function references the vertex array, which contains
the coordinate values.

All the indices for the cube vertices are stored in array vertIndex. Each of
these indices is the subscript for array pt corresponding to the coordinate val-
ues for that vertex. This index list is referenced as the last parameter value in
function glDrawElements and is then used by the primitive GL QUADS, which
is the first parameter, to display the set of quadrilateral surfaces for the cube.
The second parameter specifies the number of elements in array vertIndex.
Because a quadrilateral requires just 4 vertices and we specified 24, the
glDrawElements function continues to display another cube face after each
successive set of 4 vertices until all 24 have been processed. Thus, we
accomplish the final display of all faces of the cube with this single func-
tion call. The third parameter in function glDrawElements gives the type
for the index values. Because our indices are small integers, we specified a
type of GL UNSIGNED BYTE. The two other index types that can be used are
GL UNSIGNED SHORT and GL UNSIGNED INT.

Additional information can be combined with the coordinate values in the
vertex arrays to facilitate the processing of a scene description. We can specify
color values and other attributes for objects in arrays that can be referenced by the
glDrawElements function. Also, we can interlace the various arrays for greater
efficiency.

10 Pixel-Array Primitives
In addition to straight lines, polygons, circles, and other primitives, graphics pack-
ages often supply routines to display shapes that are defined with a rectangular
array of color values. We can obtain the rectangular grid pattern by digitizing
(scanning) a photograph or other picture or by generating a shape with a graph-
ics program. Each color value in the array is then mapped to one or more screen
pixel positions. A pixel array of color values is typically referred to as a pixmap.
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retains the data for a picture, the vertex array must be there also. The server (our
workstation, for example) generates commands and displays the picture. Of
course, a single machine can be both client and server. The vertex-array feature of
OpenGL is deactivated with the command
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F I G U R E 2 6
Mapping an n by m color array onto a
region of the screen coordinates.

Parameters for a pixel array can include a pointer to the color matrix, the size
of the matrix, and the position and size of the screen area to be affected by the
color values. Figure 26 gives an example of mapping a pixel-color array onto a
screen area.

Another method for implementing a pixel array is to assign either the bit
value 0 or the bit value 1 to each element of the matrix. In this case, the array is
simply a bitmap, which is sometimes called a mask, that indicates whether a pixel
is to be assigned (or combined with) a preset color.

11 OpenGL Pixel-Array Functions
There are two functions in OpenGL that we can use to define a shape or pattern
specified with a rectangular array. One function defines a bitmap pattern, and
the other a pixmap pattern. Also, OpenGL provides several routines for saving,
copying, and manipulating arrays of pixel values.

OpenGL Bitmap Function
A binary array pattern is defined with the function

glBitmap (width, height, x0, y0, xOffset, yOffset, bitShape);

Parameters width and height in this function give the number of columns and
number of rows, respectively, in the array bitShape. Each element of bitShape
is assigned either a 1 or a 0. A value of 1 indicates that the corresponding pixel is
to be displayed in a previously defined color. Otherwise, the pixel is unaffected
by the bitmap. (As an option, we could use a value of 1 to indicate that a specified
color is to be combined with the color value stored in the refresh buffer at that
position.) Parameters x0 and y0 define the position that is to be considered the
“origin” of the rectangular array. This origin position is specified relative to the
lower-left corner of bitShape, and values for x0 and y0 can be positive or
negative. In addition, we need to designate a location in the frame buffer where
the pattern is to be applied. This location is called the current raster position,
and the bitmap is displayed by positioning its origin, (x0, y0), at the current
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raster position. Values assigned to parameters xOffset and yOffset are used
as coordinate offsets to update the frame-buffer current raster position after the
bitmap is displayed.

Coordinate values for x0, y0, xOffset, and yOffset, as well as the current
raster position, are maintained as floating-point values. Of course, bitmaps will
be applied at integer pixel positions. But floating-point coordinates allow a set of
bitmaps to be spaced at arbitrary intervals, which is useful in some applications,
such as forming character strings with bitmap patterns.

We use the following routine to set the coordinates for the current raster
position:

glRasterPos* ( )

Parameters and suffix codes are the same as those for the glVertex function.
Thus, a current raster position is given in world coordinates, and it is transformed
to screen coordinates by the viewing transformations. For our two-dimensional
examples, we can specify coordinates for the current raster position directly in
integer screen coordinates. The default value for the current raster position is the
world-coordinate origin (0, 0, 0).

The color for a bitmap is the color that is in effect at the time that the
glRasterPos command is invoked. Any subsequent color changes do not affect
the bitmap.

Each row of a rectangular bit array is stored in multiples of 8 bits, where the
binary data is arranged as a set of 8-bit unsigned characters. But we can describe
a shape using any convenient grid size. For example, Figure 27 shows a bit
pattern defined on a 10-row by 9-column grid, where the binary data is specified
with 16 bits for each row. When this pattern is applied to the pixels in the frame
buffer, all bit values beyond the ninth column are ignored.

We apply the bit pattern of Figure 27 to a frame-buffer location with the
following code section:

GLubyte bitShape [20] = {
0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00,
0xff, 0x80, 0x7f, 0x00, 0x3e, 0x00, 0x1c, 0x00, 0x08, 0x00};

glPixelStorei (GL_UNPACK_ALIGNMENT, 1); // Set pixel storage mode.

glRasterPos2i (30, 40);
glBitmap (9, 10, 0.0, 0.0, 20.0, 15.0, bitShape);

F I G U R E 2 7
A bit pattern, specified in an array with
10 rows and 9 columns, is stored in
8-bit blocks of 10 rows with 16 bit
values per row.
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Array values for bitShape are specified row by row, starting at the bottom of
the rectangular-grid pattern. Next we set the storage mode for the bitmap with
the OpenGL routine glPixelStorei. The parameter value of 1 in this func-
tion indicates that the data values are to be aligned on byte boundaries. With
glRasterPos, we set the current raster position to (30, 40). Finally, function
glBitmap specifies that the bit pattern is given in array bitShape, and that this
array has 9 columns and 10 rows. The coordinates for the origin of this pattern are
(0.0, 0.0), which is the lower-left corner of the grid. We illustrate a coordinate offset
with the values (20.0, 15.0), although we do not use the offset in this example.

OpenGL Pixmap Function
A pattern defined as an array of color values is applied to a block of frame-buffer
pixel positions with the function

glDrawPixels (width, height, dataFormat, dataType, pixMap);

Again, parameters width and height give the column and row dimensions,
respectively, of the array pixMap. Parameter dataFormat is assigned an
OpenGL constant that indicates how the values are specified for the array. For
example, we could specify a single blue color for all pixels with the constant
GL BLUE, or we could specify three color components in the order blue, green,
red with the constant GL BGR. A number of other color specifications are possi-
ble. An OpenGL
to parameter
The lower-
as set by
displays a pixmap defined in a 128 × 128 array of RGB color values:

glDrawPixels (128, 128, GL_RGB, GL_UNSIGNED_BYTE, colorShape);

Because OpenGL provides several buffers, we can paste an array of
values into a particular buffer by selecting that buffer as the target of the
glDrawPixels routine. Some buffers store color values and some store other
kinds of pixel data. A depth buffer, for instance, is used to store object distances
(depths) from the viewing position, and a stencil buffer is used to store bound-
ary patterns for a scene. We select one of these two buffers by setting parameter
dataFormat in the glDrawPixels routine to either GL DEPTH COMPONENT
or GL STENCIL INDEX. For these buffers, we would need to set up the pixel
array using either depth values or stencil information.

There are four color buffers available in OpenGL that can be used for screen
refreshing. Two of the color buffers constitute a left-right scene pair for display-
ing stereoscopic views. For each of the stereoscopic buffers, there is a front-back
pair for double-buffered animation displays. In a particular implementation of
OpenGL, either stereoscopic viewing or double buffering, or both, might not be
supported. If neither stereoscopic effects nor double buffering is supported, then
there is only a single refresh buffer, which is designated as the front-left color
buffer. This is the default refresh buffer when double buffering is not available or
not in effect. If double buffering is in effect, the default is either the back-left and
back-right buffers or only the back-left buffer, depending on the current state of
stereoscopic viewing. Also, a number of user-defined, auxiliary color buffers are
supported that can be used for any nonrefresh purpose, such as saving a picture
that is to be copied later into a refresh buffer for display.
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constant, such as GL BYTE, GL INT, or GL FLOAT, is assigned
dataType to designate the data type for the color values in the array.

left corner of this color array is mapped to the current raster position,
the glRasterPos function. As an example, the following statement
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We select a single color or auxiliary buffer or a combination of color buffers
for storing a pixmap with the following command:

glDrawBuffer (buffer);

A variety of OpenGL symbolic constants can be assigned to parameter buffer
to designate one or more “draw” buffers. For instance, we can pick a single
buffer with either GL FRONT LEFT, GL FRONT RIGHT, GL BACK LEFT, or
GL BACK RIGHT. We can select both front buffers with GL FRONT, and we
can select both back buffers with GL BACK. This is assuming that stereoscopic
viewing is in effect. Otherwise, the previous two symbolic constants designate a
single buffer. Similarly, we can designate either the left or right buffer pairs with
GL LEFT or GL RIGHT, and we can select all the available color buffers with
GL FRONT AND BACK. An auxiliary buffer is chosen with the constantGL AUXk,
where k is an integer value from 0 to 3, although more than four auxiliary buffers
may be available in some implementations of OpenGL.

OpenGL Raster Operations
In addition to storing an array of pixel values in a buffer, we can retrieve a block
of values from a buffer or copy the block into another buffer area, and we can
perform a variety of other operations on a pixel array. In general, the term raster
operation or raster op is used to describe any function that processes a pixel array
in some way. A raster operation that moves an array of pixel values from one place
to another is also referred to as a block transfer of pixel values. On a bilevel sys-
tem, these operations are called bitblt transfers (bit-block transfers), particularly
when the functions are hardware-implemented. On a multilevel system, the term
pixblt is sometimes used for block transfers.

We use the following function to select a rectangular block of pixel values in
a designated set of buffers:

glReadPixels (xmin, ymin, width, height,
dataFormat, dataType, array};

The lower-left corner of the rectangular block to be retrieved is at screen-
coordinate position (xmin, ymin). Parameters width, height, dataFormat,
and dataType are the same as in the glDrawPixels routine. The type of
data to be saved in parameter array depends on the selected buffer. We can
choose either the depth buffer or the stencil buffer by assigning either the
value GL DEPTH COMPONENT or the value GL STENCIL INDEX to parameter
dataFormat.

A particular combination of color buffers or an auxiliary buffer is selected for
the application of the glReadPixels routine with the function

glReadBuffer (buffer);

Symbolic constants for specifying one or more buffers are the same as in the
glDrawBuffer routine except that we cannot select all four of the color buffers.
The default buffer selection is the front left-right pair or just the front-left buffer,
depending on the status of stereoscopic viewing.

We can also copy a block of pixel data from one location to another within
the set of OpenGL buffers using the following routine:

glCopyPixels (xmin, ymin, width, height, pixelValues};
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The lower-left corner of the block is at screen-coordinate location (xmin, ymin),
and parameters width and height are assigned positive integer values to desig-
nate the number of columns and rows, respectively, that are to be copied. Param-
eter pixelValues is assigned either GL COLOR, GL DEPTH, or GL STENCIL to
indicate the kind of data we want to copy: color values, depth values, or stencil
values. In addition, the block of pixel values is copied from a source buffer to a
destination buffer, with its lower-left corner mapped to the current raster position.
We select the source buffer with the glReadBuffer command, and we select
the destination buffer with the glDrawBuffer command. Both the region to be
copied and the destination area should lie completely within the bounds of the
screen coordinates.

To achieve different effects as a block of pixel values is placed into a buffer with
glDrawPixels or glCopyPixels, we can combine the incoming values with
the old buffer values in various ways. As an example, we could apply logical
operations, such as and, or, and exclusive or, to combine the two blocks of pixel
values. In OpenGL, we select a bitwise, logical operation for combining incoming
and destination pixel color values with the functions

glEnable (GL_COLOR_LOGIC_OP);

glLogicOp (logicOp);

A variety of symbolic constants can be assigned to parameter logicOp,
including GL AND, GL OR, and GL XOR. In addition, either the incoming bit val-
ues or the destination bit values can be inverted (interchanging 0 and 1 values).
We use the constant GL COPY INVERTED to invert the incoming color bit values
and then replace the destination values with the inverted incoming values; and
we could simply invert the destination bit values without replacing them with
the incoming values using GL INVERT. The various invert operations can also
be combined with the logical and, or, and exclusive or operations. Other options
include clearing all the destination bits to the value 0 (GL CLEAR), or setting all
the destination bits to the value 1 (GL SET). The default value for the glLogicOp
routine isGL COPY, which simply replaces the destination values with the incom-
ing values.

Additional OpenGL routines are available for manipulating pixel arrays pro-
cessed by the glDrawPixels, glReadPixels, and glCopyPixels functions.
For example, the glPixelTransfer and glPixelMap routines can be used to
shift or adjust color values, depth values, or stencil values. We return to pixel oper-
ations in later chapters as we explore other facets of computer-graphics packages.

12 Character Primitives
Graphics displays often include textural information, such as labels on graphs
and charts, signs on buildings or vehicles, and general identifying information
for simulation and visualization applications. Routines for generating character
primitives are available in most graphics packages. Some systems provide an
extensive set of character functions, while other systems offer only minimal sup-
port for character generation.

Letters, numbers, and other characters can be displayed in a variety of sizes
and styles. The overall design style for a set (or family) of characters is called a
typeface. Today, there are thousands of typefaces available for computer appli-
cations. Examples of a few common typefaces are Courier, Helvetica, New York,
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Palatino, and Zapf Chancery. Originally, the term font referred to a set of cast
metal character forms in a particular size and format, such as 10-point Courier
Italic or 12-point Palatino Bold. A 14-point font has a total character height of
about 0.5 centimeter. In other words, 72 points is about the equivalent of 2.54 cen-
timeters (1 inch). The terms font and typeface are now often used interchangeably,
since most printing is no longer done with cast metal forms.

Fonts can be divided into two broad groups: serif and sans serif. Serif type has
small lines or accents at the ends of the main character strokes, while sans-serif

Fonts are also classified according to whether they are monospace or propor-
tional. Characters in a monospace font all have the same width. In a proportional
font, character width varies.

Two different representations are used for storing computer fonts. A simple
method for representing the character shapes in a particular typeface is to set
up a pattern of binary values on a rectangular grid. The set of characters is then
referred to as a bitmap font (or bitmapped font). A bitmapped character set is
also sometimes referred to as a raster font. Another, more flexible, scheme is to
describe character shapes using straight-line and curve sections, as in PostScript,
for example. In this case, the set of characters is called an outline font or a stroke
font. Figure 28 illustrates the two methods for character representation. When
the pattern in Figure 28(a) is applied to an area of the frame buffer, the 1 bits
designate which pixel positions are to be displayed in a specified color. To display
the character shape in Figure 28(b), the interior of the character outline is treated
as a fill area.

Bitmap fonts are the simplest to define and display: We just need to map
the character grids to a frame-buffer position. In general, however, bitmap fonts
require more storage space because each variation (size and format) must be saved
in a font cache. It is possible to generate different sizes and other variations, such
as bold and italic, from one bitmap font set, but this often does not produce good
results. We can increase or decrease the size of a character bitmap only in integer
multiples of the pixel size. To double the size of a character, we need to double
the number of pixels in the bitmap. This just increases the ragged appearance of
its edges.

In contrast to bitmap fonts, outline fonts can be increased in size without
distorting the character shapes. And outline fonts require less storage because
each variation does not require a distinct font cache. We can produce boldface,

F I G U R E 2 8
The letter “B” represented with an 8 × 8
bitmap pattern (a) and with an outline
shape defined with straight-line and curve
segments (b).

1 1 1 1 1 1 0 0

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

0 1 1 1 1 1 0 0

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0

(a) (b)
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type does not have such accents. For example, this text is set in a serif font
(Palatino). But this sentence is printed in a sans-serif font (Univers). Serif type is
generally more readable; that is, it is easier to read in longer blocks of text. On the
other hand, the individual characters in sans-serif type are easier to recognize. For
this reason, sans-serif type is said to be more legible. Since sans-serif characters can
be recognized quickly, this font is good for labeling and short headings.
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F I G U R E 2 9
A polymarker graph of a set of data values.

italic, or different sizes by manipulating the curve definitions for the character
outlines. But it does take more time to process the outline fonts because they must
be scan-converted into the frame buffer.

There is a variety of possible functions for implementing character displays.
Some graphics packages provide a function that accepts any character string and
a frame-buffer starting position for the string. Another type of function displays
a single character at one or more selected positions. Since this character routine
is useful for showing markers in a network layout or in displaying a point plot of
a discrete data set, the character displayed by this routine is sometimes referred
to as a marker symbol or polymarker, in analogy with a polyline primitive. In
addition to standard characters, special shapes such as dots, circles, and crosses
are often available as marker symbols. Figure 29 shows a plot of a discrete data
set using an asterisk as a marker symbol.

Geometric descriptions for characters are given in world coordinates, just as
they are for other primitives, and this information is mapped to screen coordinates
by the viewing transformations. A bitmap character is described with a rectan-
gular grid of binary values and a grid reference position. This reference position
is then mapped to a specified location in the frame buffer. An outline character is
defined by a set of coordinate positions that are to be connected with a series of
curves and straight-line segments and a reference position that is to be mapped
to a given frame-buffer location. The reference position can be specified either for
a single outline character or for a string of characters. In general, character rou-
tines can allow the construction of both two-dimensional and three-dimensional
character displays.

13 OpenGL Character Functions
Only low-level support is provided by the basic OpenGL library for displaying
individual characters and text strings. We can explicitly define any character as
a bitmap, as in the example shape shown in Figure 27, and we can store a set
of bitmap characters as a font list. A text string is then displayed by mapping a
selected sequence of bitmaps from the font list into adjacent positions in the frame
buffer.

However, some predefined character sets are available in the GLUT library,
so we do not need to create our own fonts as bitmap shapes unless we want to
display a font that is not available in GLUT. The GLUT library contains routines
for displaying both bitmapped and outline fonts. Bitmapped GLUT fonts are ren-
dered using the OpenGL glBitmap function, and the outline fonts are generated
with polyline (GL LINE STRIP) boundaries.

We can display a bitmap GLUT character with

glutBitmapCharacter (font, character);
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where parameter font is assigned a symbolic GLUT constant identifying a par-
ticular set of typefaces, and parameter character is assigned either the ASCII
code or the specific character we wish to display. Thus, to display the upper-
case letter “A,” we can either use the ASCII value 65 or the designation 'A'.
Similarly, a code value of 66 is equivalent to 'B', code 97 corresponds to the low-
ercase letter 'a', code 98 corresponds to 'b', and so forth. Both fixed-width fonts
and proportionally spaced fonts are available. We can select a fixed-width font
by assigning either GLUT BITMAP 8 BY 13 or GLUT BITMAP 9 BY 15 to
parameter font. And we can select a 10-point, proportionally spaced font with
either GLUT BITMAP TIMES ROMAN 10 or GLUT BITMAP HELVETICA 10.
A 12-point Times-Roman font is also available, as well as 12-point and 18-point
Helvetica fonts.

Each character generated by glutBitmapCharacter is displayed so that
the origin (lower-left corner) of the bitmap is at the current raster position. After
the character bitmap is loaded into the refresh buffer, an offset equal to the width
of the character is added to the x coordinate for the current raster position. As an
example, we could display a text string containing 36 bitmap characters with the
following code:

glRasterPosition2i (x, y);
for (k = 0; k < 36; k++)

glutBitmapCharacter (GLUT_BITMAP_9_BY_15, text [k]);

Characters are displayed in the color that was specified before the execution of
the glutBitmapCharacter function.

An outline character is displayed with the following function call:

glutStrokeCharacter (font, character);

For this function, we can assign parameter font either the value GLUT
STROKE ROMAN, which displays a proportionally spaced font, or the valueGLUT
STROKE MONO ROMAN, which displays a font with constant spacing. We control
the size and position of these characters by specifying transformation operations

14 Picture Partitioning
Some graphics libraries include routines for describing a picture as a collection of
named sections and for manipulating the individual sections of a picture. Using
these functions, we can create, edit, delete, or move a part of a picture indepen-
dently of the other picture components. In addition, we can use this feature of a

Various names are used for the subsections of a picture. Some graphics pack-
ages refer to them as structures, while other packages call them segments
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before executing the glutStrokeCharacter routine. After each character is 
displayed, a coordinate offset is applied automatically so that the position for 
displaying the next character is to the right of the current character. Text strings
generated with outline fonts are part of the geometric description for a two-
dimensional or three-dimensional scene because they are constructed with line
segments. Thus, they can be viewed fromvarious directions, and we can shrink or
expand them without distortion, or transform them in other ways. But they are
slower to render, compared to bitmapped fonts.

graphics package for hierarchical modeling, in which an object description is
given as a tree structure composed of a number of levels specifying the object 
subparts.
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or objects. Also, the allowable subsection operations vary greatly from one
package to another. Modeling packages, for example, provide a wide range of
operations that can be used to describe and manipulate picture elements. On
the other hand, for any graphics library, we can always structure and manage
the components of a picture using procedural elements available in a high-level
language such as C++.

15 OpenGL Display Lists
Often it can be convenient or more efficient to store an object description (or any
other set of OpenGL commands) as a named sequence of statements. We can
do this in OpenGL using a structure called a display list. Once a display list
has been created, we can reference the list multiple times with different display
operations. On a network, a display list describing a scene is stored on the server
machine, which eliminates the need to transmit the commands in the list each time
the scene is to be displayed. We can also set up a display list so that it is saved
for later execution, or we can specify that the commands in the list be executed
immediately. And display lists are particularly useful for hierarchical modeling,
where a complex object can be described with a set of simpler subparts.

Creating and Naming an OpenGL Display List
A set of OpenGL commands is formed into a display list by enclosing the com-
mands within the glNewList/glEndList pair of functions. For example,

glNewList (listID, listMode};
.
.
.

glEndList ( );

This structure forms a display list with a positive integer value assigned
to parameter listID as the name for the list. Parameter listMode is
assigned an OpenGL symbolic constant that can be either GL COMPILE or
GL COMPILE AND EXECUTE. If we want to save the list for later execution, we
use GL COMPILE. Otherwise, the commands are executed as they are placed into
the list, in addition to allowing us to execute the list again at a later time.

As a display list is created, expressions involving parameters such as coor-
dinate positions and color components are evaluated so that only the param-
eter values are stored in the list. Any subsequent changes to these parameters
have no effect on the list. Because display-list values cannot be changed, we
cannot include certain OpenGL commands, such as vertex-list pointers, in a
display list.

We can create any number of display lists, and we execute a particular list of
commands with a call to its identifier. Further, one display list can be embedded
within another display list. But if a list is assigned an identifier that has already
been used, the new list replaces the previous list that had been assigned that
identifier. Therefore, to avoid losing a list by accidentally reusing its identifier, we
can let OpenGL generate an identifier for us, as follows:

listID = glGenLists (1);

This statement returns one (1) unused positive integer identifier to the variable
listID. A range of unused integer list identifiers is obtained if we change the
argument of glGenLists from the value 1 to some other positive integer. For
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instance, if we invoke glGenLists (6), then a sequence of six contiguous posi-
tive integer values is reserved and the first value in this list of identifiers is returned
to the variable listID. A value of 0 is returned by the glGenLists function if
an error occurs or if the system cannot generate the range of contiguous integers
requested. Therefore, before using an identifier obtained from the glGenLists
routine, we could check to be sure that it is not 0.

Although unused list identifiers can be generated with the glGenList
function, we can independently query the system to determine whether a
specific integer value has been used as a list name. The function to accomplish
this is

glIsList (listID};

A value of GL TRUE is returned if the value of listID is an integer that has
already been used as a display-list name. If the integer value has not been used
as a list name, the glIsList function returns the value GL FALSE.

Executing OpenGL Display Lists
We execute a single display list with the statement

glCallList (listID);

The following code segment illustrates the creation and execution of a display list.
We first set up a display list that contains the description for a regular hexagon,
defined in the xy plane using a set of six equally spaced vertices around the
circumference of a circle, whose center coordinates are (200, 200) and whose
radius is 150. Then we issue a call to function glCallList, which displays the
hexagon.

const double TWO_PI = 6.2831853;

GLuint regHex;

GLdouble theta;
GLint x, y, k;

/* Set up a display list for a regular hexagon.
* Vertices for the hexagon are six equally spaced
* points around the circumference of a circle.
*/
regHex = glGenLists (1); // Get an identifier for the display list.
glNewList (regHex, GL_COMPILE);

glBegin (GL_POLYGON);
for (k = 0; k < 6; k++) {

theta = TWO_PI * k / 6.0;
x = 200 + 150 * cos (theta);
y = 200 + 150 * sin (theta);
glVertex2i (x, y);

}
glEnd ( );

glEndList ( );

glCallList (regHex);
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Several display lists can be executed using the following two statements:

glListBase (offsetValue);

glCallLists (nLists, arrayDataType, listIDArray);

The integer number of lists that we want to execute is assigned to parameter
nLists, and parameter listIDArray is an array of display-list identifiers. In
general, listIDArray can contain any number of elements, and invalid display-
list identifiers are ignored. Also, the elements in listIDArray can be speci-
fied in a variety of data formats, and parameter arrayDataType is used to
indicate a data type, such as GL BYTE, GL INT, GL FLOAT, GL 3 BYTES, or
GL 4 BYTES. A display-list identifier is calculated by adding the value in an
element of listIDArray to the integer value of offsetValue that is given in
the glListBase function. The default value for offsetValue is 0.

This mechanism for specifying a sequence of display lists that are to be
executed allows us to set up groups of related display lists, whose identifiers
are formed from symbolic names or codes. A typical example is a font set where
each display-list identifier is the ASCII value of a character. When several font
sets are defined, we use parameter offsetValue in the glListBase function
to obtain a particular font described within the array listIDArray.

Deleting OpenGL Display Lists
We eliminate a contiguous set of display lists with the function call

glDeleteLists (startID, nLists);

ParameterstartIDgives the initial display-list identifier, and parameternLists
specifies the number of lists that are to be deleted. For example, the statement

glDeleteLists (5, 4);

eliminates the four display lists with identifiers 5, 6, 7, and 8. An identifier value
that references a nonexistent display list is ignored.

16 OpenGL Display-Window
Reshape Function
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To allow us to compensate for a change in display-window dimensions, the
GLUT library provides the following routine:

glutReshapeFunc (winReshapeFcn);

We can include this function in themainprocedure in our program, along with the
other GLUT routines, and it will be activated whenever the display-window size
is altered. The argument for this GLUT function is the name of a procedure that

After the generation of our picture, we often want to use the mouse pointer to
drag the display window to another screen location or to change its size.
Changing the size of a display window could change its aspect ratio and cause
objects to be distorted from their original shapes.

83



F I G U R E 3 0
The display window generated by the
example program illustrating the use
of the reshape function.

is to receive the new display-window width and height. We can then use the new
dimensions to reset the projection parameters and perform any other operations,
such as changing the display-window color. In addition, we could save the new
width and height values so that they could be used by other procedures in our
program.

As an example, the following program illustrates how we might structure the
winReshapeFcnprocedure. TheglLoadIdentity command is included in the
reshape function so that any previous values for the projection parameters will
not affect the new projection settings. This program displays the regular hexagon
discussed in Section 15. Although the hexagon center (at the position of the circle
center) in this example is specified in terms of the display-window parameters,
the position of the hexagon is unaffected by any changes in the size of the display
window. This is because the hexagon is defined within a display list, and only
the original center coordinates are stored in the list. If we want the position of the
hexagon to change when the display window is resized, we need to define the
hexagon in another way or alter the coordinate reference for the display window.
The output from this program is shown in Figure 30.

#include <GL/glut.h>
#include <math.h>
#include <stdlib.h>

const double TWO_PI = 6.2831853;

/* Initial display-window size. */
GLsizei winWidth = 400, winHeight = 400;
GLuint regHex;

class screenPt
{

private:
GLint x, y;
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public:
/* Default Constructor: initializes coordinate position to (0, 0). */
screenPt ( ) {

x = y = 0;
}

void setCoords (GLint xCoord, GLint yCoord) {
x = xCoord;
y = yCoord;

}

GLint getx ( ) const {
return x;

}

GLint gety ( ) const {
return y;

}
};

static void init (void)
{

screenPt hexVertex, circCtr;
GLdouble theta;
GLint k;

/* Set circle center coordinates. */
circCtr.setCoords (winWidth / 2, winHeight / 2);

glClearColor (1.0, 1.0, 1.0, 0.0); // Display-window color = white.

/* Set up a display list for a red regular hexagon.
* Vertices for the hexagon are six equally spaced
* points around the circumference of a circle.
*/
regHex = glGenLists (1); // Get an identifier for the display list.
glNewList (regHex, GL_COMPILE);

glColor3f (1.0, 0.0, 0.0); // Set fill color for hexagon to red.
glBegin (GL_POLYGON);

for (k = 0; k < 6; k++) {
theta = TWO_PI * k / 6.0;

hexVertex.setCoords (circCtr.getx ( ) + 150 * cos (theta),
circCtr.gety ( ) + 150 * sin (theta));

glVertex2i (hexVertex.getx ( ), hexVertex.gety ( ));
}

glEnd ( );
glEndList ( );

}

void regHexagon (void)
{

glClear (GL_COLOR_BUFFER_BIT);

glCallList (regHex);

glFlush ( );
}
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void winReshapeFcn (int newWidth, int newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ( );
gluOrtho2D (0.0, (GLdouble) newWidth, 0.0, (GLdouble) newHeight);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Reshape-Function & Display-List Example");

init ( );
glutDisplayFunc (regHexagon);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ( );
}

17 Summary
The output primitives discussed in this chapter provide the basic tools for con-
structing pictures with individual points, straight lines, curves, filled color areas,
array patterns, and text. We specify primitives by giving their geometric descrip-
tions in a Cartesian, world-coordinate reference system.

A fill area is a planar region that is to be displayed in a solid color or color
pattern. Fill-area primitives in most graphics packages are polygons. But, in gen-
eral, we could specify a fill region with any boundary. Often, graphics systems
allow only convex polygon fill areas. In that case, a concave-polygon fill area
can be displayed by dividing it into a set of convex polygons. Triangles are the
easiest polygons to fill, because each scan line crossing a triangle intersects ex-
actly two polygon edges (assuming that the scan line does not pass through any
vertices).

The odd-even rule can be used to locate the interior points of a planar region.
Other methods for defining object interiors are also useful, particularly with irreg-
ular, self-intersecting objects. A common example is the nonzero winding-number
rule. This rule is more flexible than the odd-even rule for handling objects defined
with multiple boundaries. We can also use variations of the winding-number rule
to combine plane areas using Boolean operations.

Each polygon has a front face and a back face, which determines the spa-
tial orientation of the polygon plane. This spatial orientation can be determined
from the normal vector, which is perpendicular to the polygon plane and points
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in the direction from the back face to the front face. We can determine the com-
ponents of the normal vector from the polygon plane equation or by forming
a vector cross-product using three points in the plane, where the three points
are taken in a counterclockwise order and the angle formed by the three points
is less than 180◦. All coordinate values, spatial orientations, and other geomet-
ric data for a scene are entered into three tables: vertex, edge, and surface-facet
tables.

Additional primitives available in graphics packages include pattern arrays
and character strings. Pattern arrays can be used to specify two-dimensional
shapes, including a character set, using either a rectangular set of binary val-
ues or a set of color values. Character strings are used to provide picture and
graph labeling.

Using the primitive functions available in the basic OpenGL library, we can
generate points, straight-line segments, convex polygon fill areas, and either
bitmap or pixmap pattern arrays. Routines for displaying character strings are
available in GLUT. Other types of primitives, such as circles, ellipses, and concave-
polygon fill areas, can be constructed or approximated with these functions, or
they can be generated using routines in GLU and GLUT. All coordinate values
are expressed in absolute coordinates within a right-handed Cartesian-coordinate
reference system. Coordinate positions describing a scene can be given in either
a two-dimensional or a three-dimensional reference frame. We can use integer or
floating-point values to give a coordinate position, and we can also reference a
position with a pointer to an array of coordinate values. A scene description is then
transformed by viewing functions into a two-dimensional display on an output
device, such as a video monitor. Except for the glRect function, each coordinate
position for a set of points, lines, or polygons is specfied in a glVertex function.
And the set of glVertex functions defining each primitive is included between
a glBegin/glEnd pair of statements, where the primitive type is identified
with a symbolic constant as the argument for the glBegin function. When
describing a scene containing many polygon fill surfaces, we can generate the
display efficiently using OpenGL vertex arrays to specify geometric and other
data.

In Table 1, we list the basic functions for generating output primitives in
OpenGL. Some related routines are also listed in this table.

Example Programs
Here, we present a few example OpenGL programs illustrating the use of output
primitives. Each program uses one or more of the functions listed in Table 1.
A display window is set up for the output from each program.

The first program illustrates the use of a polyline, a set of polymarkers, and
bit-mapped character labels to generate a line graph for monthly data over a
period of one year. A proportionally spaced font is demonstrated, although a
fixed-width font is usually easier to align with graph positions. Because the
bitmaps are referenced at the lower-left corner by the raster-position func-
tion, we must shift the reference position to align the center of a text string
with a plotted data position. Figure 31 shows the output of the line-graph
program.

Graphics Output Primitives

87



T A B L E 1

Summary of OpenGL Output Primitive Functions and Related Routines

Function Description

gluOrtho2D Specifies a two-dimensional world-
coordinate reference.

glVertex* Selects a coordinate position. This function
must be placed within a glBegin/glEnd
pair.

glBegin (GL POINTS); Plots one or more point positions, each
specified in a glVertex function. The list
of positions is then closed with a glEnd
statement.

glBegin (GL LINES); Displays a set of straight-line segments,
whose endpoint coordinates are specified
in glVertex functions. The list of
endpoints is then closed with a glEnd
statement.

glBegin (GL LINE STRIP); Displays a polyline, specified using the
same structure as GL LINES.

glBegin (GL LINE LOOP); Displays a closed polyline, specified using
the same structure as GL LINES.

glRect* Displays a fill rectangle in the xy plane.

glBegin (GL POLYGON); Displays a fill polygon, whose vertices are
given in glVertex functions and
terminated with a glEnd statement.

glBegin (GL TRIANGLES); Displays a set of fill triangles using the
same structure as GL POLYGON.

glBegin (GL TRIANGLE STRIP); Displays a fill-triangle mesh, specified
using the same structure as GL POLYGON.

glBegin (GL TRIANGLE FAN); Displays a fill-triangle mesh in a fan shape
with all triangles connected to the first
vertex, specified with same structure as
GL POLYGON.

glBegin (GL QUADS); Displays a set of fill quadrilaterals,
specified with the same structure as
GL POLYGON.

glBegin (GL QUAD STRIP); Displays a fill-quadrilateral mesh, specified
with the same structure as GL POLYGON.

glEnableClientState Activates vertex-array features of
(GL VERTEX ARRAY); OpenGL.

glVertexPointer (size, type, Specifies an array of coordinate values.
stride, array);

glDrawElements (prim, num, Displays a specified primitive type from
type, array); array data.
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T A B L E 1

(continued)

Function Description

glNewList (listID, listMode) Defines a set of commands as a display
list, terminated with a glEndList
statement.

glGenLists Generates one or more display-list
identifiers.

glIsList Queries OpenGL to determine whether a
display-list identifier is in use.

glCallList Executes a single display list.

glListBase Specifies an offset value for an array of
display-list identifiers.

glCallLists Executes multiple display lists.

glDeleteLists Eliminates a specified sequence of display
lists.

glRasterPos* Specifies a two-dimensional or three-
dimensional current position for the
frame buffer. This position is used as a
reference for bitmap and pixmap
patterns.

glBitmap (w, h, x0, y0, Specifies a binary pattern that is to be
xShift, yShift, pattern); mapped to pixel positions relative to the

current position.

glDrawPixels (w, h, type, Specifies a color pattern that is to be
format, pattern); mapped to pixel positions relative to the

current position.

glDrawBuffer Selects one or more buffers for storing a
pixmap.

glReadPixels Saves a block of pixels in a selected array.

glCopyPixels Copies a block of pixels from one buffer
position to another.

glLogicOp Selects a logical operation for combining
two pixel arrays, after enabling with the
constant GL COLOR LOGIC OP.

glutBitmapCharacter Specifies a font and a bitmap character for
(font, char); display.

glutStrokeCharacter Specifies a font and an outline character for
(font, char); display.

glutReshapeFunc Specifies actions to be taken when
display-window dimensions are
changed.
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F I G U R E 3 1
A polyline and polymarker plot of data
points output by the lineGraph
routine.

#include <GL/glut.h>

GLsizei winWidth = 600, winHeight = 500; // Initial display window size.
GLint xRaster = 25, yRaster = 150; // Initialize raster position.

GLubyte label [36] = {'J', 'a', 'n', 'F', 'e', 'b', 'M', 'a', 'r',
'A', 'p', 'r', 'M', 'a', 'y', 'J', 'u', 'n',
'J', 'u', 'l', 'A', 'u', 'g', 'S', 'e', 'p',
'O', 'c', 't', 'N', 'o', 'v', 'D', 'e', 'c'};

GLint dataValue [12] = {420, 342, 324, 310, 262, 185,
190, 196, 217, 240, 312, 438};

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0); // White display window.
glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 600.0, 0.0, 500.0);

}

void lineGraph (void)
{

GLint month, k;
GLint x = 30; // Initialize x position for chart.

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.
glColor3f (0.0, 0.0, 1.0); // Set line color to blue.
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glBegin (GL_LINE_STRIP); // Plot data as a polyline.
for (k = 0; k < 12; k++)

glVertex2i (x + k*50, dataValue [k]);
glEnd ( );

glColor3f (1.0, 0.0, 0.0); // Set marker color to red.
for (k = 0; k < 12; k++) { // Plot data as asterisk polymarkers.

glRasterPos2i (xRaster + k*50, dataValue [k] - 4);
glutBitmapCharacter (GLUT_BITMAP_9_BY_15, '*');

}

glColor3f (0.0, 0.0, 0.0); // Set text color to black.
xRaster = 20; // Display chart labels.
for (month = 0; month < 12; month++) {

glRasterPos2i (xRaster, yRaster);
for (k = 3*month; k < 3*month + 3; k++)
glutBitmapCharacter (GLUT_BITMAP_HELVETICA_12, label [k]);

xRaster += 50;
}
glFlush ( );

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ( );
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Line Chart Data Plot");

init ( );
glutDisplayFunc (lineGraph);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ( );
}

We use the same data set in the second program to produce the bar chart in
Figure 32. This program illustrates an application of rectangular fill areas, as
well as bitmapped character labels.
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F I G U R E 3 2
A bar chart generated by the
barChart procedure.

void barChart (void)
{

GLint month, k;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set bar color to red.
for (k = 0; k < 12; k++)

glRecti (20 + k*50, 165, 40 + k*50, dataValue [k]);

glColor3f (0.0, 0.0, 0.0); // Set text color to black.
xRaster = 20; // Display chart labels.
for (month = 0; month < 12; month++) {

glRasterPos2i (xRaster, yRaster);
for (k = 3*month; k < 3*month + 3; k++)

glutBitmapCharacter (GLUT_BITMAP_HELVETICA_12,
label [h]);

xRaster += 50;
}
glFlush ( );

}

F I G U R E 3 3
Output produced with the
pieChart procedure.

Pie charts are used to show the percentage contribution of individual parts to the
whole. The next program constructs a pie chart, using the midpoint routine for
generating a circle. Example values are used for the number and relative sizes of
the slices, and the output from this program appears in Figure 33.
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#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

const GLdouble twoPi = 6.283185;

class scrPt {
public:

GLint x, y;
};

GLsizei winWidth = 400, winHeight = 300; // Initial display window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0);

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

. // Midpoint routines for displaying a circle.

.

.

void pieChart (void)
{

scrPt circCtr, piePt;
GLint radius = winWidth / 4; // Circle radius.

GLdouble sliceAngle, previousSliceAngle = 0.0;

GLint k, nSlices = 12; // Number of slices.
GLfloat dataValues[12] = {10.0, 7.0, 13.0, 5.0, 13.0, 14.0,

3.0, 16.0, 5.0, 3.0, 17.0, 8.0};
GLfloat dataSum = 0.0;

circCtr.x = winWidth / 2; // Circle center position.
circCtr.y = winHeight / 2;
circleMidpoint (circCtr, radius); // Call a midpoint circle-plot routine.

for (k = 0; k < nSlices; k++)
dataSum += dataValues[k];

for (k = 0; k < nSlices; k++) {
sliceAngle = twoPi * dataValues[k] / dataSum + previousSliceAngle;
piePt.x = circCtr.x + radius * cos (sliceAngle);
piePt.y = circCtr.y + radius * sin (sliceAngle);
glBegin (GL_LINES);

glVertex2i (circCtr.x, circCtr.y);
glVertex2i (piePt.x, piePt.y);

glEnd ( );
previousSliceAngle = sliceAngle;

}
}
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void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set circle color to blue.

pieChart ( );
glFlush ( );

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ( );
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

glClear (GL_COLOR_BUFFER_BIT);

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Pie Chart");

init ( );
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ( );
}

Some variations on the circle equations are displayed by our last example pro-
gram, which uses the parametric polar equations (6-28) to compute points along
the curve paths. These points are then used as the endpoint positions for straight-
line sections, displaying the curves as approximating polylines. The curves shown
in Figure 34 are generated by varying the radius r of a circle. Depending on how
we vary r , we can produce a limaçon, cardioid, spiral, or other similar figure.

(a) (b) (c) (d) (e)

F I G U R E 3 4
Curved figures displayed by the drawCurve procedure: (a) limaçon, (b) cardioid, (c) three-leaf curve,
(d) four-leaf curve, and (e) spiral.
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#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

#include <iostream.h>

struct screenPt
{

GLint x;
GLint y;

};

typedef enum { limacon = 1, cardioid, threeLeaf, fourLeaf, spiral } curveName;

GLsizei winWidth = 600, winHeight = 500; // Initial display window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0);

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void lineSegment (screenPt pt1, screenPt pt2)
{

glBegin (GL_LINES);
glVertex2i (pt1.x, pt1.y);
glVertex2i (pt2.x, pt2.y);

glEnd ( );
}

void drawCurve (GLint curveNum)
{

/* The limacon of Pascal is a modification of the circle equation
* with the radius varying as r = a * cos (theta) + b, where a
* and b are constants. A cardioid is a limacon with a = b.
* Three-leaf and four-leaf curves are generated when
* r = a * cos (n * theta), with n = 3 and n = 2, respectively.
* A spiral is displayed when r is a multiple of theta.
*/

const GLdouble twoPi = 6.283185;
const GLint a = 175, b = 60;

GLfloat r, theta, dtheta = 1.0 / float (a);
GLint x0 = 200, y0 = 250; // Set an initial screen position.
screenPt curvePt[2];

glColor3f (0.0, 0.0, 0.0); // Set curve color to black.

curvePt[0].x = x0; // Initialize curve position.
curvePt[0].y = y0;
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switch (curveNum) {
case limacon: curvePt[0].x += a + b; break;
case cardioid: curvePt[0].x += a + a; break;
case threeLeaf: curvePt[0].x += a; break;
case fourLeaf: curvePt[0].x += a; break;
case spiral: break;
default: break;

}

theta = dtheta;
while (theta < two_Pi) {

switch (curveNum) {
case limacon:

r = a * cos (theta) + b; break;
case cardioid:

r = a * (1 + cos (theta)); break;
case threeLeaf:

r = a * cos (3 * theta); break;
case fourLeaf:

r = a * cos (2 * theta); break;
case spiral:

r = (a / 4.0) * theta; break;
default: break;

}

curvePt[1].x = x0 + r * cos (theta);
curvePt[1].y = y0 + r * sin (theta);
lineSegment (curvePt[0], curvePt[1]);

curvePt[0].x = curvePt[1].x;
curvePt[0].y = curvePt[1].y;
theta += dtheta;

}
}

void displayFcn (void)
{

GLint curveNum;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

cout << "\nEnter the integer value corresponding to\n";
cout << "one of the following curve names.\n";
cout << "Press any other key to exit.\n";
cout << "\n1-limacon, 2-cardioid, 3-threeLeaf, 4-fourLeaf, 5-spiral: ";
cin >> curveNum;

if (curveNum == 1 || curveNum == 2 || curveNum == 3 || curveNum == 4
|| curveNum == 5)
drawCurve (curveNum);

else
exit (0);

glFlush ( );
}
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void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ( );
gluOrtho2D (0.0, (GLdouble) newWidth, 0.0, (GLdouble) newHeight);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Draw Curves");

init ( );
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ( );
}

REFERENCES
Basic information on Bresenham’s algorithms can be
found in Bresenham (1965 and 1977). For midpoint meth-
ods, see Kappel (1985). Parallel methods for generating
lines and circles are discussed in Pang (1990) and in
Wright (1990). Many other methods for generating and
processing graphics primitives are discussed in Glass-
ner (1990), Arvo (1991), Kirk (1992), Heckbert (1994), and
Paeth (1995).

Additional programming examples using OpenGL
primitive functions are given in Woo et al. (1999). A list-
ing of all OpenGL primitive functions is available in
Shreiner (2000). For a complete reference to GLUT, see
Kilgard (1996).

EXERCISES
1 Set up geometric data tables as in Figure 16 for a

square pyramid (a square base with four triangular
sides that meet at a pinnacle).

2 Set up geometric data tables for a square pyra-
mid using just a vertex table and a surface-facet
table, then store the same information using just
the surface-facet table. Compare the two methods
for representing the unit cube with a representa-
tion using the three tables in the previous exercise.
Estimate the storage requirements for each.

3 Set up a procedure for establishing the geomet-
ric data tables for any input set of points defining
the polygon facets for the surface of a three-
dimensional object.

4 Devise routines for checking the three geometric
data tables in Figure 16 to ensure consistency and
completeness.

5 Calculate the plane parameters A, B, C , and D for
each face of a unit cube centered at the world co-
ordinate origin.

6 Write a program for calculating parameters A, B, C ,
and D for an input mesh of polygon-surface facets.

7 Write a procedure to determine whether an input
coordinate position is in front of a polygon surface
or behind it, given the plane parameters A, B, C ,
and D for the polygon.

8 Write a procedure to determine whether a given
point is inside or outside of a cube with a given set
of coordinates.

9 If the coordinate reference for a scene is changed
from a right-handed system to a left-handed sys-
tem, what changes could we make in the values
of surface plane parameters A, B, C , and D to en-
sure that the orientation of the plane is correctly
described?

10 Given that the first three vertices, V1, V2, and V3, of
a pentagon have been used to calculate plane pa-
rameters A = 15, B = 21, C = 9, D = 0, determine
from the final two vertices V4 = (2, −1, −1) and
V5 = (1, −2, 2) whether the pentagon is planar or
non-planar.
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11 Develop a procedure for identifying a nonplanar
vertex list for a quadrilateral.

12 Extend the algorithm of the previous exercise to
identify a nonplanar vertex list that contains more
than four coordinate positions.

13 Write a procedure to split a set of four polygon
vertex positions into a set of triangles.

14 Split the octagon given by the list of vertices V1, V2,
V3, V4, V5, V6, V7, V8 into a set of triangles and give
the vertices that make up each triangle.

15 Devise an algorithm for splitting a set of n polygon
vertex positions, with n > 4, into a set of triangles.

16 Set up an algorithm for identifying a degenerate
polygon vertex list that may contain repeated ver-
tices or collinear vertices.

17 Devise an algorithm for identifying a polygon ver-
tex list that contains intersecting edges.

18 Write a routine to identify concave polygons by
calculating cross-products of pairs of edge vectors.

19 Write a routine to split a concave polygon, using
the vector method.

20 Write a routine to split a concave polygon, using
the rotational method.

21 Devise an algorithm for determining interior re-
gions for any input set of vertices using the nonzero
winding-number rule and cross-product calcula-
tions to identify the direction for edge crossings.

22 Devise an algorithm for determining interior re-
gions for any input set of vertices using the nonzero
winding-number rule and dot-product calcula-
tions to identify the direction for edge crossings.

23 What regions of the self-intersecting polyline
shown in Figure 12 have a positive winding num-
ber? What are the regions that have a negative
winding number? What regions have a winding
number greater than 1?

24 Write a routine to implement a text-string function
that has two parameters: one parameter specifies a
world-coordinate position and the other parameter
specifies a text string.

25 Write a routine to implement a polymarker func-
tion that has two parameters: one parameter is
the character that is to be displayed and the other
parameter is a list of world-coordinate positions.

26 Modify the example program in Section 16 so
that the displayed hexagon is always at the cen-
ter of the display window, regardless of how the
display window may be resized.

27 Write a complete program for displaying a bar
chart. Input to the program is to include the data
points and the labeling required for the x and y
axes. The data points are to be scaled by the pro-
gram so that the graph is displayed across the full
area of a display window.

28 Write a program to display a bar chart in any
selected area of a display window.

29 Write a procedure to display a line graph for any
input set of data points in any selected area of
the screen, with the input data set scaled to fit
the selected screen area. Data points are to be
displayed as asterisks joined with straight-line
segments, and the x and y axes are to be labeled
according to input specifications. (Instead of aster-
isks, small circles or some other symbols could be
used to plot the data points.)

30 Using a circle function, write a routine to display
a pie chart with appropriate labeling. Input to the
routine is to include a data set giving the distri-
bution of the data over some set of intervals, the
name of the pie chart, and the names of the inter-
vals. Each section label is to be displayed outside
the boundary of the pie chart near the correspond-
ing pie section.

IN MORE DEPTH
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2 Choose one of the concave polygons you generated
in the previous exercise and set up the vertex, edge,
and surface facet tables for the shape as described
in Section 7. Now split the shape it into a set of
convex polygons using the vector method given in
the same section. Then split each of the resulting
convex polygons into a set of triangles using the
method described in Section 7 as well. Finally,
set up the vertex, edge, and surface facet tables
for the resulting set of triangles. Compare the two
table sets and the amount of memory needed to
store each.

For this exercise, draw a rough sketch of what a
single “snapshot” of your application might look
like and write a program to display this snapshot.
Choose a background color and default window
size. Make sure the snapshot includes at least a
few objects. Represent each object as a polygonal
approximation to the true object. Use a different
shape for each object type. Represent at least one
of the objects as a concave polygon. Make each
object its own color distinct from the background
color. It is a good idea to write a separate function
for each object (or each object type) in which 
you define the representation. Use display lists to
create and display each object. Include a display
window reshape function to redraw the scene
appropriately if the window is if the window is
resized.
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1 OpenGL State Variables

2 Color and Grayscale

3 OpenGL Color Functions

4 Point Attributes

5 OpenGL Point-Attribute Functions

6 Line Attributes

7 OpenGL Line-Attribute Functions

8 Curve Attributes

9 Fill-Area Attributes

10 OpenGL Fill-Area Attribute Functions

11 Character Attributes

12 OpenGL Character-Attribute
Functions

13 OpenGL Antialiasing Functions

14 OpenGL Query Functions

15 OpenGL Attribute Groups

Summary

I n general, a parameter that affects the way a primitive is

to be displayed is referred to as an attribute parameter.
Some attribute parameters, such as color and size, deter-

mine the fundamental characteristics of a primitive. Other attributes

specify how the primitive is to be displayed under special conditions.

Examples of special-condition attributes are the options such as vis-

ibility or detectability within an interactive object-selection program.

These special-condition attributes are explored in later chapters. Here,

we treat only those attributes that control the basic display properties

of graphics primitives, without regard for special situations. For exam-

ple, lines can be dotted or dashed, fat or thin, and blue or orange.

Areas might be filled with one color or with a multicolor pattern. Text

can appear reading from left to right, slanted diagonally across the

screen, or in vertical columns. Individual characters can be displayed

in different fonts, colors, and sizes. And we can apply intensity varia-

tions at the edges of objects to smooth out the raster stair-step effect.

16

From Chapter 5 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson 
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One way to incorporate attribute options into a graphics package is to extend the

parameter list associated with each graphics-primitive function to include the appro-

priate attribute values. A line-drawing function, for example, could contain additional

parameters to set the color, width, and other properties of a line. Another approach is to

maintain a system list of current attribute values. Separate functions are then included

in the graphics package for setting the current values in the attribute list. To generate a

primitive, the system checks the relevant attributes and invokes the display routine for

that primitive using the current attribute settings. Some graphics packages use a com-

bination of methods for setting attribute values, and other libraries, including OpenGL,

assign attributes using separate functions that update a system attribute list.

A graphics system that maintains a list for the current values of attributes and other

parameters is referred to as a state system or state machine. Attributes of output

primitives and some other parameters, such as the current frame-buffer position, are

referred to as state variables or state parameters. When we assign a value to one or

more state parameters, we put the system into a particular state, and that state remains

in effect until we change the value of a state parameter.

1 OpenGL State Variables
Attribute values and other parameter settings are specified with separate func-
tions that define the current OpenGL state. The state parameters in OpenGL
include color and other primitive attributes, the current matrix mode, the ele-
ments of the model-view matrix, the current position for the frame buffer, and the
parameters for the lighting effects in a scene. All OpenGL state parameters have
default values, which remain in effect until new values are specified. At any time,
we can query the system to determine the current value of a state parameter. In
the following sections of this chapter, we discuss only the attribute settings for
output primitives. Other state parameters are examined in later chapters.

All graphics primitives in OpenGL are displayed with the attributes in the
current state list. Changing one or more of the attribute settings affects only those
primitives that are specified after the OpenGL state is changed. Primitives that
were defined before the state change retain their attributes. Thus, we can display a
green line, change the current color to red, and define another line segment. Both
the green line and the red line will then be displayed. Also, some OpenGL state val-
ues can be specified withinglBegin/glEndpairs, along with the coordinate val-
ues, so that parameter settings can vary from one coordinate position to another.

2 Color and Grayscale
A basic attribute for all primitives is color. Various color options can be made
available to a user, depending on the capabilities and design objectives of a par-
ticular system. Color options can be specified numerically or selected from menus
or displayed slider scales. For a video monitor, these color codes are then con-
verted to intensity-level settings for the electron beams. With color plotters, the
codes might control ink-jet deposits or pen selections.

RGB Color Components
In a color raster system, the number of color choices available depends on the
amount of storage provided per pixel in the frame buffer. Also, color information
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The eight RGB color codes for a 3-bit-per-pixel frame buffer

Stored Color Values
in Frame Buffer

Color Code RED GREEN BLUE Displayed Color

0 0 0 0 Black
1 0 0 1 Blue
2 0 1 0 Green
3 0 1 1 Cyan
4 1 0 0 Red
5 1 0 1 Magenta
6 1 1 0 Yellow
7 1 1 1 White

can be stored in the frame buffer in two ways: We can store red, green, and blue
(RGB) color codes directly in the frame buffer, or we can put the color codes into
a separate table and use the pixel locations to store index values referencing the
color-table entries. With the direct storage scheme, whenever a particular color
code is specified in an application program, that color information is placed in the
frame buffer at the location of each component pixel in the output primitives to
be displayed in that color. A minimum number of colors can be provided in this
scheme with 3 bits of storage per pixel, as shown in Table 1. Each of the three
bit positions is used to control the intensity level (either on or off, in this case) of
the corresponding electron gun in an RGB monitor. The leftmost bit controls the
red gun, the middle bit controls the green gun, and the rightmost bit controls the
blue gun. Adding more bits per pixel to the frame buffer increases the number
of color choices that we have. With 6 bits per pixel, 2 bits can be used for each
gun. This allows four different intensity settings for each of the three color guns,
and a total of 64 color options are available for each screen pixel. As more color
options are provided, the storage required for the frame buffer also increases.
With a resolution of 1024 × 1024, a full-color (24-bit per pixel) RGB system needs
3 MB of storage for the frame buffer.

Color tables are an alternate means for providing extended color capabilities
to a user without requiring large frame buffers. At one time, this was an impor-
tant consideration; but today, hardware costs have decreased dramatically and
extended color capabilities are fairly common, even in low-end personal com-
puter systems. So most of our examples will simply assume that RGB color codes
are stored directly in the frame buffer.

Color Tables
Figure 1 illustrates a possible scheme for storing color values in a color lookup
table (or color map). Sometimes a color table is referred to as a video lookup
table. Values stored in the frame buffer are now used as indices into the color
table. In this example, each pixel can reference any of the 256 table positions, and
each entry in the table uses 24 bits to specify an RGB color. For the hexadecimal
color code 0x0821, a combination green-blue color is displayed for pixel location
(x, y). Systems employing this particular lookup table allow a user to select any
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F I G U R E 1
A color lookup table with 24 bits per entry that is accessed from a frame buffer with 8 bits per pixel. A value of
196 stored at pixel position (x , y ) references the location in this table containing the hexadecimal value 0x0821
(a decimal value of 2081). Each 8-bit segment of this entry controls the intensity level of one of the three electron
guns in an RGB monitor.

256 colors for simultaneous display from a palette of nearly 17 million colors.
Compared to a full-color system, this scheme reduces the number of simulta-
neous colors that can be displayed, but it also reduces the frame-buffer storage
requirement to 1 MB. Multiple color tables are sometimes available for handling
specialized rendering applications, such as antialiasing, and they are used with
systems that contain more than one color output device.

A color table can be useful in a number of applications, and it can provide
a “reasonable” number of simultaneous colors without requiring large frame
buffers. For most applications, 256 or 512 different colors are sufficient for a sin-
gle picture. Also, table entries can be changed at any time, allowing a user to be
able to experiment easily with different color combinations in a design, scene,
or graph without changing the attribute settings for the graphics data structure.
When a color value is changed in the color table, all pixels with that color index
immediately change to the new color. Without a color table, we can change the
color of a pixel only by storing the new color at that frame-buffer location. Simi-
larly, data-visualization applications can store values for some physical quantity,
such as energy, in the frame buffer and use a lookup table to experiment with
various color combinations without changing the pixel values. Also, in visual-
ization and image-processing applications, color tables are a convenient means
for setting color thresholds so that all pixel values above or below a specified
threshold can be set to the same color. For these reasons, some systems provide
both capabilities for storing color information. A user can then elect either to use
color tables or to store color codes directly in the frame buffer.

Grayscale
Because color capabilities are now common in computer-graphics systems, we
use RGB color functions to set shades of gray, or grayscale, in an application
program. When an RGB color setting specifies an equal amount of red, green, and
blue, the result is some shade of gray. Values close to 0 for the color components
produce dark gray, and higher values near 1.0 produce light gray. Applications
for grayscale display methods include enhancing black-and-white photographs
and generating visualization effects.
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Other Color Parameters
In addition to an RGB specification, other three-component color representations
are useful in computer-graphics applications. For example, color output on print-
ers is described with cyan, magenta, and yellow color components, and color
interfaces sometimes use parameters such as lightness and darkness to choose a
color. Also, color, and light in general, are complex subjects, and many terms and
concepts have been devised in the fields of optics, radiometry, and psychology
to describe the various aspects of light sources and lighting effects. Physically,
we can describe a color as electromagnetic radiation with a particular frequency
range and energy distribution, but then there are also the characteristics of our
perception of the color. Thus, we use the physical term intensity to quantify the
amount of light energy radiating in a particular direction over a period of time,
and we use the psychological term luminance to characterize the perceived bright-
ness of the light. We discuss these terms and other color concepts in greater detail

els for describing color.

3 OpenGL Color Functions

The OpenGL RGB and RGBA Color Modes

In the RGB (or RGBA) mode, we select the current color components with the
function

glColor* (colorComponents);

when we consider methods for modeling lighting effects and the various mod-

Most color settings for OpenGL primitives are made in the RGB mode. In addi-
tion to red, green, and blue color coefficients, there is a fourth component called
the alpha coefficient which is used to control color blending. The four-dimen-
sional color specification is called RGBA mode, and we can select it using the
OpenGL constant GLUT RGBA when we call glutInitDisplayMode. This
fourth color parameter can be used to control color blending for overlapping
primitives. An important application of color blending is in the simulation of
transparency effects. For these calculations, the value of alpha corresponds to
a transparency (or, opacity) setting. The alpha value is optional; the only differ-
ence between the RGB and RGBA modes is whether we are employing it for
color blending.
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glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

The first constant in the argument list states that we are using a single buffer for
the frame buffer, and the second constant puts us into the RGB mode, which is the
default color mode. If we wanted to specify colors by an index into a color table,
we would replace the OpenGL constant GLUT RGBwith GLUT INDEX. When we
specify a particular set of color values for primitives, we define the color state of
OpenGL. The current color is applied to all subsequently defined primitives until
we change the color settings. A new color specification affects only the objects we
define after the color change.

In an OpenGL color routines use one function to set the color for the display
window, and use another function to specify a color for the straight-line 
segment. Set the color display mode to RGB with the statement
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Suffix codes are similar to those for the glVertex function. We use a code of
either 3 or 4 to specify the RGB or RGBA mode along with the numerical data-type
code and an optional vector suffix. The suffix codes for the numerical data types
are b (byte), i (integer), s (short), f (float), and d (double), as well as unsigned
numerical values. Floating-point values for the color components are in the range
from 0.0 to 1.0, and the default color components for glColor, including the
alpha value, are (1.0, 1.0, 1.0, 1.0), which sets the RGB color to white and the alpha
value to 1.0. If we select the current color using an RGB specification (i.e., we
use glColor3 instead of glColor4), the alpha component will be automatically
set to 1.0 to indicate that we do not want color blending. As an example, the
following statement uses floating-point values in RGB mode to set the current
color for primitives to cyan (a combination of the highest intensities for green and
blue):

glColor3f (0.0, 1.0, 1.0);

Using an array specification for the three color components, we could set the color
in this example as

glColor3fv (colorArray);

An OpenGL color selection can be assigned to individual point positions within
glBegin/glEnd pairs.

Internally, OpenGL represents color information in floating-point format. We
can specify colors using integer values, but they will be converted automatically to
floating-point. The conversion is based on the data type we choose and the range
of values that we can specify in that type. For unsigned types, the minimum
value will be converted to a floating-point 0.0, and the maximum value to 1.0; for
signed values, the minimum will be converted to −1.0 and the maximum to 1.0.
For example, unsigned byte values (suffix code ub) have a range of 0 to 255, which
corresponds to the color specification system used by some windowing systems.
We could specify the cyan color used in our previous example this way:

glColor3ub (0, 255, 255);

However, if we were to use unsigned 32-bit integers (suffix code ui), the range
is 0 to 4,294,967,295! At this scale, small changes in color component values are
essentially invisible; to make a one-percent change in the intensity of a single color
component, for instance, we would need to change that component’s value by
42,949,673. For that reason, the most commonly used data types are floating-point
and small integer types.

OpenGL Color-Index Mode
Color specifications in OpenGL can also be given in the color-index mode, which
references values in a color table. Using this mode, we set the current color by
specifying an index into a color table as follows:

glIndex* (colorIndex);

ParametercolorIndex is assigned a nonnegative integer value. This index value
is then stored in the frame-buffer positions for subsequently specified primitives.
We can specify the color index in any of the following data types: unsigned byte,
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integer, or floating point. The data type for parameter colorIndex is indicated
with a suffix code of ub, s, i, d, or f, and the number of index positions in a color
table is always a power of 2, such as 256 or 1024. The number of bits available
at each table position depends on the hardware features of the system. As an
example of specifying a color in index mode, the following statement sets the
current color index to the value 196:

glIndexi (196);

All primitives defined after this statement will be assigned the color stored at that
position in the color table until the current color is changed.

There are no functions provided in the core OpenGL library for loading values
into a color-lookup table because table-processing routines are part of a window
system. Also, some window systems support multiple color tables and full color,
while other systems may have only one color table and limited color choices.
However, we do have a GLUT routine that interacts with a window system to set
color specifications into a table at a given index position as follows:

glutSetColor (index, red, green, blue);

Color parameters red, green, and blue are assigned floating-point values in
the range from 0.0 to 1.0. This color is then loaded into the table at the position
specified by the value of parameter index.

Routines for processing three other color tables are provided as extensions
to the OpenGL core library. These routines are part of the Imaging Subset of
OpenGL. Color values stored in these tables can be used to modify pixel values as
they are processed through various buffers. Some examples of using these tables
are setting camera focusing effects, filtering out certain colors from an image,
enhancing certain intensities or making brightness adjustments, converting a
grayscale photograph to color, and antialiasing a display. In addition, we can
use these tables to change color models; that is, we can change RGB colors to
another specification using three other “primary” colors (such as cyan, magenta,
and yellow).

A particular color table in the Imaging Subset of OpenGL is activated
with the glEnable function using one of the table names: GL COLOR TABLE,
GL POST CONVOLUTION COLOR TABLE, or GL POST COLOR MATRIX
COLOR TABLE. We can then use routines in the Imaging Subset to select a partic-
ular color table, set color-table values, copy table values, or specify which com-
ponent of a pixel’s color we want to change and how we want to change it.

OpenGL Color Blending
In many applications, it is convenient to be able to combine the colors of over-
lapping objects or to blend an object with the background. Some examples are
simulating a paintbrush effect, forming a composite image of two or more pic-
tures, modeling transparency effects, and antialiasing the objects in a scene. Most
graphics packages provide methods for producing various color-mixing effects,
and these procedures are called color-blending functions or image-compositing
functions. In OpenGL, the colors of two objects can be blended by first loading
one object into the frame buffer, then combining the color of the second object
with the frame-buffer color. The current frame-buffer color is referred to as the
OpenGL destination color and the color of the second object is the OpenGL source
color. Blending methods can be performed only in RGB or RGBA mode. To apply
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color blending in an application, we first need to activate this OpenGL feature
using the following function:

glEnable (GL_BLEND);

We turn off the color-blending routines in OpenGL with

glDisable (GL_BLEND);

If color blending is not activated, an object’s color simply replaces the frame-buffer
contents at the object’s location.

Colors can be blended in a number of different ways, depending on the effects
that we want to achieve, and we generate different color effects by specifying two
sets of blending factors. One set of blending factors is for the current object in the
frame buffer (the “destination object”), and the other set of blending factors is for
the incoming (“source”) object. The new, blended color that is then loaded into
the frame buffer is calculated as

(Sr Rs + Dr Rd , SgGs + DgGd , Sb Bs + Db Bd , Sa As + Da Ad) (1)

where the RGBA source color components are (Rs , Gs , Bs , As), the destina-
tion color components are (Rd , Gd , Bd , Ad), the source blending factors are
(Sr , Sg , Sb , Sa ), and the destination blending factors are (Dr , Dg , Db , Da ). Com-
puted values for the combined color components are clamped to the range from
0.0 to 1.0. That is, any sum greater than 1.0 is set to the value 1.0, and any sum
less than 0.0 is set to 0.0.

We select the blending-factor values with the OpenGL function

glBlendFunc (sFactor, dFactor);

Parameters sFactor and dFactor, the source and destination factors, are each
assigned an OpenGL symbolic constant specifying a predefined set of four blend-
ing coefficients. For example, the constant GL ZER0 yields the blending factors
(0.0, 0.0, 0.0, 0.0) andGL ONEgives us the set (1.0, 1.0, 1.0, 1.0). We could set all four
blending factors either to the destination alpha value or to the source alpha value
using GL DST ALPHA or GL SRC ALPHA. Other OpenGL constants that are
available for setting the blending factors include GL ONE MINUS DST ALPHA,
GL ONE MINUS SRC ALPHA, GL DST COLOR, and GL SRC COLOR. These
blending factors are often used for simulating transparency, and they are dis-
cussed in greater detail in Section 18-4. The default value for parameter sFactor
is GL ONE, and the default value for parameter dFactor is GL ZERO. Hence,
the default values for the blending factors result in the incoming color values
replacing the current values in the frame buffer.

OpenGL Color Arrays

glEnableClientState (GL_COLOR_ARRAY);

Then, for RGB color mode, we specify the location and format of the color com-
ponents with

glColorPointer (nColorComponents, dataType,
offset, colorArray);

We can also specify color values for a scene in combination with the coordinate
values in a vertex array. This can be done either in RGB mode or in color-index
mode. As with vertex arrays, we must first activate the color-array features of
OpenGL as follows:
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Parameter nColorComponents is assigned a value of either 3 or 4, depending on
whether we are listing RGB or RGBA color components in the arraycolorArray.
An OpenGL symbolic constant such as GL INT or GL FLOAT is assigned to
parameter dataType to indicate the data type for the color values. For a separate
color array, we can assign the value 0 to parameter offset. However, if we
combine color data with vertex data in the same array, the offset value is the
number of bytes between each set of color components in the array.

typedef GLint vertex3 [3], color3 [3];

vertex3 pt [8] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0},
{1, 1, 0}, {0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

color3 hue [8] = { {1, 0, 0}, {1, 0, 0}, {0, 0, 1},
{0, 0, 1}, {1, 0, 0}, {1, 0, 0}, {0, 0, 1}, {0, 0, 1} };

glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);

glVertexPointer (3, GL_INT, 0, pt);
glColorPointer (3, GL_INT, 0, hue);

We can even stuff both the colors and the vertex coordinates into one inter-
laced array. Each of the pointers would then reference the single interlaced array
with an appropriate offset value. For example,

static GLint hueAndPt [ ] =
{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1};

glVertexPointer (3, GL_INT, 6*sizeof(GLint), hueAndPt[3]);
glColorPointer (3, GL_INT, 6*sizeof(GLint), hueAndPt[0]);

The first three elements of this array specify an RGB color value, the next three
elements specify a set of (x, y, z) vertex coordinates, and this pattern continues to
the last color-vertex specification. We set the offset parameter to the number of
bytes between successive color, or vertex, values, which is 6*sizeof(GLint)
for both. Color values start at the first element of the interlaced array, which
is hueAndPt [0], and vertex values start at the fourth element, which is
hueAndPt [3].

Because a scene generally contains several objects, each with multiple planar
surfaces, OpenGL provides a function in which we can specify all the vertex and
color arrays at once, as well as other types of information. If we change the color
and vertex values in this example to floating-point, we use this function in the
form

glInterleavedArrays (GL_C3F_V3F, 0, hueAndPt);
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a color array. The following code fragment sets the color of all vertices on the
front face of the cube to blue, and all vertices of the back face are assigned the
color red:

As an example of using color arrays, we can modify a vertex-array to include
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The first parameter is an OpenGL constant that indicates three-element floating-
point specifications for both color (C) and vertex coordinates (V). The elements of
arrayhueAndPt are to be interlaced with the color for each vertex listed before the
coordinates. This function also automatically enables both vertex and color arrays.

In color-index mode, we define an array of color indices with

glIndexPointer (type, stride, colorIndex);

Color indices are listed in the array colorIndex and the type and stride
parameters are the same as in glColorPointer. No size parameter is needed
because color-table indices are specified with a single value.

Other OpenGL Color Functions

glClearColor (red, green, blue, alpha);

Each color component in the designation (red, green, and blue), as well as the
alpha parameter, is assigned a floating-point value in the range from 0.0 to 1.0. The
default value for all four parameters is 0.0, which produces the color black. If each
color component is set to 1.0, the clear color is white. Shades of gray are obtained
with identical values for the color components between 0.0 and 1.0. The fourth
parameter, alpha, provides an option for blending the previous color with the
current color. This can occur only if we activate the blending feature of OpenGL;
color blending cannot be performed with values specified in a color table.

glClear (GL_COLOR_BUFFER_BIT);

We can also use theglClear function to set initial values for other buffers that are
available in OpenGL. These are the accumulation buffer, which stores blended-color
information, the depth buffer, which stores depth values (distances from the view-
ing position) for objects in a scene, and the stencil buffer, which stores information
to define the limits of a picture.

In color-index mode, we use the following function (instead of glClear-
Color) to set the display-window color:

glClearIndex (index);

The window background color is then assigned the color that is stored at position
index in the color table; and the window is displayed in this color when we issue
the glClear (GL COLOR BUFFER BIT) function.

Many other color functions are available in the OpenGL library for dealing
with a variety of tasks, such as changing color models, setting lighting effects for
a scene, specifying camera effects, and rendering the surfaces of an object. We
examine other color functions as we explore each of the component processes in
a computer-graphics system. For now, we limit our discussion to those functions
relating to color specifications for graphics primitives.

There are several color buffers in OpenGL that can be used as the current
refresh buffer for displaying a scene, and the glClearColor function specifies
the color for all the color buffers. We then apply the clear color to the color
buffers with the command

The following function selects RGB color components for a display window:

108



4 Point Attributes
Basically, we can set two attributes for points: color and size. In a state system,
the displayed color and size of a point is determined by the current values stored
in the attribute list. Color components are set with RGB values or an index into a
color table. For a raster system, point size is an integer multiple of the pixel size,
so that a large point is displayed as a square block of pixels.

5 OpenGL Point-Attribute Functions
The displayed color of a designated point position is controlled by the current
color values in the state list. Also, a color is specified with either the glColor
function or the glIndex function.

We set the size for an OpenGL point with

glPointSize (size);

and the point is then displayed as a square block of pixels. Parameter size is
assigned a positive floating-point value, which is rounded to an integer (unless
the point is to be antialiased). The number of horizontal and vertical pixels in
the display of the point is determined by parameter size. Thus, a point size
of 1.0 displays a single pixel, and a point size of 2.0 displays a 2 × 2 pixel array. If
we activate the antialiasing features of OpenGL, the size of a displayed block of
pixels will be modified to smooth the edges. The default value for point size is 1.0.

Attribute functions may be listed inside or outside of aglBegin/glEndpair.
For example, the following code segment plots three points in varying colors and
sizes. The first is a standard-size red point, the second is a double-size green point,
and the third is a triple-size blue point:

glColor3f (1.0, 0.0, 0.0);
glBegin (GL_POINTS);

glVertex2i (50, 100);
glPointSize (2.0);
glColor3f (0.0, 1.0, 0.0);
glVertex2i (75, 150);
glPointSize (3.0);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (100, 200);

glEnd ( );

6 Line Attributes
A straight-line segment can be displayed with three basic attributes: color, width,
and style. Line color is typically set with the same function for all graphics prim-
itives, while line width and line style are selected with separate line functions. In
addition, lines may be generated with other effects, such as pen and brush strokes.

Line Width
Implementation of line-width options depends on the capabilities of the output
device. A heavy line could be displayed on a video monitor as adjacent parallel
lines, while a pen plotter might require pen changes to draw a thick line.
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Line Style
Possible selections for the line-style attribute include solid lines, dashed lines, and
dotted lines. We modify a line-drawing algorithm to generate such lines by setting
the length and spacing of displayed solid sections along the line path. With many
graphics packages, we can select the length of both the dashes and the inter-dash
spacing.

Pen and Brush Options
With some packages, particularly painting and drawing systems, we can select
different pen and brush styles directly. Options in this category include shape,

F I G U R E 2
Pen and brush shapes for line display.

For raster implementations, a standard-width line is generated with single
pixels at each sample position, as in the Bresenham algorithm. Thicker lines are
displayed as positive integer multiples of the standard line by plotting addition-
al pixels along adjacent parallel line paths.

size, and pattern for the pen or brush. Some example pen and brush shapes are
given in Figure 2.
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7 OpenGL Line-Attribute Functions
We can control the appearance of a straight-line segment in OpenGL with three
attribute settings: line color, line width, and line style. We have already seen how to
make a color selection, and OpenGL provides a function for setting the width of a
line and another function for specifying a line style, such as a dashed or dotted line.

OpenGL Line-Width Function
Line width is set in OpenGL with the function

glLineWidth (width);

We assign a floating-point value to parameter width, and this value is rounded
to the nearest nonnegative integer. If the input value rounds to 0.0, the line is
displayed with a standard width of 1.0, which is the default width. However,
when antialiasing is applied to the line, its edges are smoothed to reduce the raster
stair-step appearance and fractional widths are possible. Some implementations
of the line-width function might support only a limited number of widths, and
some might not support widths other than 1.0.

The magnitude of the horizontal and vertical separa
points, �x and �y, are compared to determine whether to
using vertical pixel spans or horizontal pixel spans.

OpenGL Line-Style Function
By default, a straight-line segment is displayed as a solid line. However, we can
also display dashed lines, dotted lines, or a line with a combination of dashes and
dots, and we can vary the length of the dashes and the spacing between dashes
or dots. We set a current display style for lines with the OpenGL function

glLineStipple (repeatFactor, pattern);

Parameter pattern is used to reference a 16-bit integer that describes how the
line should be displayed. A 1 bit in the pattern denotes an “on” pixel position, and
a 0 bit indicates an “off” pixel position. The pattern is applied to the pixels along
the line path starting with the low-order bits in the pattern. The default pattern is
0xFFFF (each bit position has a value of 1), which produces a solid line. Integer pa-
rameter repeatFactor specifies how many times each bit in the pattern is to be
repeated before the next bit in the pattern is applied. The default repeat value is 1.

With a polyline, a specified line-style pattern is not restarted at the beginning
of each segment. It is applied continuously across all the segments, starting at the
first endpoint of the polyline and ending at the final endpoint for the last segment
in the series.

As an example of specifying a line style, suppose that parameter pattern is
assigned the hexadecimal representation 0x00FF and the repeat factor is 1. This
would display a dashed line with eight pixels in each dash and eight pixel po-
sitions that are “off” (an eight-pixel space) between two dashes. Also, because
low-order bits are applied first, a line begins with an eight-pixel dash starting
at the first endpoint. This dash is followed by an eight-pixel space, then another
eight-pixel dash, and so forth, until the second endpoint position is reached.

tions of the line end-
generate a thick line
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Before a line can be displayed in the current line-style pattern, we must
activate the line-style feature of OpenGL. We accomplish this with the follow-
ing function:

glEnable (GL_LINE_STIPPLE);

If we forget to include this enable function, solid lines are displayed; that is, the
default pattern 0xFFFF is used to display line segments. At any time, we can turn
off the line-pattern feature with

glDisable (GL_LINE_STIPPLE);

This replaces the current line-style pattern with the default pattern (solid lines).
In the following program outline, we illustrate use of the OpenGL line-

attribute functions by plotting three line graphs in different styles and widths.
Figure 3 shows the data plots that could be generated by this program.

/* Define a two-dimensional world-coordinate data type. */
typedef struct { float x, y; } wcPt2D;

wcPt2D dataPts [5];

void linePlot (wcPt2D dataPts [5])
{

int k;

glBegin (GL_LINE_STRIP);
for (k = 0; k < 5; k++)

glVertex2f (dataPts [k].x, dataPts [k].y);

glFlush ( );

glEnd ( );
}

/* Invoke a procedure here to draw coordinate axes. */

glEnable (GL_LINE_STIPPLE);

/* Input first set of (x, y) data values. */
glLineStipple (1, 0x1C47); // Plot a dash-dot, standard-width polyline.
linePlot (dataPts);

/* Input second set of (x, y) data values. */
glLineStipple (1, 0x00FF); // Plot a dashed, double-width polyline.
glLineWidth (2.0);
linePlot (dataPts);

/* Input third set of (x, y) data values. */
glLineStipple (1, 0x0101); // Plot a dotted, triple-width polyline.
glLineWidth (3.0);
linePlot (dataPts);

glDisable (GL_LINE_STIPPLE);
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F I G U R E 3
Plotting three data sets with three different
OpenGL line styles and line widths: single-width
dash-dot pattern, double-width dash pattern, and
triple-width dot pattern.

Other OpenGL Line Effects
In addition to specifying width, style, and a solid color, we can display lines with
color gradations. For example, we can vary the color along the path of a solid
line by assigning a different color to each line endpoint as we define the line. In
the following code segment, we illustrate this by assigning a blue color to one
endpoint of a line and a red color to the other endpoint. The solid line is then
displayed as a linear interpolation of the colors at the two endpoints:

glShadeModel (GL_SMOOTH);

glBegin (GL_LINES);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (50, 50);
glColor3f (1.0, 0.0, 0.0);
glVertex2i (250, 250);

glEnd ( );

Function glShadeModel can also be given the argument GL FLAT. In that case,
the line segment would have been displayed in a single color: the color of the
second endpoint, (250, 250). That is, we would have generated a red line. Actually,
GL SMOOTH is the default, so we would generate a smoothly interpolated color
line segment even if we did not include this function in our code.

We can produce other effects by displaying adjacent lines that have different
colors and patterns. In addition, we can use the color-blending features of OpenGL
by superimposing lines or other objects with varying alpha values. A brush stroke
and other painting effects can be simulated with a pixmap and color blending.
The pixmap can then be moved interactively to generate line segments. Individual
pixels in the pixmap can be assigned different alpha values to display lines as
brush or pen strokes.

8 Curve Attributes
Parameters for curve attributes are the same as those for straight-line segments. We
can display curves with varying colors, widths, dot-dash patterns, and available
pen or brush options. for adapting curve-drawing algorithms to accommodate
attribute selections are similar to those for line drawing.
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F I G U R E 4
Curved lines drawn with a paint program using various shapes
and patterns. From left to right, the brush shapes are square,
round, diagonal line, dot pattern, and faded airbrush.

Painting and drawing programs allow pictures to be constructed interactively
by using a pointing device, such as a stylus and a graphics tablet, to sketch various
curve shapes. Some examples of such curve patterns are shown in Figure 4. An
additional pattern option that can be provided in a paint package is the display
of simulated brush strokes.

9 Fill-Area Attributes
Most graphics packages limit fill areas to polygons because they are described with
linear equations. A further restriction requires fill areas to be convex polygons,
so that scan lines do not intersect more than two boundary edges. However, in
general, we can fill any specified regions, including circles, ellipses, and other ob-
jects with curved boundaries. Also, application systems, such as paint programs,
provide fill options for arbitrarily shaped regions.

Fill Styles
A basic fill-area attribute provided by a general graphics library is the display
style of the interior. We can display a region with a single color, a specified fill
pattern, or in a “hollow” style by showing only the boundary of the region. These
three fill styles are illustrated in Figure 5. We can also fill selected regions of a
scene using various brush styles, color-blending combinations, or textures. Other
options include specifications for the display of the boundaries of a fill area.
For polygons, we could show the edges in different colors, widths, and styles;
and we can select different display attributes for the front and back faces of a
region.

Hollow
(a)

Solid
(b)

Patterned
(c)

F I G U R E 5
Basic polygon fill styles.

Fill patterns can be defined in rectangular color arrays that list different colors
for different positions in the array. Alternatively, a fill pattern could be specified
as a bit array that indicates which relative positions are to be displayed in a single
selected color. An array specifying a fill pattern is a mask that is to be applied
to the display area. Some graphics systems provide an option for selecting an
arbitrary initial position for overlaying the mask. From this starting position, the
mask is replicated in the horizontal and vertical directions until the display area
is filled with nonoverlapping copies of the pattern. Where the pattern overlaps
specified fill areas, the array pattern indicates which pixels should be displayed
in a particular color. This process of filling an area with a rectangular pattern is
called tiling, and a rectangular fill pattern is sometimes referred to as a tiling
pattern. Sometimes, predefined fill patterns are available in a system, such as the
hatch fill patterns shown in Figure 6.

Strictly speaking, OpenGL does not consider curves to be drawing primi-
tives in the same way that it considers points and lines to be primitives. Curves
can be drawn in several ways in OpenGL. Perhaps the simplest approach is to
approximate the shape of the curve using short line segments. Alternatively,
curved segments can be drawn using splines. These can be drawn using OpenGL
evaluator functions, or by using functions from the OpenGL Utility (GLU) library
which draw splines.
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Diagonal
Hatch Fill

Diagonal
Crosshatch Fill

F I G U R E 6
Areas filled with hatch patterns.

Color-Blended Fill Regions
It is also possible to combine a fill pattern with background colors in various ways.
A pattern could be combined with background colors using a transparency factor
that determines how much of the background should be mixed with the object
color.

Some fill methods using blended colors have been referred to as soft-fill or
tint-fill algorithms. One use for these fill methods is to soften the fill colors at object
borders that have been blurred to antialias the edges. Another application of a
soft-fill algorithm is to allow repainting of a color area that was originally filled
with a semitransparent brush, where the current color is then a mixture of the
brush color and the background colors “behind” the area. In either case, we want
the new fill color to have the same variations over the area as the current fill color.

10 OpenGL Fill-Area Attribute Functions
In the OpenGL graphics package, fill-area routines are available for convex poly-
gons only. We generate displays of filled convex polygons in four steps:

1. Define a fill pattern.
2. Invoke the polygon-fill routine.
3. Activate the polygon-fill feature of OpenGL.
4. Describe the polygons to be filled.

A polygon fill pattern is displayed up to and including the polygon edges. Thus,
there are no boundary lines around the fill region unless we specifically add them
to the display.

In addition to specifying a fill pattern for a polygon interior, there are a number
of other options available. One option is to display a hollow polygon, where no
interior color or pattern is applied and only the edges are generated. A hollow
polygon is equivalent to the display of a closed polyline primitive. Another option
is to show the polygon vertices, with no interior fill and no edges. Also, we
designate different attributes for the front and back faces of a polygon fill area.

OpenGL Fill-Pattern Function
By default, a convex polygon is displayed as a solid-color region, using the current
color setting. To fill the polygon with a pattern in OpenGL, we use a 32 × 32 bit
mask. A value of 1 in the mask indicates that the corresponding pixel is to be
set to the current color, and a 0 leaves the value of that frame-buffer position
unchanged. The fill pattern is specified in unsigned bytes using the OpenGL data
typeGLubyte, just as we did with theglBitmap function. We define a bit pattern
with hexadecimal values as, for example,

GLubyte fillPattern [ ] = {
0xff, 0x00, 0xff, 0x00, ... };

The bits must be specified starting with the bottom row of the pattern, and con-
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tinuing up to the topmost row (32) of the pattern. This pattern is replicated
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F I G U R E 7
Tiling a rectangular fill pattern across a
display window to fill two convex
polygons. Start Position

 Display Window

Once we have set a mask, we can establish it as the current fill pattern with
the function

glPolygonStipple (fillPattern);

Next, we need to enable the fill routines before we specify the vertices for the
polygons that are to be filled with the current pattern. We do this with the
statement

glEnable (GL_POLYGON_STIPPLE);

Similarly, we turn off pattern filling with

glDisable (GL_POLYGON_STIPPLE);

Figure 8 illustrates how a 3 × 3 bit pattern, repeated over a 32 × 32 bit mask,
might be applied to fill a parallelogram.

OpenGL Texture and Interpolation Patterns

F I G U R E 8
A 3 × 3 bit pattern (a) superimposed
on a parallelogram to produce the fill
area in (b), where the top-right corner
of the pattern coincides with the
lower-left corner of the parallelogram.

Top-Right
Pattern
Corner

(a) (b)

Another method for filling polygons is to use texture patterns. This can produce
fill patterns that simulate the surface appearance of wood, brick, brushed steel,
or some other material. Also, we can obtain an interpolation coloring of a poly-
gon interior just as we did with the line primitive. To do this, we assign different
colors to polygon vertices. Interpolation fill of a polygon interior is used to pro-
duce realistic displays of shaded surfaces under various lighting conditions.

across the entire area of the display window, starting at the lower-left 
window corner, and specified polygons are filled where the pattern overlaps
those polygons (Figure 7).
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As an example of an interpolation fill, the following code segment assigns
either a blue, red, or green color to each of the three vertices of a triangle. The
polygon fill is then a linear interpolation of the colors at the vertices:

glShadeModel (GL_SMOOTH);

glBegin (GL_TRIANGLES);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (50, 50);
glColor3f (1.0, 0.0, 0.0);
glVertex2i (150, 50);
glColor3f (0.0, 1.0, 0.0);
glVertex2i (75, 150);

glEnd ( );

Of course, if a single color is set for the triangle as a whole, the polygon is filled with
that one color; and if we change the argument in the glShadeModel function
to GL FLAT in this example, the polygon is filled with the last color specified
(green). The value GL SMOOTH is the default shading, but we can include that
specification to remind us that the polygon is to be filled as an interpolation of
the vertex colors.

OpenGL Wire-Frame Methods
We can also choose to show only polygon edges. This produces a wire-frame or
hollow display of the polygon; or we could display a polygon by plotting a set of
points only at the vertex positions. These options are selected with the function

glPolygonMode (face, displayMode);

We use parameter face to designate which face of the polygon that we want
to show as edges only or vertices only. This parameter is then assigned either
GL FRONT,GL BACK, orGL FRONT AND BACK. Then, if we want only the poly-
gon edges displayed for our selection, we assign the constant GL LINE to param-
eterdisplayMode. To plot only the polygon vertex points, we assign the constant
GL POINT to parameter displayMode. A third option is GL FILL; but this is
the default display mode, so we usually invoke only glPolygonMode when we
want to set attributes for the polygon edges or vertices.

Another option is to display a polygon with both an interior fill and a different
color or pattern for its edges (or for its vertices). This is accomplished by specify-
ing the polygon twice: once with parameter displayMode set to GL FILL and
then again with displayMode set to GL LINE (or GL POINT). For example, the
following code section fills a polygon interior with a green color, and then the
edges are assigned a red color:

glColor3f (0.0, 1.0, 0.0);
/* Invoke polygon-generating routine. */

glColor3f (1.0, 0.0, 0.0);
glPolygonMode (GL_FRONT, GL_LINE);
/* Invoke polygon-generating routine again. */

For a three-dimensional polygon (one that does not have all vertices in the xy
plane), this method for displaying the edges of a filled polygon may produce
gaps along the edges. This effect, sometimes referred to as stitching, is caused by
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differences between calculations in the scan-line fill algorithm and calculations in
the edge line-drawing algorithm. As the interior of a three-dimensional polygon
is filled, the depth value (distance from the xy plane) is calculated for each (x, y)
position. However, this depth value at an edge of the polygon is often not exactly
the same as the depth value calculated by the line-drawing algorithm for the same
(x, y) position. Therefore, when visibility tests are made, the interior fill color could
be used instead of an edge color to display some points along the boundary of a
polygon.

One way to eliminate the gaps along displayed edges of a three-dimensional
polygon is to shift the depth values calculated by the fill routine so that they do
not overlap with the edge depth values for that polygon. We do this with the
following two OpenGL functions:

glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (factor1, factor2);

The first function activates the offset routine for scan-line filling, and the second
function is used to set a couple of floating-point values factor1 and factor2
that are used to calculate the amount of depth offset. The calculation for this depth
offset is

depthOffset = factor1 · maxSlope + factor2 · const (2)

where maxSlope is the maximum slope of the polygon and const is an imple-
mentation constant. For a polygon in the xy plane, the slope is 0. Otherwise, the
maximum slope is calculated as the change in depth of the polygon divided by
either the change in x or the change in y. A typical value for the two factors is
either 0.75 or 1.0, although some experimentation with the factor values is often
necessary to produce good results. As an example of assigning values to offset
factors, we can modify the previous code segment as follows:

glColor3f (0.0, 1.0, 0.0);
glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (1.0, 1.0);
/* Invoke polygon-generating routine. */
glDisable (GL_POLYGON_OFFSET_FILL);

glColor3f (1.0, 0.0, 0.0);
glPolygonMode (GL_FRONT, GL_LINE);
/* Invoke polygon-generating routine again. */

Now the interior fill of the polygon is pushed a little farther away in depth, so that
it does not interfere with the depth values of its edges. It is also possible to imple-
ment this method by applying the offset to the line-drawing algorithm, by chang-
ing the argument of the glEnable function to GL POLYGON OFFSET LINE. In
this case, we want to use negative factors to bring the edge depth values closer.
Also, if we just wanted to display different color points at the vertex positions,
instead of highlighted edges, the argument in the glEnable function would be
GL POLYGON OFFSET POINT.

Another method for eliminating the stitching effect along polygon edges is to
use the OpenGL stencil buffer to limit the polygon interior filling so that it does
not overlap the edges. However, this approach is more complicated and generally
slower, so the polygon depth-offset method is preferred.
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Dividing a concave polygon (a) into a
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edges (dashed) that are interior to the
original polygon.
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F I G U R E 1 0
The triangle in (a) can be displayed as
in (b) by setting the edge flag for
vertex v2 to the value GL FALSE,
assuming that the vertices are
specified in a counterclockwise order.

To display a concave polygon using OpenGL routines, we must first split it
into a set of convex polygons. We typically divide a concave polygon into a set
of triangles. Then we could display
the triangles. Similarly, if we want
the triangle vertices. To display the
form, however, we cannot just set the
would show all the triangle edges that
gon (Figure 9).

Fortunately, OpenGL provides a mechanism that allows us to eliminate
selected edges from a wire-frame display. Each polygon vertex is stored with
a one-bit flag that indicates whether or not that vertex is connected to the next
vertex by a boundary edge. So all we need do is set that bit flag to “off” and the
edge following that vertex will not be displayed. We set this flag for an edge with
the following function:

glEdgeFlag (flag);

To indicate that a vertex does not precede a boundary edge, we assign the OpenGL
constant GL FALSE to parameter flag. This applies to all subsequently speci-
fied vertices until the next call to glEdgeFlag is made. The OpenGL constant
GL TRUE turns the edge flag on again, which is the default. Function glEdge-
Flag can be placed between glBegin/glEnd pairs. As an illustration of the use
of an edge flag, the following code displays only two edges of the defined triangle
(Figure 10):

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

glBegin (GL_POLYGON);
glVertex3fv (v1);
glEdgeFlag (GL_FALSE);
glVertex3fv (v2);
glEdgeFlag (GL_TRUE);
glVertex3fv (v3);

glEnd ( );

the concave polygon as a fill region by filling
to show only the polygon vertices, we plot

original concave polygon in a wire-frame
display mode to GL LINE because that
are interior to the original concave poly-
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glEnableClientState (GL_EDGE_FLAG_ARRAY);

glEdgeFlagPointer (offset, edgeFlagArray);

Parameter offset indicates the number of bytes between the values for the edge
flags in the array edgeFlagArray. The default value for parameter offset is 0.

OpenGL Front-Face Function
Although, by default, the ordering of polygon vertices controls the identification
of front and back faces, we can label selected surfaces in a scene independently
as front or back with the function

glFrontFace (vertexOrder);

If we set parameter vertexOrder to the OpenGL constant GL CW, then a subse-
quently defined polygon with a clockwise ordering for its vertices is considered
to be front-facing. This OpenGL feature can be used to swap faces of a polygon
for which we have specified vertices in a clockwise order. The constant GL CCW
labels a counterclockwise ordering of polygon vertices as front-facing, which is
the default ordering.

11 Character Attributes
We control the appearance of displayed characters with attributes such as font,
size, color, and orientation. In many packages, attributes can be set both for entire
character strings (text) and for individual characters that can be used for special
purposes such as plotting a data graph.

There are a great many possible text-display options. First, there is the choice
of font (or typeface), which is a set of characters with a particular design style
such as New York, Courier, Helvetica, London, Times Roman, and various spe-
cial symbol groups. The characters in a selected font can also be displayed with
assorted underlining styles (solid, ------ -dotted, double), in boldface, in italic, and in
OUTLINE or shadow styles.

Color settings for displayed text can be stored in the system attribute list and
used by the procedures that generate character definitions in the frame buffer.
When a character string is to be displayed, the current color is used to set pixel
values in the frame buffer corresponding to the character shapes and positions.

We could adjust text size by scaling the overall dimensions (height and
width) of characters or by scaling only the height or the width. Character size
(height) is specified by printers and compositors in points, where 1 point is about
0.035146 centimeters (or 0.013837 inch, which is approximately 1

72 inch). For ex-
ample, the characters in this book are set in a 10-point font. Point measurements
specify the size of the body of a character (Figure 11), but different fonts with
the same point specifications can have different character sizes, depending on
the design of the typeface. The distance between the bottomline and the topline of
the character body is the same for all characters in a particular size and typeface,
but the body width may vary. Proportionally spaced fonts assign a smaller body
width to narrow characters such as i, j, l, and f compared to broad characters

Polygon edge flags can also be specified in an array that could be combined
or associated with a vertex array (see Section 3). The statements for creating an
array of edge flags are
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Examples of character bodies.

such as W or M. Character height is defined as the distance between the baseline and
the capline of characters. Kerned characters, such as f and j in Figure 11, typically
extend beyond the character body limits, and letters with descenders (g, j, p, q , y)

extend below the baseline. Each character is positioned within the character body
by a font designer in such a way that suitable spacing is attained along and
between print lines when text is displayed with character bodies touching.

Sometimes, text size is adjusted without changing the width-to-height ratio
of characters. Figure 12 shows a character string displayed with three different
character heights, while maintaining the ratio of width to height. Examples of text
displayed with a constant height and varying widths are given in Figure 13.

Spacing between characters is another attribute that can often be assigned
to a character string. Figure 14 shows a character string displayed with three
different settings for the intercharacter spacing.

The orientation for a character string can be set according to the direction of
a character up vector. Text is then displayed so that the orientation of characters
from baseline to capline is in the direction of the up vector. For example, with the
direction of the up vector at 45◦, text would be displayed as shown in Figure 15.
A procedure for orienting text could rotate characters so that the sides of charac-
ter bodies, from baseline to capline, are aligned with the up vector. The rotated
character shapes are then scan converted into the frame buffer.

It is useful in many applications to be able to arrange character strings
vertically or horizontally. Examples of this are given in Figure 16. We could
also arrange the characters in a text string so that the string is displayed for-
ward or backward. Examples of text displayed with these options are shown in
Figure 17. A procedure for implementing text-path orientation adjusts the
position of the individual characters in the frame buffer according to the option
selected.

Character strings could also be oriented using a combination of up-vector and
text-path specifications to produce slanted text. Figure 18 shows the directions

Height 1

Height 3
Height 2

F I G U R E 1 2
Text strings displayed with different
character-height settings and a
constant width-to-height ratio.

width 0.5

width 1.0

width 2.0
F I G U R E 1 3
Text strings displayed with varying
sizes for the character widths and a
fixed height.

Spacing 0.0

S p a c i n g  0 . 5

S p a c i n g  1 . 0
F I G U R E 1 4
Text strings displayed with different
character-spacing values.
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The 45◦ up vector in Figure 18
produces the display (a) for a down
path and the display (b) for a right
path.

of character strings generated by various text path settings for a 45◦ up vector.
Examples of character strings generated for text-path values down and right with
this up vector are illustrated in Figure 19.

Another possible attribute for character strings is alignment. This attribute
specifies how text is to be displayed with respect to a reference position. For ex-
ample, individual characters could be aligned according to the base lines or the
character centers. Figure 20 illustrates typical character positions for horizon-
tal and vertical alignments. String alignments are also possible, and Figure 21
shows common alignment positions for horizontal and vertical text labels.
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F I G U R E 1 7
A text string displayed with the four
text-path options: left, right, up, and
down.

In some graphics packages, a text-precision attribute is also available. This
parameter specifies the amount of detail and the particular processing options
that are to be used with a text string. For a low-precision text string, many at-
tribute selections, such as text path, are ignored, and faster procedures are used
for processing the characters through the viewing pipeline.

Finally, a library of text-processing routines often supplies a set of special char-
acters, such as a small circle or cross, which are useful in various applications. Most
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often these characters are used as marker symbols in network layouts or in graph-
ing data sets. The attributes for these marker symbols are typically color and size.

12 OpenGL Character-Attribute Functions
We have two methods for displaying characters with the OpenGL package. Either
we can design a font set using the bitmap functions in the core library, or we
can invoke the GLUT character-generation routines. The GLUT library contains
functions for displaying predefined bitmap and stroke character sets. Therefore,
the character attributes we can set are those that apply to either bitmaps or line
segments.
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Character-string alignments.

For either bitmap or outline fonts, the display color is determined by the
current color state. In general, the spacing and size of characters is deter-
mined by the font designation, such as GLUT BITMAP 9 BY 15 and GLUT
STROKE MONO ROMAN. However, we can also set the line width and line type for
the outline fonts. We specify the width for a line with the glLineWidth function,
and we select a line type with the glLineStipple function. The GLUT stroke
fonts will then be displayed using the current values we specified for the OpenGL
line-width and line-type attributes.

13 OpenGL Antialiasing Functions

glEnable (primitiveType);

where parameter primitiveType is assigned one of the symbolic constant
values GL POINT SMOOTH, GL LINE SMOOTH, or GL POLYGON SMOOTH

.Assuming that we are specifying color values using the RGBA mode, we also
need to activate the OpenGL color-blending operations as follows:

glEnable (GL_BLEND);

Next, we apply the color-blending method described in Section 3 using the
function

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

The smoothing operations are more effective if we use large alpha values in the
color specifications for the objects.

We can accomplish some other text-display characteristics using transforma-
tion functions. The transformation routines allow us to scale, position, and rotate
the GLUT stroke characters in either two-dimensional space or three-dimension-
al space. In addition, the three-dimensional viewing transformations can be used
to generate other display effects.

Line segments and other graphics primitives generated by raster algorithms have
a jagged, or stair-step, appearance because the sampling process digitizes coor-
dinate points on an object to discrete integer pixel positions. This distortion of
information due to low-frequency sampling (undersampling) is called aliasing .
We can improve the appearance of displayed raster lines by applying antialias-
ing methods that compensate for the undersampling process.

OpenGL provides antialiasing support for three types of primitives. We acti-
vate the antialiasing routines with the function
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Antialiasing can also be applied when we use color tables. However, in this
color mode, we must create a color ramp, which is a table of color graduations
from the background color to the object color. This color ramp is then used to
antialias object boundaries.

14 OpenGL Query Functions
We can retrieve current values for any of the state parameters, including attribute
settings, using OpenGL query functions. These functions copy specified state
values into an array, which we can save for later reuse or to check the current
state of the system if an error occurs.

For current attribute values we use an appropriate “glGet” function, such as

glGetBooleanv ( ) glGetFloatv ( )
glGetIntegerv ( ) glGetDoublev ( )

In each of the preceding functions, we specify two arguments. The first argument
is an OpenGL symbolic constant that identifies an attribute or other state param-
eter. The second argument is a pointer to an array of the data type indicated by
the function name. For instance, we can retrieve the current RGBA floating-point
color settings with

glGetFloatv (GL_CURRENT_COLOR, colorValues);

The current color components are then passed to the array colorValues. To
obtain the integer values for the current color components, we invoke the glGet-
Integerv function. In some cases, a type conversion may be necessary to return
the specified data type.

Other OpenGL constants, such as GL POINT SIZE, GL LINE WIDTH, and
GL CURRENT RASTER POSITION, can be used in these functions to return
current state values. Also, we could check the range of point sizes or line
widths that are supported using the constants GL POINT SIZE RANGE and
GL LINE WIDTH RANGE.

Although we can retrieve and reuse settings for a single attribute with the
glGet functions, OpenGL provides other functions for saving groups of attributes
and reusing their values. We consider the use of these functions for saving current
attribute settings in the next section.

There are many other state and system parameters that are often useful to
query. For instance, to determine how many bits per pixel are provided in the
frame buffer on a particular system, we can ask the system how many bits are
available for each individual color component, such as

glGetIntegerv (GL_RED_BITS, redBitSize);

Here, array redBitSize is assigned the number of red bits available in each of
the buffers (frame buffer, depth buffer, accumulation buffer, and stencil buffer).
Similarly, we can make an inquiry for the other color bits usingGL GREEN BITS,
GL BLUE BITS, GL ALPHA BITS, or GL INDEX BITS.

We can also find out whether edge flags have been set, whether a polygon
face was tagged as a front face or a back face, and whether the system supports
double buffering. In addition, we can inquire whether certain routines, such as
color blending, line stippling or antialiasing, have been enabled or disabled.
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15 OpenGL Attribute Groups
Attributes and other OpenGL state parameters are arranged in attribute groups.
Each group contains a set of related state parameters. For instance, the point-
attribute group contains the size and point-smooth (antialiasing) parameters,
and the line-attribute group contains the width, stipple status, stipple pattern,
stipple repeat counter, and line-smooth status. Similarly, the polygon-attribute
group contains eleven polygon parameters, such as fill pattern, front-face flag, and
polygon-smooth status. Because color is an attribute for all primitives, it has its
own attribute group; and some parameters are included in more than one group.

About twenty different attribute groups are available in OpenGL, and all
parameters in one or more groups can be saved or reset with a single function.
We save all parameters within a specified group using the following command:

glPushAttrib (attrGroup);

Parameter attrGroup is assigned an OpenGL symbolic constant that identifies
an attribute group, such as GL POINT BIT, GL LINE BIT, or GL POLYGON
BIT. To save color parameters, we use the symbolic constant GL CURRENT BIT,
and we can save all state parameters in all attribute groups with the constant
GL ALL ATTRIB BITS. The glPushAttrib function places all parameters
within the specified group onto an attribute stack.

We can also save parameters within two or more groups by combining their
symbolic constants with a logical OR operation. The following statement places
all parameters for points, lines, and polygons on the attribute stack:

glPushAttrib (GL_POINT_BIT | GL_LINE_BIT | GL_POLYGON_BIT);

Once we have saved a group of state parameters, we can reinstate all values
on the attribute stack with this function:

glPopAttrib ( );

No arguments are used in theglPopAttrib function because it resets the current
state of OpenGL using all values on the stack.

These commands for saving and resetting state parameters use a server
attribute stack. There is also a client attribute stack available in OpenGL for saving
and resetting client state parameters. The functions for accessing this stack are
glPushClientAttrib and glPopClientAttrib. Only two client attribute
groups are available: one for pixel-storage modes and the other for vertex arrays.
Pixel-storage parameters include information such as byte alignment and the
type of arrays used to store subimages of a display. Vertex-array parameters give
information about the current vertex-array state, such as the enable/disable state
of various arrays.

16 Summary
Attributes control the display characteristics of graphics primitives. In many
graphics systems, attribute values are stored as state variables and primitives
are generated using the current attribute values. When we change the value of a
state variable, it affects only those primitives defined after the change.

A common attribute for all primitives is color, which is most often specified
in terms of RGB (or RGBA) components. The red, green, and blue color values are
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stored in the frame buffer, and they are used to control the intensity of the three
electron guns in an RGB monitor. Color selections can also be made using color-
lookup tables. In this case, a color in the frame buffer is indicated as a table index,
and the table location at that index stores a particular set of RGB color values.
Color tables are useful in data-visualization and image-processing applications,
and they can also be used to provide a wide range of colors without requiring a
large frame buffer. Often, computer-graphics packages provide options for using
either color tables or storing color values directly in the frame buffer.

The basic point attributes are color and size. Line attributes are color, width,
and style. Specifications for line width are given in terms of multiples of a stan-
dard, one-pixel-wide line. The line-style attributes include solid, dashed, and dot-
ted lines, as well as various brush or pen styles. These attributes can be applied
to both straight lines and curves.

Fill-area attributes include a solid-color fill, a fill pattern, and a hollow display
that shows only the area boundaries. Various pattern fills can be specified in color
arrays, which are then mapped to the interior of the region. Scan-line methods
are commonly used to fill polygons, circles, and ellipses.

Areas can also be filled using color blending. This type of fill has applications
in antialiasing and in painting packages. Soft-fill procedures provide a new fill
color for a region that has the same variations as the previous fill color.

Characters can be displayed in different styles (fonts), colors, sizes, spacing,
and orientations. To set the orientation of a character string, we can specify a
direction for the character up vector and a direction for the text path. In addition,
we can set the alignment of a text string in relation to the start coordinate position.
Individual characters, called marker symbols, can be used for applications such
as plotting data graphs. Marker symbols can be displayed in various sizes and
colors using standard characters or special symbols.

Because scan conversion is a digitizing process on raster systems, displayed
primitives have a jagged appearance. This is due to the undersampling of infor-
mation, which rounds coordinate values to pixel positions. We can improve the
appearance of raster primitives by applying antialiasing procedures that adjust
pixel intensities.

In OpenGL, attribute values for the primitives are maintained as state vari-
ables. An attribute setting remains in effect for all subsequently defined primitives
until that attribute value is changed. Changing an attribute value does not affect
previously displayed primitives. We can specify colors in OpenGL using either
the RGB (or RGBA) color mode or the color-index mode, which uses color-table
indices to select colors. Also, we can blend color values using the alpha color
component, and we can specify values in color arrays that are to be used in con-
junction with vertex arrays. In addition to color, OpenGL provides functions for
selecting point size, line width, line style, and convex-polygon fill style, as well
as providing functions for the display of polygon fill areas as either a set of edges
or a set of vertex points. We can also eliminate selected polygon edges from a dis-
play, and we can reverse the specification of front and back faces. We can generate
text strings in OpenGL using bitmaps or routines that are available in GLUT. At-
tributes that can be set for the display of GLUT characters include color, font, size,
spacing, line width, and line type. The OpenGL library also provides functions to
antialias the display of output primitives. We can use query functions to obtain
the current value for state variables, and we can also obtain all values within an
OpenGL attribute group using a single function.

Table 2 summarizes the OpenGL attribute functions discussed in this
chapter. In addition, the table lists some attribute-related functions.
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Summary of OpenGL Attribute Functions

Function Description

glutInitDisplayMode Selects the color mode, which can be either
GLUT RGB or GLUT INDEX.

glColor* Specifies an RGB or RGBA color.

glIndex* Specifies a color using a color-table index.

glutSetColor (index, r, g, b); Loads a color into a color-table position.

glEnable (GL BLEND); Activates color blending.

glBlendFunc (sFact, dFact); Specifies factors for color blending.

glEnableClientState Activates color-array features of OpenGL.
(GL COLOR ARRAY);

glColorPointer Specifies an RGB color array.
(size, type, stride, array);

glIndexPointer Specifies a color array using color-index
(type, stride, array); mode.

glPointSize (size) Specifies a point size.

glLineWidth (width); Specifies a line width.

glEnable (GL LINE STIPPLE); Activates line style.

glEnable (GL POLYGON STIPPLE); Activates fill style.

glLineStipple (repeat, pattern); Specifies a line-style pattern.

glPolygonStipple (pattern); Specifies a fill-style pattern.

glPolygonMode Displays front or back face as either a set
of edges or a set of vertices.

glEdgeFlag Sets fill-polygon edge flag to GL TRUE
or GL FALSE to determine display
status for an edge.

glFrontFace Specifies front-face vertex order as
either GL CCW or GL CW.

glEnable Activates antialiasing with
GL POINT SMOOTH, GL LINE SMOOTH,
or GL POLYGON SMOOTH. (Also need
to activate color blending.)

glGet** Queries OpenGL to retrieve an attribute value
of a specific data type, identified by the
symbolic name of the attribute, placing the
result in an array parameter.

glPushAttrib Saves all state parameters within a
specified attribute group.

glPopAttrib ( ); Reinstates all state parameter values that
were last saved.
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EXERCISES
1 Use the glutSetColor function to set up a color

table for an input set of color values.
2 Using vertex and color arrays, set up the de-

scription for a scene containing at least six two-
dimensional objects.

3 Write a program to display the two-dimensional
scene description in the previous exercise.

4 Using vertex and color arrays, set up the descrip-
tion for a scene containing at least four three-
dimensional objects.

5 Write a program to display a two-dimensional,
grayscale “target” scene, where the target is made
up of a small, filled central circle and two concen-
tric rings around the circle spaced as far apart as
their thickness, which should be equal to the ra-
dius of the inner circle. The circle and rings are to
be described as point patterns on a white back-
ground. The rings/circle should ”fade in” from
their outer edges so that the inner portion of the
shape is darker than the outer portion. This can be
achieved by varying the sizes and inter-point spac-
ing of the points that make up the rings/circle. For
example, the edges of a ring can be modeled with
small, widely spaced, light-gray points, while the
inner portion can be modeled with larger, more
closely spaced, dark-gray points.

6 Modify the program in the previous exercise to dis-
play the circle and rings in various shades of red
instead of gray.

7 Modify the code segments in Section 7 for dis-
playing data line plots, so that the line-width pa-
rameter is passed to procedure linePlot.

8 Modify the code segments in Section 7 for dis-
playing data line plots, so that the line-style pa-
rameter is passed to procedure linePlot.

9 Complete the program in Section 7 for displaying
line plots using input values from a data file.

10 Complete the program in Section 7 for display-
ing line plots using input values from a data file. In
addition, the program should provide labeling for
the axes and the coordinates for the display area
on the screen. The data sets are to be scaled to fit
the coordinate range of the display window, and
each plotted line is to be displayed in a different
line style, width, and color.

11 Write a routine to display a bar graph in any speci-
fied screen area. Input is to include the data set, la-
beling for the coordinate axes, and the coordinates
for the screen area. The data set is to be scaled to fit
the designated screen area, and the bars are to be
displayed in designated colors or patterns.

12 Write a procedure to display two data sets defined
over the same x-coordinate range, with the data
values scaled to fit a specified region of the display
screen. The bars for one of the data sets are to be
displaced horizontally to produce an overlapping
bar pattern for easy comparison of the two sets of
data. Use a different color or a different fill pattern
for the two sets of bars.

13 Devise an algorithm for implementing a color
lookup table.

14 Suppose you have a system with an 10 inch by
14 inch video screen that can display 120 pixels per
inch. If a color lookup table with 256 positions is
used with this system, what is the smallest possible
size (in bytes) for the frame buffer?

15 Consider an RGB raster system that has a 1024-by-
786 frame buffer with 16 bits per pixel and a color
lookup table with 24 bits per pixel. (a) How many
distinct gray levels can be displayed with this sys-
tem? (b) How many distinct colors (including gray
levels) can be displayed? (c) How many colors can
be displayed at any one time? (d) What is the total
memory size? (e) Explain two methods for reduc-
ing memory size while maintaining the same color
capabilities.

16 Write a program to output a grayscale scatter plot
of two data sets defined over the same x- and
y-coordinate ranges. Inputs to the program are the
two sets of data. The data sets are to be scaled to
fit within a defined coordinate range for a display
window. Each data set is to be plotted using points
in a distinct shade of gray.

17 Modify the program in the previous exercise to
plot the two data sets in different colors instead of
shades of gray. Also, add a legend somewhere on
the plot bordered by a solid black line. The legend
should display the name of each data set (given
as input) in the color associated with that data
set.
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IN MORE DEPTH 2 Set up a small color table that serves as a color
palette for your scene and draw the scene as it
exists after the previous exercise using this color
table instead of the standard OpenGL color func-
tions as before. Once you produce your color
table, compare its memory requirements and ren-
dering capabilities with the standard color assign-
ment method on your system. How many different
colors can be displayed simultaneously by using
the table? How much memory is saved when rep-
resenting the frame buffer by using the color table
instead of directly assigning colors to pixels? How
small can you make the color table without notic-
ing a significant difference in the rendering of the
scene? Discuss the advantages and disadvantages
to using the color table versus using direct color
assignment.

Attributes of Graphics Primitives

1 Develop an application and experiment with 
different methods of shading the simple shapes.
Using the OpenGL functions for hollow, solid
color, and pattern fills of polygons, assign a fill
type to each shape in the scene and apply these
fills. At least one of the objects should have a hol-
low fill, one should be filled with a solid color,
and one should be filled with a bit pattern that
you specify yourself. Don’t worry if the fill pat-
terns do not necessarily make sense for the objects
in the scene. The goal here is to experiment with
the different fill attributes available in OpenGL. In
addition, experiment with different line drawing
attributes to draw the boundaries of the shapes in
your snapshot. Employ the use of solid boundary
lines as well as dotted ones, each of varying thick-
ness. Add the ability to turn anti-aliasing on and
off, and examine the visual differences between
the two cases.
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Implementation Algorithms for
Graphics Primitives and Attributes

1 Line-Drawing Algorithms

2 Parallel Line Algorithms

3 Setting Frame-Buffer Values

4 Circle-Generating Algorithms

5 Ellipse-Generating Algorithms

6 Other Curves

7 Parallel Curve Algorithms

8 Pixel Addressing and Object
Geometry

9 Attribute Implementations for
Straight-Line Segments and Curves

10 General Scan-Line Polygon-Fill
Algorithm

11 Scan-Line Fill of Convex Polygons

12 Scan-Line Fill for Regions with
Curved Boundaries

13 Fill Methods for Areas with
Irregular Boundaries

14 Implementation Methods for Fill
Styles

15 Implementation Methods
for Antialiasing

16 Summary

I n this chapter, we discuss the device-level algorithms for im-

plementing OpenGL primitives. Exploring the implementa-

tion algorithms for a graphics library will give us valuable

insight into the capabilities of these packages. It will also provide us

with an understanding of how the functions work, perhaps how they

could be improved, and how we might implement graphics routines

ourselves for some special application. Research in computer graph-

ics is continually discovering new and improved implementation tech-

niques to provide us with methods for special applications, such as

Internet graphics, and for developing faster and more realistic graph-

ics displays in general.

From Chapter 6 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson 
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F I G U R E 1
Stair-step effect (jaggies) produced
when a line is generated as a series of
pixel positions.

1 Line-Drawing Algorithms
A straight-line segment in a scene is defined by the coordinate positions for the
endpoints of the segment. To display the line on a raster monitor, the graphics sys-
tem must first project the endpoints to integer screen coordinates and determine
the nearest pixel positions along the line path between the two endpoints. Then the
line color is loaded into the frame buffer at the corresponding pixel coordinates.
Reading from the frame buffer, the video controller plots the screen pixels. This
process digitizes the line into a set of discrete integer positions that, in general,
only approximates the actual line path. A computed line position of (10.48, 20.51),
for example, is converted to pixel position (10, 21). This rounding of coordinate
values to integers causes all but horizontal and vertical lines to be displayed with
a stair-step appearance (known as “the jaggies”), as represented in Figure 1. The
characteristic stair-step shape of raster lines is particularly noticeable on systems
with low resolution, and we can improve their appearance somewhat by dis-
playing them on high-resolution systems. More effective techniques for smooth-
ing a raster line are based on adjusting pixel intensities along the line path (see
Section 15 for details).

yend

y0

x0 xend

F I G U R E 2
Line path between endpoint positions
(x0, y0) and (xend, yend).

Line Equations
We determine pixel positions along a straight-line path from the geometric prop-
erties of the line. The Cartesian slope-intercept equation for a straight line is

y = m · x + b (1)

with m as the slope of the line and b as the y intercept. Given that the two endpoints
of a line segment are specified at positions (x0, y0) and (xend, yend), as shown in
Figure 2, we can determine values for the slope m and y intercept b with the
following calculations:

m = yend − y0

xend − x0
(2)

b = y0 − m · x0 (3)

Algorithms for displaying straight lines are based on Equation 1 and the calcu-
lations given in Equations 2 and 3.

For any given x interval δx along a line, we can compute the corresponding
y interval, δy, from Equation 2 as

δy = m · δx (4)

Similarly, we can obtain the x interval δx corresponding to a specified δy as

δx = δy
m

(5)

These equations form the basis for determining deflection voltages in analog dis-
plays, such as a vector-scan system, where arbitrarily small changes in deflection
voltage are possible. For lines with slope magnitudes |m| < 1, δx can be set pro-
portional to a small horizontal deflection voltage, and the corresponding vertical
deflection is then set proportional to δy as calculated from Equation 4. For lines
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whose slopes have magnitudes |m| > 1, δy can be set proportional to a small ver-
tical deflection voltage with the corresponding horizontal deflection voltage set
proportional to δx, calculated from Equation 5. For lines with m = 1, δx = δy and
the horizontal and vertical deflections voltages are equal. In each case, a smooth
line with slope m is generated between the specified endpoints.

yend

y0

x0 xend

F I G U R E 3
Straight-line segment with five
sampling positions along the x axis
between x0 and xend.

On raster systems, lines are plotted with pixels, and step sizes in the horizontal
and vertical directions are constrained by pixel separations. That is, we must
“sample” a line at discrete positions and determine the nearest pixel to the line at
each sampled position. This scan-conversion process for straight lines is illustrated
in Figure 3 with discrete sample positions along the x axis.

DDA Algorithm
The digital differential analyzer (DDA) is a scan-conversion line algorithm based on
calculating either δy or δx, using Equation 4 or Equation 5. A line is sampled
at unit intervals in one coordinate and the corresponding integer values nearest
the line path are determined for the other coordinate.

We consider first a line with positive slope, as shown in Figure 2. If the slope
is less than or equal to 1, we sample at unit x intervals (δx = 1) and compute
successive y values as

yk+1 = yk + m (6)

Subscript k takes integer values starting from 0, for the first point, and increases
by 1 until the final endpoint is reached. Because m can be any real number
between 0.0 and 1.0, each calculated y value must be rounded to the nearest integer
corresponding to a screen pixel position in the x column that we are processing.

For lines with a positive slope greater than 1.0, we reverse the roles of x and y.
That is, we sample at unit y intervals (δy = 1) and calculate consecutive x values as

xk+1 = xk + 1
m

(7)

In this case, each computed x value is rounded to the nearest pixel position along
the current y scan line.

Equations 6 and 7 are based on the assumption that lines are to be pro-
cessed from the left endpoint to the right endpoint (Figure 2). If this processing is
reversed, so that the starting endpoint is at the right, then either we have δx = −1
and

yk+1 = yk − m (8)

or (when the slope is greater than 1) we have δy = −1 with

xk+1 = xk − 1
m

(9)

Similar calculations are carried out using Equations 6 through 9 to deter-
mine pixel positions along a line with negative slope. Thus, if the absolute value
of the slope is less than 1 and the starting endpoint is at the left, we set δx = 1 and
calculate y values with Equation 6. When the starting endpoint is at the right
(for the same slope), we set δx = −1 and obtain y positions using Equation 8.
For a negative slope with absolute value greater than 1, we use δy = −1 and
Equation 9, or we use δy = 1 and Equation 7.

This algorithm is summarized in the following procedure, which accepts as
input two integer screen positions for the endpoints of a line segment. Horizontal
and vertical differences between the endpoint positions are assigned to parame-
ters dx and dy. The difference with the greater magnitude determines the value of
parameter steps. This value is the number of pixels that must be drawn beyond
the starting pixel; from it, we calculate the x and y increments needed to generate
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the next pixel position at each step along the line path. We draw the starting pixel
at position (x0, y0), and then draw the remaining pixels iteratively, adjusting x
and y at each step to obtain the next pixel’s position before drawing it. If the magni-
tude of dx is greater than the magnitude of dy and x0 is less than xEnd, the values
for the increments in the x and y directions are 1 and m, respectively. If the greater
change is in the x direction, but x0 is greater than xEnd, then the decrements −1
and −m are used to generate each new point on the line. Otherwise, we use a unit
increment (or decrement) in the y direction and an x increment (or decrement) of 1

m .

#include <stdlib.h>
#include <math.h>

inline int round (const float a) { return int (a + 0.5); }

void lineDDA (int x0, int y0, int xEnd, int yEnd)
{

int dx = xEnd - x0, dy = yEnd - y0, steps, k;
float xIncrement, yIncrement, x = x0, y = y0;

if (fabs (dx) > fabs (dy))
steps = fabs (dx);

else
steps = fabs (dy);

xIncrement = float (dx) / float (steps);
yIncrement = float (dy) / float (steps);

setPixel (round (x), round (y));
for (k = 0; k < steps; k++) {

x += xIncrement;
y += yIncrement;
setPixel (round (x), round (y));

}
}

10 11 12 13

10

11

12

13 Specified
Line Path

F I G U R E 4
A section of a display screen where a
straight-line segment is to be plotted,
starting from the pixel at column 10 on
scan line 11.

50 51 52 53

48

49

50

Specified
Line Path

F I G U R E 5
A section of a display screen where a
negative slope line segment is to be
plotted, starting from the pixel at
column 50 on scan line 50.

The DDA algorithm is a faster method for calculating pixel positions than one
that directly implements Equation 1. It eliminates the multiplication in Equa-
tion 1 by using raster characteristics, so that appropriate increments are applied
in the x or y directions to step from one pixel position to another along the line path.
The accumulation of round-off error in successive additions of the floating-point
increment, however, can cause the calculated pixel positions to drift away from
the true line path for long line segments. Furthermore, the rounding operations
and floating-point arithmetic in this procedure are still time-consuming. We can
improve the performance of the DDA algorithm by separating the increments
m and 1

m into integer and fractional parts so that all calculations are reduced
to integer operations. A method for calculating 1

m increments in integer steps
is discussed in Section 10. In the next section, we consider a more general scan-
line approach that can be applied to both lines and curves.

Bresenham’s Line Algorithm
In this section, we introduce an accurate and efficient raster line-generating algo-
rithm, developed by Bresenham, that uses only incremental integer calculations.
In addition, Bresenham’s line algorithm can be adapted to display circles and
other curves. Figures 4 and 5 illustrate sections of a display screen where
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straight-line segments are to be drawn. The vertical axes show scan-line posi-
tions, and the horizontal axes identify pixel columns. Sampling at unit x intervals
in these examples, we need to decide which of two possible pixel positions is
closer to the line path at each sample step. Starting from the left endpoint shown
in Figure 4, we need to determine at the next sample position whether to plot
the pixel at position (11, 11) or the one at (11, 12). Similarly, Figure 5 shows a
negative-slope line path starting from the left endpoint at pixel position (50, 50).
In this one, do we select the next pixel position as (51, 50) or as (51, 49)? These
questions are answered with Bresenham’s line algorithm by testing the sign of
an integer parameter whose value is proportional to the difference between the
vertical separations of the two pixel positions from the actual line path.

yk

xk xk�1 xk�2 xk�3

yk�1

yk�2

yk�3

y � mx � b

F I G U R E 6
A section of the screen showing a pixel
in column xk on scan line yk that is to
be plotted along the path of a line
segment with slope 0 < m < 1.

yk

dupper

dlower

yk � 1
y

xk � 1

F I G U R E 7
Vertical distances between pixel
positions and the line y coordinate at
sampling position xk + 1.

To illustrate Bresenham’s approach, we first consider the scan-conversion
process for lines with positive slope less than 1.0. Pixel positions along a line
path are then determined by sampling at unit x intervals. Starting from the left
endpoint (x0, y0) of a given line, we step to each successive column (x position)
and plot the pixel whose scan-line y value is closest to the line path. Figure 6
demonstrates the kth step in this process. Assuming that we have determined that
the pixel at (xk , yk) is to be displayed, we next need to decide which pixel to plot
in column xk+1 = xk + 1. Our choices are the pixels at positions (xk + 1, yk) and
(xk + 1, yk + 1).

At sampling position xk + 1, we label vertical pixel separations from the
mathematical line path as dlower and dupper (Figure 7). The y coordinate on the
mathematical line at pixel column position xk + 1 is calculated as

y = m(xk + 1) + b (10)

Then
dlower = y − yk

= m(xk + 1) + b − yk (11)

and

dupper = (yk + 1) − y

= yk + 1 − m(xk + 1) − b (12)

To determine which of the two pixels is closest to the line path, we can set up an
efficient test that is based on the difference between the two pixel separations as
follows:

dlower − dupper = 2m(xk + 1) − 2yk + 2b − 1 (13)

A decision parameter pk for the kth step in the line algorithm can be obtained
by rearranging Equation 13 so that it involves only integer calculations. We
accomplish this by substituting m = �y/�x, where �y and �x are the vertical
and horizontal separations of the endpoint positions, and defining the decision
parameter as

pk = �x(dlower − dupper)

= 2�y · xk − 2�x · yk + c (14)

The sign of pk is the same as the sign of dlower − dupper, because �x > 0 for our
example. Parameter c is constant and has the value 2�y + �x(2b − 1), which is
independent of the pixel position and will be eliminated in the recursive calcula-
tions for pk . If the pixel at yk is “closer” to the line path than the pixel at yk + 1
(that is, dlower < dupper), then decision parameter pk is negative. In that case, we
plot the lower pixel; otherwise, we plot the upper pixel.
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Coordinate changes along the line occur in unit steps in either the x or y
direction. Therefore, we can obtain the values of successive decision parameters
using incremental integer calculations. At step k + 1, the decision parameter is
evaluated from Equation 14 as

pk+1 = 2�y · xk+1 − 2�x · yk+1 + c

Subtracting Equation 14 from the preceding equation, we have

pk+1 − pk = 2�y(xk+1 − xk) − 2�x(yk+1 − yk)

However, xk+1 = xk + 1, so that

pk+1 = pk + 2�y − 2�x(yk+1 − yk) (15)

where the term yk+1 − yk is either 0 or 1, depending on the sign of parameter pk .
This recursive calculation of decision parameters is performed at each integer

x position, starting at the left coordinate endpoint of the line. The first parameter,
p0, is evaluated from Equation 14 at the starting pixel position (x0, y0) and with
m evaluated as �y/�x as follows:

p0 = 2�y − �x (16)

We summarize Bresenham line drawing for a line with a positive slope less
than 1 in the following outline of the algorithm. The constants 2�y and 2�y −
2�x are calculated once for each line to be scan-converted, so the arithmetic
involves only integer addition and subtraction of these two constants. Step 4 of
the algorithm will be performed a total of �x times.

Bresenham’s Line-Drawing Algorithm for |m| < 1.0

1. Input the two line endpoints and store the left endpoint in (x0, y0).

2. Set the color for frame-buffer position (x0, y0); i.e., plot the first point.

3. Calculate the constants �x, �y, 2�y, and 2�y − 2�x, and obtain the
starting value for the decision parameter as

p0 = 2�y − �x

4. At each xk along the line, starting at k = 0, perform the following test:
If pk < 0, the next point to plot is (xk + 1, yk) and

pk+1 = pk + 2�y

Otherwise, the next point to plot is (xk + 1, yk + 1) and

pk+1 = pk + 2�y − 2�x

5. Repeat step 4 �x − 1 more times.

E X A M P L E 1 Bresenham Line Drawing

To illustrate the algorithm, we digitize the line with endpoints (20, 10) and
(30, 18). This line has a slope of 0.8, with

�x = 10, �y = 8

The initial decision parameter has the value
p0 = 2�y − �x

= 6
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and the increments for calculating successive decision parameters are

2�y = 16, 2�y − 2�x = −4

We plot the initial point (x0, y0) = (20, 10), and determine successive pixel
positions along the line path from the decision parameter as follows:

k pk (xk+1, yk+1) k pk (xk+1, yk+1)

0 6 (21, 11) 5 6 (26, 15)
1 2 (22, 12) 6 2 (27, 16)
2 −2 (23, 12) 7 −2 (28, 16)
3 14 (24, 13) 8 14 (29, 17)
4 10 (25, 14) 9 10 (30, 18)

A plot of the pixels generated along this line path is shown in Figure 8.

20 21 25 30

18

15

10

22

F I G U R E 8
Pixel positions along the line path between
endpoints (20, 10) and (30, 18), plotted with
Bresenham’s line algorithm.

An implementation of Bresenham line drawing for slopes in the range
0 < m < 1.0 is given in the following procedure. Endpoint pixel positions for the
line are passed to this procedure, and pixels are plotted from the left endpoint to
the right endpoint.

#include <stdlib.h>
#include <math.h>

/* Bresenham line-drawing procedure for |m| < 1.0. */
void lineBres (int x0, int y0, int xEnd, int yEnd)
{

int dx = fabs (xEnd - x0), dy = fabs(yEnd - y0);
int p = 2 * dy - dx;
int twoDy = 2 * dy, twoDyMinusDx = 2 * (dy - dx);
int x, y;

/* Determine which endpoint to use as start position. */
if (x0 > xEnd) {

x = xEnd;
y = yEnd;
xEnd = x0;

}
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else {
x = x0;
y = y0;

}
setPixel (x, y);

while (x < xEnd) {
x++;
if (p < 0)

p += twoDy;
else {

y++;
p += twoDyMinusDx;

}
setPixel (x, y);

}
}

Bresenham’s algorithm is generalized to lines with arbitrary slope by consid-
ering the symmetry between the various octants and quadrants of the xy plane.
For a line with positive slope greater than 1.0, we interchange the roles of the x
and y directions. That is, we step along the y direction in unit steps and calculate
successive x values nearest the line path. Also, we could revise the program to
plot pixels starting from either endpoint. If the initial position for a line with pos-
itive slope is the right endpoint, both x and y decrease as we step from right to
left. To ensure that the same pixels are plotted regardless of the starting endpoint,
we always choose the upper (or the lower) of the two candidate pixels whenever
the two vertical separations from the line path are equal (dlower = dupper). For neg-
ative slopes, the procedures are similar, except that now one coordinate decreases
as the other increases. Finally, special cases can be handled separately: Horizontal
lines (�y = 0), vertical lines (�x = 0), and diagonal lines (|�x| = |�y|) can each
be loaded directly into the frame buffer without processing them through the
line-plotting algorithm.

Displaying Polylines
Implementation of a polyline procedure is accomplished by invoking a line-
drawing routine n − 1 times to display the lines connecting the n endpoints. Each
successive call passes the coordinate pair needed to plot the next line section,
where the first endpoint of each coordinate pair is the last endpoint of the previ-
ous section. Once the color values for pixel positions along the first line segment
have been set in the frame buffer, we process subsequent line segments starting
with the next pixel position following the first endpoint for that segment. In this
way, we can avoid setting the color of some endpoints twice. We discuss methods
for avoiding the overlap of displayed objects in more detail in Section 8.

2 Parallel Line Algorithms
The line-generating algorithms we have discussed so far determine pixel po-
sitions sequentially. Using parallel processing, we can calculate multiple pixel
positions along a line path simultaneously by partitioning the computations
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among the various processors available. One approach to the partitioning prob-
lem is to adapt an existing sequential algorithm to take advantage of multiple
processors. Alternatively, we can look for other ways to set up the processing so
that pixel positions can be calculated efficiently in parallel. An important consid-
eration in devising a parallel algorithm is to balance the processing load among
the available processors.

Given np processors, we can set up a parallel Bresenham line algorithm by
subdividing the line path into np partitions and simultaneously generating line
segments in each of the subintervals. For a line with slope 0 < m < 1.0 and left
endpoint coordinate position (x0, y0), we partition the line along the positive x
direction. The distance between beginning x positions of adjacent partitions can
be calculated as

�xp = �x + np − 1
np

(17)

where �x is the width of the line, and the value for partition width �xp is com-
puted using integer division. Numbering the partitions, and the processors, as 0,
1, 2, up to np − 1, we calculate the starting x coordinate for the kth partition as

xk = x0 + k�xp (18)

For example, if we have np = 4 processors, with �x = 15, the width of the
partitions is 4 and the starting x values for the partitions are x0, x0 + 4, x0 + 8,
and x0 + 12. With this partitioning scheme, the width of the last (rightmost) sub-
interval will be smaller than the others in some cases. In addition, if the line
endpoints are not integers, truncation errors can result in variable-width partitions
along the length of the line.

To apply Bresenham’s algorithm over the partitions, we need the initial value
for the y coordinate and the initial value for the decision parameter in each parti-
tion. The change �yp in the y direction over each partition is calculated from the
line slope m and partition width �xp:

�yp = m�xp (19)

At the kth partition, the starting y coordinate is then

yk = y0 + round(k�yp) (20)

The initial decision parameter for Bresenham’s algorithm at the start of the kth
subinterval is obtained from Equation 14:

pk = (k�xp)(2�y) − round(k�yp)(2�x) + 2�y − �x (21)

Each processor then calculates pixel positions over its assigned subinterval
using the preceding starting decision parameter value and the starting coordinates
(xk , yk). Floating-point calculations can be reduced to integer arithmetic in the
computations for starting values yk and pk by substituting m = �y/�x and
rearranging terms. We can extend the parallel Bresenham algorithm to a line
with slope greater than 1.0 by partitioning the line in the y direction and calcu-
lating beginning x values for the partitions. For negative slopes, we increment
coordinate values in one direction and decrement in the other.

Another way to set up parallel algorithms on raster systems is to assign each
processor to a particular group of screen pixels. With a sufficient number of pro-
cessors, we can assign each processor to one pixel within some screen region. This
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approach can be adapted to a line display by assigning one processor to each of
the pixels within the limits of the coordinate extents of the line and calculating
pixel distances from the line path. The number of pixels within the bounding box
of a line is �x ·�y (as illustrated in Figure 9). Perpendicular distance d from the
line in Figure 9 to a pixel with coordinates (x, y) is obtained with the calculation

d = A x + B y + C (22)

where

A = −�y
linelength

B = �x
linelength

C = x0�y − y0�x
linelength

with

linelength =
√

�x2 + �y2

Once the constants A, B, and C have been evaluated for the line, each processor
must perform two multiplications and two additions to compute the pixel dis-
tance d. A pixel is plotted if d is less than a specified line thickness parameter.

yend

y0

x0 xend

�x

�y

F I G U R E 9
Bounding box for a line with endpoint
separations �x and �y .

Instead of partitioning the screen into single pixels, we can assign to each
processor either a scan line or a column of pixels depending on the line slope. Each
processor then calculates the intersection of the line with the horizontal row or
vertical column of pixels assigned to that processor. For a line with slope |m| < 1.0,
each processor simply solves the line equation for y, given an x column value.
For a line with slope magnitude greater than 1.0, the line equation is solved for x
by each processor, given a scan line y value. Such direct methods, although slow
on sequential machines, can be performed efficiently using multiple processors.

3 Setting Frame-Buffer Values
A final stage in the implementation procedures for line segments and other objects
is to set the frame-buffer color values. Because scan-conversion algorithms gen-
erate pixel positions at successive unit intervals, incremental operations can also
be used to access the frame buffer efficiently at each step of the scan-conversion
process.

As a specific example, suppose the frame buffer array is addressed in row-
major order and that pixel positions are labeled from (0, 0) at the lower-left corner
to (xmax, ymax) at the top-right corner (Figure 10) of the screen. For a bilevel
system (one bit per pixel), the frame-buffer bit address for pixel position (x, y) is
calculated as

addr(x, y) = addr(0, 0) + y(xmax + 1) + x (23)

Moving across a scan line, we can calculate the frame-buffer address for the pixel
at (x + 1, y) as the following offset from the address for position (x, y):

addr(x + 1, y) = addr(x, y) + 1 (24)

Stepping diagonally up to the next scan line from (x, y), we get to the frame-buffer
address of (x + 1, y + 1) with the calculation

addr(x + 1, y + 1) = addr(x, y) + xmax + 2 (25)
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F I G U R E 1 0
Pixel screen positions stored linearly in row-major order within the frame buffer.

where the constant xmax + 2 is precomputed once for all line segments. Similar
incremental calculations can be obtained from Equation 23 for unit steps in the
negative x and y screen directions. Each of the address calculations involves only
a single integer addition.

Methods for implementing these procedures depend on the capabilities of
a particular system and the design requirements of the software package. With
systems that can display a range of intensity values for each pixel, frame-buffer
address calculations include pixel width (number of bits), as well as the pixel
screen location.

4 Circle-Generating Algorithms
Because the circle is a frequently used component in pictures and graphs, a proce-
dure for generating either full circles or circular arcs is included in many graphics
packages. In addition, sometimes a general function is available in a graphics
library for displaying various kinds of curves, including circles and ellipses.

yc

xc

r
(x, y)

u

F I G U R E 1 1
Circle with center coordinates (xc , yc )
and radius r .

F I G U R E 1 2
Upper half of a circle plotted
with Equation 27 and with
(xc , yc ) = (0, 0).

Properties of Circles
A circle (Figure 11) is defined as the set of points that are all at a given distance r
from a center position (xc , yc). For any circle point (x, y), this distance relationship
is expressed by the Pythagorean theorem in Cartesian coordinates as

(x − xc)
2 + (y − yc)

2 = r2 (26)

We could use this equation to calculate the position of points on a circle circumfer-
ence by stepping along the x axis in unit steps from xc −r to xc +r and calculating
the corresponding y values at each position as

y = yc ±
√

r2 − (xc − x)2 (27)

However, this is not the best method for generating a circle. One problem with
this approach is that it involves considerable computation at each step. Moreover,
the spacing between plotted pixel positions is not uniform, as demonstrated in
Figure 12. We could adjust the spacing by interchanging x and y (stepping
through y values and calculating x values) whenever the absolute value of the
slope of the circle is greater than 1; but this simply increases the computation and
processing required by the algorithm.

Another way to eliminate the unequal spacing shown in Figure 12 is to
calculate points along the circular boundary using polar coordinates r and θ
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(Figure 11). Expressing the circle equation in parametric polar form yields the
pair of equations

x = xc + r cos θ

y = yc + r sin θ
(28)

When a display is generated with these equations using a fixed angular step size,
a circle is plotted with equally spaced points along the circumference. To reduce
calculations, we can use a large angular separation between points along the cir-
cumference and connect the points with straight-line segments to approximate
the circular path. For a more continuous boundary on a raster display, we can
set the angular step size at 1

r . This plots pixel positions that are approximately one
unit apart. Although polar coordinates provide equal point spacing, the trigono-
metric calculations are still time-consuming.

For any of the previous circle-generating methods, we can reduce computa-
tions by considering the symmetry of circles. The shape of the circle is similar in
each quadrant. Therefore, if we determine the curve positions in the first quad-
rant, we can generate the circle section in the second quadrant of the xy plane
by noting that the two circle sections are symmetric with respect to the y axis.
Also, circle sections in the third and fourth quadrants can be obtained from sec-
tions in the first and second quadrants by considering symmetry about the x axis.
We can take this one step further and note that there is also symmetry between
octants. Circle sections in adjacent octants within one quadrant are symmetric
with respect to the 45◦ line dividing the two octants. These symmetry conditions
are illustrated in Figure 13, where a point at position (x, y) on a one-eighth
circle sector is mapped into the seven circle points in the other octants of the
xy plane. Taking advantage of the circle symmetry in this way, we can generate
all pixel positions around a circle by calculating only the points within the sec-
tor from x = 0 to x = y. The slope of the curve in this octant has a magnitude
less than or equal to 1.0. At x = 0, the circle slope is 0, and at x = y, the slope
is −1.0.

(�y, x) (y, x)

(x, y)
45�

(x, �y)

(y, �x)(�y, �x)

(�x, �y)

(�x, y)

F I G U R E 1 3
Symmetry of a circle. Calculation of a
circle point (x , y ) in one octant yields
the circle points shown for the other
seven octants.

Determining pixel positions along a circle circumference using symmetry and
either Equation 26 or Equation 28 still requires a good deal of computation.
The Cartesian equation 26 involves multiplications and square-root calcula-
tions, while the parametric equations contain multiplications and trigonometric
calculations. More efficient circle algorithms are based on incremental calculation
of decision parameters, as in the Bresenham line algorithm, which involves only
simple integer operations.

Bresenham’s line algorithm for raster displays is adapted to circle generation
by setting up decision parameters for finding the closest pixel to the circumference
at each sampling step. The circle equation 26, however, is nonlinear, so that
square-root evaluations would be required to compute pixel distances from a
circular path. Bresenham’s circle algorithm avoids these square-root calculations
by comparing the squares of the pixel separation distances.

However, it is possible to perform a direct distance comparison without a
squaring operation. The basic idea in this approach is to test the halfway position
between two pixels to determine if this midpoint is inside or outside the circle
boundary. This method is applied more easily to other conics; and for an integer
circle radius, the midpoint approach generates the same pixel positions as the
Bresenham circle algorithm. For a straight-line segment, the midpoint method is
equivalent to the Bresenham line algorithm. Also, the error involved in locating
pixel positions along any conic section using the midpoint test is limited to half
the pixel separation.
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Midpoint Circle Algorithm
As in the raster line algorithm, we sample at unit intervals and determine the
closest pixel position to the specified circle path at each step. For a given radius
r and screen center position (xc , yc), we can first set up our algorithm to calculate
pixel positions around a circle path centered at the coordinate origin (0, 0). Then
each calculated position (x, y) is moved to its proper screen position by adding xc

to x and yc to y. Along the circle section from x = 0 to x = y in the first quadrant,
the slope of the curve varies from 0 to −1.0. Therefore, we can take unit steps in
the positive x direction over this octant and use a decision parameter to determine
which of the two possible pixel positions in any column is vertically closer to the
circle path. Positions in the other seven octants are then obtained by symmetry.

To apply the midpoint method, we define a circle function as

fcirc(x, y) = x2 + y2 − r2 (29)

Any point (x, y) on the boundary of the circle with radius r satisfies the equation
fcirc(x, y) = 0. If the point is in the interior of the circle, the circle function is
negative; and if the point is outside the circle, the circle function is positive. To
summarize, the relative position of any point (x, y) can be determined by checking
the sign of the circle function as follows:

fcirc(x, y)

⎧

⎪⎨

⎪⎩

< 0, if (x, y) is inside the circle boundary
= 0, if (x, y) is on the circle boundary
> 0, if (x, y) is outside the circle boundary

(30)

The tests in 30 are performed for the midpositions between pixels near the circle
path at each sampling step. Thus, the circle function is the decision parameter
in the midpoint algorithm, and we can set up incremental calculations for this
function as we did in the line algorithm.

x2 � y2 � r2 � 0yk

xk xk � 1 xk � 2

yk � 1 Midpoint

F I G U R E 1 4
Midpoint between candidate pixels at
sampling position xk + 1 along a
circular path.

Figure 14 shows the midpoint between the two candidate pixels at sampling
position xk + 1. Assuming that we have just plotted the pixel at (xk , yk), we next
need to determine whether the pixel at position (xk + 1, yk) or the one at position
(xk + 1, yk − 1) is closer to the circle. Our decision parameter is the circle function
29 evaluated at the midpoint between these two pixels:

pk = fcirc

(

xk + 1, yk − 1
2

)

= (xk + 1)2 +
(

yk − 1
2

)2

− r2 (31)

If pk < 0, this midpoint is inside the circle and the pixel on scan line yk is closer
to the circle boundary. Otherwise, the midposition is outside or on the circle
boundary, and we select the pixel on scan line yk − 1.

Successive decision parameters are obtained using incremental calculations.
We obtain a recursive expression for the next decision parameter by evaluating
the circle function at sampling position xk+1 + 1 = xk + 2:

pk+1 = fcirc

(

xk+1 + 1, yk+1 − 1
2

)

= [(xk + 1) + 1]2 +
(

yk+1 − 1
2

)2

− r2

or
pk+1 = pk + 2(xk + 1) + (

y2
k+1 − y2

k

) − (yk+1 − yk) + 1 (32)

where yk+1 is either yk or yk − 1, depending on the sign of pk .
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Increments for obtaining pk+1 are either 2xk+1 +1 (if pk is negative) or 2xk+1 +
1−2yk+1. Evaluation of the terms 2xk+1 and 2yk+1 can also be done incrementally as

2xk+1 = 2xk + 2
2yk+1 = 2yk − 2

At the start position (0, r ), these two terms have the values 0 and 2r , respectively.
Each successive value for the 2xk+1 term is obtained by adding 2 to the previous
value, and each successive value for the 2yk+1 term is obtained by subtracting 2
from the previous value.

The initial decision parameter is obtained by evaluating the circle function at
the start position (x0, y0) = (0, r):

p0 = fcirc

(

1, r − 1
2

)

= 1 +
(

r − 1
2

)2

− r2

or

p0 = 5
4

− r (33)

If the radius r is specified as an integer, we can simply round p0 to
p0 = 1 − r (for r an integer)

because all increments are integers.
As in Bresenham’s line algorithm, the midpoint method calculates pixel posi-

tions along the circumference of a circle using integer additions and subtractions,
assuming that the circle parameters are specified in integer screen coordinates.
We can summarize the steps in the midpoint circle algorithm as follows:

Midpoint Circle Algorithm

1. Input radius r and circle center (xc , yc), then set the coordinates for the
first point on the circumference of a circle centered on the origin as

(x0, y0) = (0, r)

2. Calculate the initial value of the decision parameter as

p0 = 5
4

− r

3. At each xk position, starting at k = 0, perform the following test: If
pk < 0, the next point along the circle centered on (0, 0) is (xk+1, yk) and

pk+1 = pk + 2xk+1 + 1

Otherwise, the next point along the circle is (xk + 1, yk − 1) and

pk+1 = pk + 2xk+1 + 1 − 2yk+1

where 2xk+1 = 2xk + 2 and 2yk+1 = 2yk − 2.

4. Determine symmetry points in the other seven octants.

5. Move each calculated pixel position (x, y) onto the circular path
centered at (xc , yc) and plot the coordinate values as follows:

x = x + xc , y = y + yc

6. Repeat steps 3 through 5 until x ≥ y.
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E X A M P L E 2 Midpoint Circle Drawing

Given a circle radius r = 10, we demonstrate the midpoint circle algorithm by
determining positions along the circle octant in the first quadrant from x = 0
to x = y. The initial value of the decision parameter is

p0 = 1 − r = −9

For the circle centered on the coordinate origin, the initial point is (x0, y0) =
(0, 10), and initial increment terms for calculating the decision parameters
are

2x0 = 0, 2y0 = 20

Successive midpoint decision parameter values and the corresponding coordi-
nate positions along the circle path are listed in the following table:

k pk (xk+1, yk+1) 2xk+1 2yk+1

0 −9 (1, 10) 2 20
1 −6 (2, 10) 4 20
2 −1 (3, 10) 6 20
3 6 (4, 9) 8 18
4 −3 (5, 9) 10 18
5 8 (6, 8) 12 16
6 5 (7, 7) 14 14

A plot of the generated pixel positions in the first quadrant is shown in
Figure 15.
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F I G U R E 1 5
Pixel positions (solid circles) along a circle path
centered on the origin and with radius r = 10,
as calculated by the midpoint circle algorithm.
Open (“hollow”) circles show the symmetry
positions in the first quadrant.

The following code segment illustrates procedures that could be used to
implement the midpoint circle algorithm. Values for a circle radius and for the
center coordinates of the circle are passed to procedure circleMidpoint. A
pixel position along the circular path in the first octant is then computed and
passed to procedure circlePlotPoints. This procedure sets the circle color
in the frame buffer for all circle symmetry positions with repeated calls to the
setPixel routine, which is implemented with the OpenGL point-plotting
functions.
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#include <GL/glut.h>

class screenPt
{

private:
GLint x, y;

public:
/* Default Constructor: initializes coordinate position to (0, 0). */
screenPt ( ) {

x = y = 0;
}
void setCoords (GLint xCoordValue, GLint yCoordValue) {

x = xCoordValue;
y = yCoordValue;

}

GLint getx ( ) const {
return x;

}

GLint gety ( ) const {
return y;

}
void incrementx ( ) {

x++;
}
void decrementy ( ) {

y--;
}

};

void setPixel (GLint xCoord, GLint yCoord)
{

glBegin (GL_POINTS);
glVertex2i (xCoord, yCoord);

glEnd ( );
}

void circleMidpoint (GLint xc, GLint yc, GLint radius)
{

screenPt circPt;

GLint p = 1 - radius; // Initial value for midpoint parameter.

circPt.setCoords (0, radius); // Set coordinates for top point of circle.

void circlePlotPoints (GLint, GLint, screenPt);
/* Plot the initial point in each circle quadrant. */
circlePlotPoints (xc, yc, circPt);
/* Calculate next point and plot in each octant. */
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while (circPt.getx ( ) < circPt.gety ( )) {
circPt.incrementx ( );
if (p < 0)

p += 2 * circPt.getx ( ) + 1;
else {

circPt.decrementy ( );
p += 2 * (circPt.getx ( ) - circPt.gety ( )) + 1;

}
circlePlotPoints (xc, yc, circPt);

}
}

void circlePlotPoints (GLint xc, GLint yc, screenPt circPt)
{

setPixel (xc + circPt.getx ( ), yc + circPt.gety ( ));
setPixel (xc - circPt.getx ( ), yc + circPt.gety ( ));
setPixel (xc + circPt.getx ( ), yc - circPt.gety ( ));
setPixel (xc - circPt.getx ( ), yc - circPt.gety ( ));
setPixel (xc + circPt.gety ( ), yc + circPt.getx ( ));
setPixel (xc - circPt.gety ( ), yc + circPt.getx ( ));
setPixel (xc + circPt.gety ( ), yc - circPt.getx ( ));
setPixel (xc - circPt.gety ( ), yc - circPt.getx ( ));

}

5 Ellipse-Generating Algorithms
Loosely stated, an ellipse is an elongated circle. We can also describe an ellipse
as a modified circle whose radius varies from a maximum value in one direc-
tion to a minimum value in the perpendicular direction. The straight-line seg-
ments through the interior of the ellipse in these two perpendicular directions are
referred to as the major and minor axes of the ellipse.

y

F1

F2

P = (x, y)

x

d2

d1

F I G U R E 1 6
Ellipse generated about foci F1 and F2.

Properties of Ellipses
A precise definition of an ellipse can be given in terms of the distances from any
point on the ellipse to two fixed positions, called the foci of the ellipse. The sum
of these two distances is the same value for all points on the ellipse (Figure 16).
If the distances to the two focus positions from any point P = (x, y) on the ellipse
are labeled d1 and d2, then the general equation of an ellipse can be stated as

d1 + d2 = constant (34)

Expressing distances d1 and d2 in terms of the focal coordinates F1 = (x1, y1) and
F2 = (x2, y2), we have

√

(x − x1)2 + (y − y1)2 +
√

(x − x2)2 + (y − y2)2 = constant (35)

By squaring this equation, isolating the remaining radical, and squaring again,
we can rewrite the general ellipse equation in the form

A x2 + B y2 + C x y + D x + E y + F = 0 (36)
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where the coefficients A, B, C , D, E , and F are evaluated in terms of the focal
coordinates and the dimensions of the major and minor axes of the ellipse. The
major axis is the straight-line segment extending from one side of the ellipse to the
other through the foci. The minor axis spans the shorter dimension of the ellipse,
perpendicularly bisecting the major axis at the halfway position (ellipse center)
between the two foci.

An interactive method for specifying an ellipse in an arbitrary orientation is to
input the two foci and a point on the ellipse boundary. With these three coordinate
positions, we can evaluate the constant in Equation 35. Then, the values for the
coefficients in Equation 36 can be computed and used to generate pixels along
the elliptical path.

y

yc

ry

rx

xc
x

F I G U R E 1 7
Ellipse centered at (xc , yc ) with
semimajor axis r x and semiminor
axis r y .

Ellipse equations are greatly simplified if the major and minor axes are ori-
ented to align with the coordinate axes. In Figure 17, we show an ellipse in
“standard position,” with major and minor axes oriented parallel to the x and
y axes. Parameter rx for this example labels the semimajor axis, and parameter
ry labels the semiminor axis. The equation for the ellipse shown in Figure 17
can be written in terms of the ellipse center coordinates and parameters rx and
ry as

(
x − xc

rx

)2

+
(

y − yc

ry

)2

= 1 (37)

Using polar coordinates r and θ , we can also describe the ellipse in standard
position with the parametric equations

x = xc + rx cos θ

y = yc + ry sin θ
(38)

Angle θ , called the eccentric angle of the ellipse, is measured around the
perimeter of a bounding circle. If rx > ry, the radius of the bounding circle is
r = rx (Figure 18). Otherwise, the bounding circle has radius r = ry .
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y
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r � rx

u

F I G U R E 1 8
The bounding circle and eccentric
angle θ for an ellipse with r x > r y .

As with the circle algorithm, symmetry considerations can be used to reduce
computations. An ellipse in standard position is symmetric between quadrants,
but, unlike a circle, it is not symmetric between the two octants of a quadrant.
Thus, we must calculate pixel positions along the elliptical arc throughout one
quadrant, then use symmetry to obtain curve positions in the remaining three
quadrants (Figure 19).

(�x, y)

ry

rx

(x, y)

(x, �y)(�x, �y)

F I G U R E 1 9
Symmetry of an ellipse. Calculation of
a point (x , y ) in one quadrant yields
the ellipse points shown for the other
three quadrants.

Midpoint Ellipse Algorithm
Our approach here is similar to that used in displaying a raster circle. Given
parameters rx, ry, and (xc , yc), we determine curve positions (x, y) for an ellipse in
standard position centered on the origin, then we shift all the points using a fixed
offset so that the ellipse is centered at (xc , yc). If we wish also to display the ellipse
in nonstandard position, we could rotate the ellipse about its center coordinates
to reorient the major and minor axes in the desired directions. For the present,
we consider only the display of ellipses in standard position.

The midpoint ellipse method is applied throughout the first quadrant in two
parts. Figure 20 shows the division of the first quadrant according to the slope
of an ellipse with rx < ry. We process this quadrant by taking unit steps in the
x direction where the slope of the curve has a magnitude less than 1.0, and then
we take unit steps in the y direction where the slope has a magnitude greater
than 1.0.

Implementation Algorithms for Graphics Primitives and Attributes

148



At the next sampling position (xk+1 + 1 = xk + 2), the decision parameter for
region 1 is evaluated as

p1k+1 = fellipse

(

xk+1 + 1, yk+1 − 1
2

)

= r2
y[(xk + 1) + 1]2 + r2

x

(

yk+1 − 1
2

)2

− r2
xr2

y

or

p1k+1 = p1k + 2r2
y(xk + 1) + r2

y + r2
x

[(

yk+1 − 1
2

)2

−
(

yk − 1
2

)2
]

(44)

where yk+1 is either yk or yk − 1, depending on the sign of p1k .
Decision parameters are incremented by the following amounts:

increment =
⎧

⎨

⎩

2r2
y xk+1 + r2

y , if p1k < 0

2r2
y xk+1 + r2

y − 2r2
x yk+1, if p1k ≥ 0

Increments for the decision parameters can be calculated using only addition
and subtraction, as in the circle algorithm, because values for the terms 2r2

y x and
2r2

x y can be obtained incrementally. At the initial position (0, ry), these two terms
evaluate to

2r2
y x = 0 (45)

2r2
x y = 2r2

xry (46)

As x and y are incremented, updated values are obtained by adding 2r2
y to the

current value of the increment term in Equation 45 and subtracting 2r 2
x from

the current value of the increment term in Equation 46. The updated increment
values are compared at each step, and we move from region 1 to region 2 when
condition 42 is satisfied.

In region 1, the initial value of the decision parameter is obtained by evaluating
the ellipse function at the start position (x0, y0) = (0, ry):

p10 = fellipse

(

1, ry − 1
2

)

= r2
y + r2

x

(

ry − 1
2

)2

− r2
xr2

y

or

p10 = r2
y − r2

xry + 1
4

r2
x (47)
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F I G U R E 2 2
Midpoint between candidate pixels at
sampling position yk − 1 along an
elliptical path.

Over region 2, we sample at unit intervals in the negative y direction, and the
midpoint is now taken between horizontal pixels at each step (Figure 22). For
this region, the decision parameter is evaluated as

p2k = fellipse

(

xk + 1
2

, yk − 1
)

= r2
y

(

xk + 1
2

)2

+ r2
x(yk − 1)2 − r2

xr2
y (48)

If p2k > 0, the midposition is outside the ellipse boundary, and we select the pixel
at xk . If p2k ≤ 0, the midpoint is inside or on the ellipse boundary, and we select
pixel position xk+1.
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Regions 1 and 2 (Figure 20) can be processed in various ways. We can start
at position (0, ry) and step clockwise along the elliptical path in the first quadrant,
shifting from unit steps in x to unit steps in y when the slope becomes less than
−1.0. Alternatively, we could start at (rx, 0) and select points in a counterclockwise
order, shifting from unit steps in y to unit steps in x when the slope becomes
greater than −1.0. With parallel processors, we could calculate pixel positions in
the two regions simultaneously. As an example of a sequential implementation
of the midpoint algorithm, we take the start position at (0, ry) and step along the
ellipse path in clockwise order throughout the first quadrant.

y

ry

rx x

Slope � �1

Region
1

Region
2

F I G U R E 2 0
Ellipse processing regions. Over region
1, the magnitude of the ellipse slope
is less than 1.0; over region 2, the
magnitude of the slope is greater
than 1.0.

We define an ellipse function from Equation 37 with (x c, y c) = (0, 0) as

fellipse(x, y) = r2
y x2 + r2

x y2 − r2
xr2

y (39)

which has the following properties:

fellipse(x, y)

⎧

⎪⎨

⎪⎩

< 0, if (x, y) is inside the ellipse boundary
= 0, if (x, y) is on the ellipse boundary
> 0, if (x, y) is outside the ellipse boundary

(40)

Thus, the ellipse function fellipse(x, y) serves as the decision parameter in the
midpoint algorithm. At each sampling position, we select the next pixel along the
ellipse path according to the sign of the ellipse function evaluated at the midpoint
between the two candidate pixels.

Starting at (0, ry), we take unit steps in the x direction until we reach the
boundary between region 1 and region 2 (Figure 20). Then we switch to unit
steps in the y direction over the remainder of the curve in the first quadrant. At
each step we need to test the value of the slope of the curve. The ellipse slope is
calculated from Equation 39 as

dy
dx

= −2r2
y x

2r2
x y

(41)

At the boundary between region 1 and region 2, dy/dx = −1.0 and

2r2
y x = 2r2

x y

Therefore, we move out of region 1 whenever

2r2
y x ≥ 2r2

x y (42)

ry
2x2 � rx

2y2 � rx
2ry

2 � 0

yk

xk xk � 1

yk � 1 Midpoint

F I G U R E 2 1
Midpoint between candidate pixels at
sampling position xk + 1 along an
elliptical path.

Figure 21 shows the midpoint between the two candidate pixels at sampling
position xk+1 in the first region. Assuming position (xk , yk) has been selected in the
previous step, we determine the next position along the ellipse path by evaluating
the decision parameter (that is, the ellipse function 39) at this midpoint:

p1k = fellipse

(

xk + 1, yk − 1
2

)

= r2
y(xk + 1)2 + r2

x

(

yk − 1
2

)2

− r2
xr2

y (43)

If p1k < 0, the midpoint is inside the ellipse and the pixel on scan line yk is closer
to the ellipse boundary. Otherwise, the midposition is outside or on the ellipse
boundary, and we select the pixel on scan line yk − 1.
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To determine the relationship between successive decision parameters in re-
gion 2, we evaluate the ellipse function at the next sampling step yk+1 −1 = yk −2:

p2k+1 = fellipse

(

xk+1 + 1
2

, yk+1 − 1
)

= r2
y

(

xk+1 + 1
2

)2

+ r2
x [(yk − 1) − 1]2 − r2

xr2
y (49)

or

p2k+1 = p2k − 2r2
x(yk − 1) + r2

x + r2
y

[(

xk+1 + 1
2

)2

−
(

xk + 1
2

)2
]

(50)

with xk+1 set either to xk or to xk + 1, depending on the sign of p2k .
When we enter region 2, the initial position (x0, y0) is taken as the last position

selected in region 1 and the initial decision parameter in region 2 is then

p20 = fellipse

(

x0 + 1
2

, y0 − 1
)

= r2
y

(

x0 + 1
2

)2

+ r2
x(y0 − 1)2 − r2

xr2
y (51)

To simplify the calculation of p20, we could select pixel positions in counterclock-
wise order starting at (rx, 0). Unit steps would then be taken in the positive y
direction up to the last position selected in region 1.

Assuming rx, ry, and the ellipse center are given in integer screen coordinates,
we need only incremental integer calculations to determine values for the decision
parameters in the midpoint ellipse algorithm. The increments r2

x , r2
y , 2r2

x , and 2r2
y

are evaluated once at the beginning of the procedure. In the following summary,
we list the steps for displaying an ellipse using the midpoint algorithm:

Midpoint Ellipse Algorithm

1. Input rx, ry, and ellipse center (xc , yc), and obtain the first point on an
ellipse centered on the origin as

(x0, y0) = (0, ry)

2. Calculate the initial value of the decision parameter in region 1 as

p10 = r2
y − r2

xry + 1
4

r2
x

3. At each xk position in region 1, starting at k = 0, perform the follow-
ing test: If p1k < 0, the next point along the ellipse centered on (0, 0)
is (xk+1, yk) and

p1k+1 = p1k + 2r2
y xk+1 + r2

y

Otherwise, the next point along the ellipse is (xk + 1, yk − 1) and

p1k+1 = p1k + 2r2
y xk+1 − 2r2

x yk+1 + r2
y

This midpoint algorithm can be adapted to generate an ellipse in nonstandard
position using the ellipse function Equation 36 and calculating pixel positions
over the entire elliptical path. Alternatively, we could reorient the ellipse axes to
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with
2r2

y xk+1 = 2r2
y xk + 2r2

y , 2r2
x yk+1 = 2r2

x yk − 2r2
x

and continue until 2r2
y x ≥ 2r2

x y.

4. Calculate the initial value of the decision parameter in region 2 as

p20 = r2
y

(

x0 + 1
2

)2

+ r2
x(y0 − 1)2 − r2

xr2
y

where (x0, y0) is the last position calculated in region 1.

5. At each yk position in region 2, starting at k = 0, perform the following
test: If p2k > 0, the next point along the ellipse centered on (0, 0) is
(xk , yk − 1) and

p2k+1 = p2k − 2r2
x yk+1 + r2

x

Otherwise, the next point along the ellipse is (xk + 1, yk − 1) and

p2k+1 = p2k + 2r2
y xk+1 − 2r2

x yk+1 + r2
x

using the same incremental calculations for x and y as in region 1.
Continue until y = 0.

6. For both regions, determine symmetry points in the other three
quadrants.

7. Move each calculated pixel position (x, y) onto the elliptical path cen-
tered on (xc , yc) and plot these coordinate values:

x = x + xc , y = y + yc

E X A M P L E 3 Midpoint Ellipse Drawing

Given input ellipse parameters rx = 8 and ry = 6, we illustrate the steps in
the midpoint ellipse algorithm by determining raster positions along the el-
lipse path in the first quadrant. Initial values and increments for the decision
parameter calculations are

2r2
y x = 0 (with increment 2r2

y = 72)

2r2
x y = 2r2

xry (with increment −2r2
x = −128)

For region 1, the initial point for the ellipse centered on the origin is
(x0, y0) = (0, 6), and the initial decision parameter value is

p10 = r2
y − r2

xry + 1
4

r2
x = −332

Successive midpoint decision-parameter values and the pixel positions along
the ellipse are listed in the following table:

k p1k (xk+1, yk+1) 2r2
yxk+1 2r2

x yk+1

0 −332 (1, 6) 72 768
1 −224 (2, 6) 144 768
2 −44 (3, 6) 216 768
3 208 (4, 5) 288 640
4 −108 (5, 5) 360 640
5 288 (6, 4) 432 512
6 244 (7, 3) 504 384
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We now move out of region 1 because 2r2
y x > 2r2

x y.
For region 2, the initial point is (x0, y0) = (7, 3) and the initial decision

parameter is

p20 = fellipse

(

7 + 1
2

, 2
)

= −151

The remaining positions along the ellipse path in the first quadrant are then
calculated as

k p1k (xk+1, yk+1) 2r2
yxk+1 2r2

x yk+1

0 −151 (8, 2) 576 256
1 233 (8, 1) 576 128
2 745 (8, 0) — —

A plot of the calculated positions for the ellipse within the first quadrant is
shown in Figure 23.
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F I G U R E 2 3
Pixel positions along an elliptical path centered on the origin
with r x = 8 and r y = 6, using the midpoint algorithm to
calculate locations within the first quadrant.

In the following code segment, example procedures are given for implement-
ing the midpoint ellipse algorithm. Values for the ellipse parameters Rx, Ry,
xCenter, and yCenter are input to procedure ellipseMidpoint. Positions
along the curve in the first quadrant are then calculated and passed to procedure
ellipsePlotPoints. Symmetry is used to obtain ellipse positions in the other
three quadrants, and the setPixel routine sets the ellipse color in the frame-
buffer locations corresponding to these positions.

inline int round (const float a) { return int (a + 0.5); }

/* The following procedure accepts values for an ellipse
* center position and its semimajor and semiminor axes, then
* calculates ellipse positions using the midpoint algorithm.
*/
void ellipseMidpoint (int xCenter, int yCenter, int Rx, int Ry)
{

int Rx2 = Rx * Rx;
int Ry2 = Ry * Ry;
int twoRx2 = 2 * Rx2;
int twoRy2 = 2 * Ry2;
int p;
int x = 0;
int y = Ry;
int px = 0;
int py = twoRx2 * y;
void ellipsePlotPoints (int, int, int, int);
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/* Plot the initial point in each quadrant. */
ellipsePlotPoints (xCenter, yCenter, x, y);

/* Region 1 */
p = round (Ry2 - (Rx2 * Ry) + (0.25 * Rx2));
while (px < py) {

x++;
px += twoRy2;
if (p < 0)

p += Ry2 + px;
else {

y--;
py -= twoRx2;
p += Ry2 + px - py;

}
ellipsePlotPoints (xCenter, yCenter, x, y);

}

/* Region 2 */
p = round (Ry2 * (x+0.5) * (x+0.5) + Rx2 * (y-1) * (y-1) - Rx2 * Ry2);
while (y > 0) {

y--;
py -= twoRx2;
if (p > 0)

p += Rx2 - py;
else {

x++;
px += twoRy2;
p += Rx2 - py + px;

}
ellipsePlotPoints (xCenter, yCenter, x, y);

}
}
void ellipsePlotPoints (int xCenter, int yCenter, int x, int y);
{

setPixel (xCenter + x, yCenter + y);
setPixel (xCenter - x, yCenter + y);
setPixel (xCenter + x, yCenter - y);
setPixel (xCenter - x, yCenter - y);

}

6 Other Curves
Various curve functions are useful in object modeling, animation path specifica-
tions, data and function graphing, and other graphics applications. Commonly
encountered curves include conics, trigonometric and exponential functions,
probability distributions, general polynomials, and spline functions. Displays of
these curves can be generated with methods similar to those discussed for the
circle and ellipse functions. We can obtain positions along curve paths directly
from explicit representations y = f (x) or from parametric forms. Alternatively,
we could apply the incremental midpoint method to plot curves described with
implicit functions f (x, y) = 0.
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A simple method for displaying a curved line is to approximate it with
straight-line segments. Parametric representations are often useful in this case for
obtaining equally spaced positions along the curve path for the line endpoints.
We can also generate equally spaced positions from an explicit representation by
choosing the independent variable according to the slope of the curve. Where the
slope of y = f (x) has a magnitude less than 1, we choose x as the independent
variable and calculate y values at equal x increments. To obtain equal spacing
where the slope has a magnitude greater than 1, we use the inverse function,
x = f −1(y), and calculate values of x at equal y steps.

Straight-line or curve approximations are used to generate a line graph for
a set of discrete data values. We could join the discrete points with straight-
line segments, or we could use linear regression (least squares) to approximate
the data set with a single straight line. A nonlinear least-squares approach is
used to display the data set with some approximating function, usually a poly-
nomial.

As with circles and ellipses, many functions possess symmetries that can be
exploited to reduce the computation of coordinate positions along curve paths.
For example, the normal probability distribution function is symmetric about a
center position (the mean), and all points within one cycle of a sine curve can be
generated from the points in a 90◦ interval.

Conic Sections
In general, we can describe a conic section (or conic) with the second-degree
equation

A x2 + B y2 + C x y + D x + E y + F = 0 (52)

where the values for parameters A, B, C , D, E , and F determine the kind of
curve that we are to display. Given this set of coefficients, we can determine the
particular conic that will be generated by evaluating the discriminant B2 − 4AC :

B2 − 4AC

⎧

⎪⎨

⎪⎩

< 0, generates an ellipse (or circle)
= 0, generates a parabola
> 0, generates a hyperbola

(53)

For example, we get the circle equation 26 when A = B = 1, C = 0, D = −2xc ,
E = −2yc , and F = x2

c + y2
c − r2. Equation 52 also describes the “degenerate”

conics: points and straight lines.
In some applications, circular and elliptical arcs are conveniently specified

with the beginning and ending angular values for the arc, as illustrated in
Figure 24. Such arcs are sometimes defined by their endpoint coordinate posi-
tions. For either case, we could generate the arc with a modified midpoint method,
or we could display a set of approximating straight-line segments.

y

x

r

u2u1

F I G U R E 2 4
A circular arc, centered on the origin,
defined with beginning angle θ1,
ending angle θ2, and radius r .

y0

v0 g

x0

F I G U R E 2 5
Parabolic path of an object tossed into
a downward gravitational field at the
initial position (x0, y0).

Ellipses, hyperbolas, and parabolas are particularly useful in certain anima-
tion applications. These curves describe orbital and other motions for objects sub-
jected to gravitational, electromagnetic, or nuclear forces. Planetary orbits in the
solar system, for example, are approximated with ellipses; and an object projected
into a uniform gravitational field travels along a parabolic trajectory. Figure 25
shows a parabolic path in standard position for a gravitational field acting in the
negative y direction. The explicit equation for the parabolic trajectory of the object
shown can be written as

y = y0 + a(x − x0)
2 + b(x − x0) (54)
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construct a cubic polynomial curve section between each pair of specified points.
Each curve section is then described in parametric form as

x = ax0 + ax1u + ax2u2 + ax3u3

y = ay0 + ay1u + ay2u2 + ay3u3
(58)

where parameter u varies over the interval from 0 to 1.0. Values for the coefficients
of u in the preceding equations are determined from boundary conditions on the
curve sections. One boundary condition is that two adjacent curve sections have
the same coordinate position at the boundary, and a second condition is to match
the two curve slopes at the boundary so that we obtain one continuous, smooth
curve (Figure 27). Continuous curves that are formed with polynomial pieces
are called spline curves, or simply splines.

7 Parallel Curve Algorithms
Methods for exploiting parallelism in curve generation are similar to those used
in displaying straight-line segments. We can either adapt a sequential algorithm
by allocating processors according to curve partitions, or we could devise other
methods and assign processors to screen partitions.

F I G U R E 2 7
A spline curve formed with individual
cubic polynomial sections between
specified coordinate positions.

A parallel midpoint method for displaying circles is to divide the circular arc
from 45◦ to 90◦ into equal subarcs and assign a separate processor to each subarc.
As in the parallel Bresenham line algorithm, we then need to set up computations
to determine the beginning y value and decision parameter pk value for each pro-
cessor. Pixel positions are calculated throughout each subarc, and positions in the
other circle octants can be obtained by symmetry. Similarly, a parallel ellipse mid-
point method divides the elliptical arc over the first quadrant into equal subarcs
and parcels these out to separate processors. Again, pixel positions in the other
quadrants are determined by symmetry. A screen-partitioning scheme for circles
and ellipses is to assign each scan line that crosses the curve to a separate pro-
cessor. In this case, each processor uses the circle or ellipse equation to calculate
curve intersection coordinates.

For the display of elliptical arcs or other curves, we can simply use the scan-
line partitioning method. Each processor uses the curve equation to locate the
intersection positions along its assigned scan line. With processors assigned to
individual pixels, each processor would calculate the distance (or distance
squared) from the curve to its assigned pixel. If the calculated distance is less
than a predefined value, the pixel is plotted.

8 Pixel Addressing and Object Geometry
In discussing the raster algorithms for displaying graphics primitives, we
assumed that frame-buffer coordinates referenced the center of a screen pixel
position. We now consider the effects of different addressing schemes and an
alternate pixel-addressing method used by some graphics packages, including
OpenGL.

An object description that is input to a graphics program is given in terms of
precise world-coordinate positions, which are infinitesimally small mathematical
points. However, when the object is scan-converted into the frame buffer, the
input description is transformed to pixel coordinates which reference finite screen
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with constants a and b determined by the initial velocity v0 of the object and the
acceleration g due to the uniform gravitational force. We can also describe such
parabolic motions with parametric equations using a time parameter t, measured
in seconds from the initial projection point:

x = x0 + vx0 t

y = y0 + vy0 t − 1
2

gt2
(55)

Here, vx0 and vy0 are the initial velocity components, and the value of g near
the surface of the earth is approximately 980 cm/sec2. Object positions along the
parabolic path are then calculated at selected time steps.
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F I G U R E 2 6
Left and right branches of a hyperbola
in standard position with the symmetry
axis along the x axis.

Hyperbolic curves (Figure 26) are useful in various scientific-visualization
applications. Motions of objects along hyperbolic paths occur in connection
with the collision of charged particles and in certain gravitational problems. For
example, comets or meteorites moving around the sun may travel along hyper-
bolic paths and escape to outer space, never to return. The particular branch (left
or right, in Figure 26) describing the motion of an object depends on the forces
involved in the problem. We can write the standard equation for the hyperbola
centered on the origin in Figure 26 as

(
x
rx

)2

−
(

y
ry

)2

= 1 (56)

with x ≤ −rx for the left branch and x ≥ rx for the right branch. Because this
equation differs from the standard ellipse equation 39 only in the sign between
the x2 and y2 terms, we can generate points along a hyperbolic path with a slightly
modified ellipse algorithm.

Parabolas and hyperbolas possess a symmetry axis. For example, the parabola
described by Equation 55 is symmetric about the axis

x = x0 + vx0vy0/g

The methods used in the midpoint ellipse algorithm can be applied directly to
obtain points along one side of the symmetry axis of hyperbolic and parabolic
paths in the two regions: (1) where the magnitude of the curve slope is less than
1, and (2) where the magnitude of the slope is greater than 1. To do this, we first
select the appropriate form of Equation 52 and then use the selected function to
set up expressions for the decision parameters in the two regions.

Polynomials and Spline Curves
A polynomial function of nth degree in x is defined as

y =
n∑

k=0

ak xk

= a0 + a1x + · · · + an−1xn−1 + anxn (57)

where n is a nonnegative integer and the ak are constants, with an �= 0. We obtain
a quadratic curve when n = 2, a cubic polynomial when n = 3, a quartic curve
when n = 4, and so forth. We have a straight line when n = 1. Polynomials are
useful in a number of graphics applications, including the design of object shapes,
the specification of animation paths, and the graphing of data trends in a discrete
set of data points.

Designing object shapes or motion paths is typically accomplished by first
specifying a few points to define the general curve contour, then the selected
points are fitted with a polynomial. One way to accomplish the curve fitting is to
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areas, and the displayed raster image may not correspond exactly with the relative
dimensions of the input object. If it is important to preserve the specified geometry
of world objects, we can compensate for the mapping of mathematical input points
to finite pixel areas. One way to do this is simply to adjust the pixel dimensions
of displayed objects so as to correspond to the dimensions given in the original
mathematical description of the scene. For example, if a rectangle is specified
as having a width of 40 cm, then we could adjust the screen display so that the
rectangle has a width of 40 pixels, with the width of each pixel representing one
centimeter. Another approach is to map world coordinates onto screen positions
between pixels, so that we align object boundaries with pixel boundaries instead
of pixel centers.

Screen Grid Coordinates
Figure 28 shows a screen section with grid lines marking pixel boundaries, one
unit apart. In this scheme, a screen position is given as the pair of integer values
identifying a grid-intersection position between two pixels. The address for any
pixel is now at its lower-left corner, as illustrated in Figure 29. A straight-line
path is now envisioned as between grid intersections. For example, the mathe-
matical line path for a polyline with endpoint coordinates (0, 0), (5, 2), and (1, 4)
would then be as shown in Figure 30.
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F I G U R E 2 8
Lower-left section of a screen area
with coordinate positions referenced
by grid intersection lines.
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F I G U R E 2 9
Illuminated pixel at raster
position (4, 5).
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F I G U R E 3 0
Line path for two connected line
segments between screen
grid-coordinate positions.

Using screen grid coordinates, we now identify the area occupied by a pixel
with screen coordinates (x, y) as the unit square with diagonally opposite corners
at (x, y) and (x + 1, y + 1). This pixel-addressing method has several advantages:
it avoids half-integer pixel boundaries, it facilitates precise object representations,
and it simplifies the processing involved in many scan-conversion algorithms and
other raster procedures.

The algorithms for line drawing and curve generation discussed in the pre-
ceding sections are still valid when applied to input positions expressed as screen
grid coordinates. Decision parameters in these algorithms would now be a mea-
sure of screen grid separation differences, rather than separation differences from
pixel centers.

Maintaining Geometric Properties of Displayed Objects
When we convert geometric descriptions of objects into pixel representations,
we transform mathematical points and lines into finite screen areas. If we are to
maintain the original geometric measurements specified by the input coordinates
for an object, we need to account for the finite size of pixels when we transform
the object definition to a screen display.

Figure 31 shows the line plotted in the Bresenham line-algorithm exam-
ple of Section 1. Interpreting the line endpoints (20, 10) and (30, 18) as precise
grid-crossing positions, we see that the line should not extend past screen-grid
position (30, 18). If we were to plot the pixel with screen coordinates (30, 18), as
in the example given in Section 1, we would display a line that spans 11 hori-
zontal units and 9 vertical units. For the mathematical line, however, �x = 10 and
�y = 8. If we are addressing pixels by their center positions, we can adjust the
length of the displayed line by omitting one of the endpoint pixels. But if we think
of screen coordinates as addressing pixel boundaries, as shown in Figure 31, we
plot a line using only those pixels that are “interior” to the line path; that is,
only those pixels that are between the line endpoints. For our example, we would
plot the leftmost pixel at (20, 10) and the rightmost pixel at (29, 17). This displays a
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F I G U R E 3 1
Line path and corresponding pixel display for grid
endpoint coordinates (20, 10) and (30, 18).

line that has the same geometric magnitudes as the mathematical line from (20, 10)
to (30, 18).

For an enclosed area, input geometric properties are maintained by display-
ing the area using only those pixels that are interior to the object boundaries. The
rectangle defined with the screen coordinate vertices shown in Figure 32(a),
for example, is larger when we display it filled with pixels up to and including
the border pixel lines joining the specified vertices [Figure 32(b)]. As defined, the
area of the rectangle is 12 units, but as displayed in Figure 32(b), it has an area of
20 units. In Figure 32(c), the original rectangle measurements are maintained by
displaying only the internal pixels. The right boundary of the input rectangle is
at x = 4. To maintain the rectangle width in the display, we set the rightmost pixel
grid coordinate for the rectangle at x = 3 because the pixels in this vertical column
span the interval from x = 3 to x = 4. Similarly, the mathematical top boundary of
the rectangle is at y = 3, so we set the top pixel row for the displayed rectangle
at y = 2.
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F I G U R E 3 2
Conversion of rectangle
(a) with vertices at screen coordinates
(0, 0), (4, 0), (4, 3), and (0, 3) into
display (b), which includes the right
and top boundaries, and into display
(c), which maintains geometric
magnitudes.

These compensations for finite pixel size can be applied to other objects,
including those with curved boundaries, so that the raster display maintains the
input object specifications. A circle with radius 5 and center position (10, 10), for
instance, would be displayed as in Figure 33 by the midpoint circle algorithm

5 15(10, 10)

15

5

F I G U R E 3 3
A midpoint-algorithm plot of the circle equation
( x − 10) 2 + ( y − 10) 2 = 52 using pixel-center
coordinates.
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F I G U R E 3 4
Modification of the circle plot in
Figure 33 to maintain the specified
circle diameter of 10.
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using pixel centers as screen-coordinate positions. However, the plotted circle has
a diameter of 11. To plot the circle with the defined diameter of 10, we can modify
the circle algorithm to shorten each pixel scan line and each pixel column, as in
Figure 34. One way to do this is to generate points clockwise along the circular
arc in the third quadrant, starting at screen coordinates (10, 5). For each generated
point, the other seven circle symmetry points are generated by decreasing the x
coordinate values by 1 along scan lines and decreasing the y coordinate values
by 1 along pixel columns. Similar methods are applied in ellipse algorithms to
maintain the specified proportions in the display of an ellipse.

9 Attribute Implementations for
Straight-Line Segments and Curves

Recall that line segment primitives can be displayed with three basic attributes:
color, width, and style. Of these, line width and style are selected with separate
line functions.

Line Width
Implementation of line-width options depends on the capabilities of the output
device. For raster implementations, a standard-width line is generated with single
pixels at each sample position, as in the Bresenham algorithm. Thicker lines are
displayed as positive integer multiples of the standard line by plotting additional
pixels along adjacent parallel line paths. If a line has slope magnitude less than
or equal to 1.0, we can modify a line-drawing routine to display thick lines by
plotting a vertical span of pixels in each column (x position) along the line. The
number of pixels to be displayed in each column is set equal to the integer value
of the line width. In Figure 35, we display a double-width line by generating a
parallel line above the original line path. At each x sampling position, we calculate
the corresponding y coordinate and plot pixels at screen coordinates (x, y) and
(x, y + 1). We could display lines with a width of 3 or greater by alternately plotting
pixels above and below the single-width line path.
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F I G U R E 3 7
Thick lines drawn with (a) butt caps,
(b) round caps, and (c) projecting
square caps. (c)(b)(a)

F I G U R E 3 8
Thick line segments connected with a
miter join (a), a round join (b), and a
bevel join (c). (a) (b) (c)

and add butt caps that are positioned half of the line width beyond the specified
endpoints.

Other methods for producing thick lines include displaying the line as a filled
rectangle or generating the line with a selected pen or brush pattern, as discussed
in the next section. To obtain a rectangle representation for the line boundary, we
calculate the position of the rectangle vertices along perpendiculars to the line
path so that the rectangle vertex coordinates are displaced from the original line-
endpoint positions by half the line width. The rectangular line then appears as
in Figure 37(a). We could add round caps to the filled rectangle, or we could
extend its length to display projecting square caps.

Generating thick polylines requires some additional considerations. In gen-
eral, the methods that we have considered for displaying a single line segment
will not produce a smoothly connected series of line segments. Displaying thick
polylines using horizontal and vertical pixel spans, for example, leaves pixel gaps
at the boundaries between line segments with different slopes where there is a
shift from horizontal pixel spans to vertical spans. We can generate thick poly-
lines that are smoothly joined at the cost of additional processing at the segment
endpoints. Figure 38 shows three possible methods for smoothly joining two
line segments. A miter join is accomplished by extending the outer boundaries of
each of the two line segments until they meet. A round join is produced by cap-
ping the connection between the two segments with a circular boundary whose
diameter is equal to the line width. A bevel join is generated by displaying the
line segments with butt caps and filling in the triangular gap where the segments
meet. If the angle between two connected line segments is very small, a miter join
can generate a long spike that distorts the appearance of the polyline. A graphics
package can avoid this effect by switching from a miter join to a bevel join when,
for example, the angle between any two consecutive segments is small.

Line Style
Raster line algorithms display line-style attributes by plotting pixel spans. For
dashed, dotted, and dot-dashed patterns, the line-drawing procedure outputs
sections of contiguous pixels along the line path, skipping over a number of
intervening pixels between the solid spans. Pixel counts for the span length and
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F I G U R E 3 5
A double-wide raster line with slope
|m | < 1.0 generated with vertical
pixel spans.

F I G U R E 3 6
A raster line with slope |m | > 1.0
and a line width of 4 plotted using
horizontal pixel spans.

With a line slope greater than 1.0 in magnitude, we can display thick lines
using horizontal spans, alternately picking up pixels to the right and left of the
line path. This scheme is demonstrated in Figure 36, where a line segment with
a width of 4 is plotted using multiple pixels across each scan line. Similarly, a
thick line with slope less than or equal to 1.0 can be displayed using vertical pixel
spans. We can implement this procedure by comparing the magnitudes of the hor-
izontal and vertical separations (�x and �y) of the line endpoints. If |�x| ≥ |�y|,
pixels are replicated along columns. Otherwise, multiple pixels are plotted across
rows.

Although thick lines are generated quickly by plotting horizontal or vertical
pixel spans, the displayed width of a line (measured perpendicular to the line
path) depends on its slope. A 45◦ line will be displayed thinner by a factor of
1/

√
2 compared to a horizontal or vertical line plotted with the same-length pixel

spans.
Another problem with implementing width options using horizontal or ver-

tical pixel spans is that the method produces lines whose ends are horizontal
or vertical regardless of the slope of the line. This effect is more noticeable with
very thick lines. We can adjust the shape of the line ends to give them a better
appearance by adding line caps (Figure 37). One kind of line cap is the butt
cap, which has square ends that are perpendicular to the line path. If the specified
line has slope m, the square ends of the thick line have slope −1/m. Each of the
component parallel lines is then displayed between the two perpendicular lines
at each end of the specified line path. Another line cap is the round cap obtained
by adding a filled semicircle to each butt cap. The circular arcs are centered at
the middle of the thick line and have a diameter equal to the line thickness. A
third type of line cap is the projecting square cap. Here, we simply extend the line
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inter-span spacing can be specified in a pixel mask, which is a pattern of binary
digits indicating which positions to plot along the line path. The linear mask
11111000, for instance, could be used to display a dashed line with a dash length of
five pixels and an inter-dash spacing of three pixels. Pixel positions corresponding
to the 1 bits are assigned the current color, and pixel positions corresponding to
the 0 bits are displayed in the background color. (a)

(b)

F I G U R E 3 9
Unequal-length dashes displayed with
the same number of pixels.

Plotting dashes with a fixed number of pixels results in unequal length dashes
for different line orientations, as illustrated in Figure 39. Both dashes shown
are plotted with four pixels, but the diagonal dash is longer by a factor of

√
2.

For precision drawings, dash lengths should remain approximately constant for
any line orientation. To accomplish this, we could adjust the pixel counts for the
solid spans and inter-span spacing according to the line slope. In Figure 39, we
can display approximately equal length dashes by reducing the diagonal dash
to three pixels. Another method for maintaining dash length is to treat dashes
as individual line segments. Endpoint coordinates for each dash are located and
passed to the line routine, which then calculates pixel positions along the dash
path.

Pen and Brush Options
Pen and brush shapes can be stored in a pixel mask that identifies the array of
pixel positions that are to be set along the line path. For example, a rectangular
pen could be implemented with the mask shown in Figure 40 by moving the
center (or one corner) of the mask along the line path, as in Figure 41. To avoid
setting pixels more than once in the frame buffer, we can simply accumulate the
horizontal spans generated at each position of the mask and keep track of the
beginning and ending x positions for the spans across each scan line.

Lines generated with pen (or brush) shapes can be displayed in various
widths by changing the size of the mask. For example, the rectangular pen line in
Figure 41 could be narrowed with a 2 × 2 rectangular mask or widened with a
4 × 4 mask. Also, lines can be displayed with selected patterns by superimposing
the pattern values onto the pen or brush mask.

(a) (b)

Line
Path

1
1
1

1
1
1

1
1
1

F I G U R E 4 0
A pixel mask (a) for a rectangular pen, and the associated array
of pixels (b) displayed by centering the mask over a specified
pixel position.

F I G U R E 4 1
Generating a line with the pen shape
of Figure 40.
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F I G U R E 4 2
A circular arc of width 4 plotted with either vertical or
horizontal pixel spans, depending on the slope.

17

14

F I G U R E 4 3
A circular arc of width 4 and radius 16 displayed by filling
the region between two concentric arcs.

Curve Attributes
Methods for adapting curve-drawing algorithms to accommodate attribute selec-
tions are similar to those for line drawing. Raster curves of various widths can be
displayed using the method of horizontal or vertical pixel spans. Where the mag-
nitude of the curve slope is less than or equal to 1.0, we plot vertical spans; where
the slope magnitude is greater than 1.0, we plot horizontal spans. Figure 42
demonstrates this method for displaying a circular arc with a width of 4 in the
first quadrant. Using circle symmetry, we generate the circle path with vertical
spans in the octant from x = 0 to x = y, and then reflect pixel positions about the
line y = x to obtain the remainder of the curve shown. Circle sections in the other
quadrants are obtained by reflecting pixel positions in the first quadrant about
the coordinate axes. The thickness of curves displayed with this method is again
a function of curve slope. Circles, ellipses, and other curves will appear thinnest
where the slope has a magnitude of 1.

Another method for displaying thick curves is to fill in the area between two
parallel curve paths, whose separation distance is equal to the desired width. We
could do this using the specified curve path as one boundary and setting up the
second boundary either inside or outside the original curve path. This approach,
however, shifts the original curve path either inward or outward, depending on
which direction we choose for the second boundary. We can maintain the original
curve position by setting the two boundary curves at a distance of half the width
on either side of the specified curve path. An example of this approach is shown
in Figure 43 for a circle segment with a radius of 16 and a specified width of 4.
The boundary arcs are then set at a separation distance of 2 on either side of the
radius of 16. To maintain the proper dimensions of the circular arc, as discussed
in Section 8, we can set the radii for the concentric boundary arcs at r = 14 and
r = 17. Although this method is accurate for generating thick circles, it provides, in
general, only an approximation to the true area of other thick curves. For example,
the inner and outer boundaries of a fat ellipse generated with this method do not
have the same foci.

The pixel masks discussed for implementing line-style options could also
be used in raster curve algorithms to generate dashed or dotted patterns. For
example, the mask 11100 produces the dashed circular arc shown in Figure 44.
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F I G U R E 4 4
A dashed circular arc displayed with a dash span of
3 pixels and an inter-dash spacing of 2 pixels.

F I G U R E 4 5
A circular arc displayed with a rectangular pen.

We can generate the dashes in the various octants using circle symmetry, but
we must shift the pixel positions to maintain the correct sequence of dashes and
spaces as we move from one octant to the next. Also, as in straight-line algorithms,
pixel masks display dashes and inter-dash spaces that vary in length according
to the slope of the curve. If we want to display constant length dashes, we need
to adjust the number of pixels plotted in each dash as we move around the circle
circumference. Instead of applying a pixel mask with constant spans, we plot
pixels along equal angular arcs to produce equal-length dashes.

Pen (or brush) displays of curves are generated using the same techniques
discussed for straight-line segments. We replicate a pen shape along the line path,
as illustrated in Figure 45 for a circular arc in the first quadrant. Here, the center
of the rectangular pen is moved to successive curve positions to produce the
curve shape shown. Curves displayed with a rectangular pen in this manner will
be thicker where the magnitude of the curve slope is 1. A uniform curve thickness
can be displayed by rotating the rectangular pen to align it with the slope direction
as we move around the curve or by using a circular pen shape. Curves drawn with
pen and brush shapes can be displayed in different sizes and with superimposed
patterns or simulated brush strokes.

10 General Scan-Line Polygon-Fill
Algorithm

y = constant.
Figure 46 illustrates the basic scan-line procedure for a solid-color fill of a

polygon. For each scan line that crosses the polygon, the edge intersections are

A scan-line fill of a region is performed by first determining the intersection 
positions of the boundaries of the fill region with the screen scan lines. Then the
fill colors are applied to each section of a scan line that lies within the interior 
of the fill region. The scan-line fill algorithm identifies the same interior regions
as the odd-even rule. The simplest area to fill is a polygon because each scan-
line intersection point with a polygon boundary is obtained by solving a pair
of simultaneous linear equations, where the equation for the scan line is simply
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F I G U R E 4 6
Interior pixels along a scan line passing through a polygon fill area.

Scan Line y�

Scan Line y

1

1 2

2 1

1 1

F I G U R E 4 7
Intersection points along scan lines that intersect polygon vertices.
Scan line y generates an odd number of intersections, but scan
line y ′ generates an even number of intersections that can be
paired to identify correctly the interior pixel spans.

sorted from left to right, and then the pixel positions between, and including, each
intersection pair are set to the specified fill color. In the example of Figure 46,
the four pixel intersection positions with the polygon boundaries define two
stretches of interior pixels. Thus, the fill color is applied to the five pixels from
x = 10 to x = 14 and to the seven pixels from x = 18 to x = 24. If a pattern fill
is to be applied to the polygon, then the color for each pixel along a scan line is
determined from its overlap position with the fill pattern.

However, the scan-line fill algorithm for a polygon is not quite as simple
as Figure 46 might suggest. Whenever a scan line passes through a vertex, it
intersects two polygon edges at that point. In some cases, this can result in an
odd number of boundary intersections for a scan line. Figure 47 shows two scan
lines that cross a polygon fill area and intersect a vertex. Scan line y′ intersects
an even number of edges, and the two pairs of intersection points along this
scan line correctly identify the interior pixel spans. But scan line y intersects five
polygon edges. To identify the interior pixels for scan line y, we must count the
vertex intersection as only one point. Thus, as we process scan lines, we need to
distinguish between these cases.

We can detect the topological difference between scan line y and scan line y′

in Figure 47 by noting the position of the intersecting edges relative to the scan
line. For scan line y, the two edges sharing an intersection vertex are on opposite
sides of the scan line. But for scan line y′, the two intersecting edges are both
above the scan line. Thus, a vertex that has adjoining edges on opposite sides
of an intersecting scan line should be counted as just one boundary intersection
point. We can identify these vertices by tracing around the polygon boundary in
either clockwise or counterclockwise order and observing the relative changes in
vertex y coordinates as we move from one edge to the next. If the three endpoint
y values of two consecutive edges monotonically increase or decrease, we need
to count the shared (middle) vertex as a single intersection point for the scan
line passing through that vertex. Otherwise, the shared vertex represents a local
extremum (minimum or maximum) on the polygon boundary, and the two edge
intersections with the scan line passing through that vertex can be added to the
intersection list.

One method for implementing the adjustment to the vertex-intersection count
is to shorten some polygon edges to split those vertices that should be counted
as one intersection. We can process nonhorizontal edges around the polygon
boundary in the order specified, either clockwise or counterclockwise. As we
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Scan Line y � 1

Scan Line y 

Scan Line y � 1

(a) (b)

F I G U R E 4 8
Adjusting endpoint y values for a
polygon, as we process edges in order
around the polygon perimeter. The
edge currently being processed is
indicated as a solid line. In (a), the y
coordinate of the upper endpoint of
the current edge is decreased by 1. In
(b), the y coordinate of the upper
endpoint of the next edge is decreased
by 1.

Scan Line yk � 1 (xk � 1, yk � 1)

 (xk, yk) Scan Line yk

F I G U R E 4 9
Two successive scan lines intersecting
a polygon boundary.

process each edge, we can check to determine whether that edge and the next
nonhorizontal edge have either monotonically increasing or decreasing endpoint
y values. If so, the lower edge can be shortened to ensure that only one intersection
point is generated for the scan line going through the common vertex joining the
two edges. Figure 48 illustrates the shortening of an edge. When the endpoint y
coordinates of the two edges are increasing, the y value of the upper endpoint for
the current edge is decreased by 1, as in Figure 48(a). When the endpoint y values
are monotonically decreasing, as in Figure 48(b), we decrease the y coordinate
of the upper endpoint of the edge following the current edge.

Typically, certain properties of one part of a scene are related in some way to
the properties in other parts of the scene, and these coherence properties can be
used in computer-graphics algorithms to reduce processing. Coherence methods
often involve incremental calculations applied along a single scan line or between
successive scan lines. For example, in determining fill-area edge intersections, we
can set up incremental coordinate calculations along any edge by exploiting the
fact that the slope of the edge is constant from one scan line to the next. Figure 49
shows two successive scan lines crossing the left edge of a triangle. The slope of
this edge can be expressed in terms of the scan-line intersection coordinates:

m = yk+1 − yk

xk+1 − xk
(59)

Because the change in y coordinates between the two scan lines is simply

yk+1 − yk = 1 (60)

the x-intersection value xk+1 on the upper scan line can be determined from the
x-intersection value xk on the preceding scan line as

xk+1 = xk + 1
m

(61)

Each successive x intercept can thus be calculated by adding the inverse of the
slope and rounding to the nearest integer.
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An obvious parallel implementation of the fill algorithm is to assign each scan
line that crosses the polygon to a separate processor. Edge intersection calculations
are then performed independently. Along an edge with slope m, the intersection
xk value for scan line k above the initial scan line can be calculated as

xk = x0 + k
m

(62)

In a sequential fill algorithm, the increment of x values by the amount 1
m along

an edge can be accomplished with integer operations by recalling that the slope
m is the ratio of two integers:

m = �y
�x

where �x and �y are the differences between the edge endpoint x and y coor-
dinate values. Thus, incremental calculations of x intercepts along an edge for
successive scan lines can be expressed as

xk+1 = xk + �x
�y

(63)

Using this equation, we can perform integer evaluation of the x intercepts by
initializing a counter to 0, then incrementing the counter by the value of �x each
time we move up to a new scan line. Whenever the counter value becomes equal to
or greater than �y, we increment the current x intersection value by 1 and decrease
the counter by the value �y. This procedure is equivalent to maintaining integer
and fractional parts for x intercepts and incrementing the fractional part until we
reach the next integer value.

As an example of this integer-incrementing scheme, suppose that we have
an edge with slope m = 7

3 . At the initial scan line, we set the counter to 0 and
the counter increment to 3. As we move up to the next three scan lines along this
edge, the counter is successively assigned the values 3, 6, and 9. On the third scan
line above the initial scan line, the counter now has a value greater than 7. So we
increment the x intersection coordinate by 1 and reset the counter to the value
9 − 7 = 2. We continue determining the scan-line intersections in this way until
we reach the upper endpoint of the edge. Similar calculations are carried out to
obtain intersections for edges with negative slopes.

We can round to the nearest pixel x intersection value, instead of truncating
to obtain integer positions, by modifying the edge-intersection algorithm so that
the increment is compared to �y/2. This can be done with integer arithmetic by
incrementing the counter with the value 2�x at each step and comparing the
increment to �y. When the increment is greater than or equal to �y, we increase
the x value by 1 and decrement the counter by the value of 2�y. In our previous
example with m = 7

3 , the counter values for the first few scan lines above the initial
scan line on this edge would now be 6, 12 (reduced to −2), 4, 10 (reduced to −4),
2, 8 (reduced to −6), 0, 6, and 12 (reduced to −2). Now x would be incremented
on scan lines 2, 4, 6, 9, and so forth, above the initial scan line for this edge.
The extra calculations required for each edge are 2�x = �x + �x and 2�y =
�y + �y, which are carried out as preprocessing steps.

To perform a polygon fill efficiently, we can first store the polygon boundary
in a sorted edge table that contains all the information necessary to process the scan
lines efficiently. Proceeding around the edges in either a clockwise or a counter-
clockwise order, we can use a bucket sort to store the edges, sorted on the smallest
y value of each edge, in the correct scan-line positions. Only nonhorizontal edges
are entered into the sorted edge table. As the edges are processed, we can also
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F I G U R E 5 0
A polygon and its sorted edge table, with edge DC shortened by one unit in the y direction.

shorten certain edges to resolve the vertex-intersection question. Each entry in
the table for a particular scan line contains the maximum y value for that edge,
the x-intercept value (at the lower vertex) for the edge, and the inverse slope of the
edge. For each scan line, the edges are in sorted order from left to right. Figure 50
shows a polygon and the associated sorted edge table.

Next, we process the scan lines from the bottom of the polygon to its top,
producing an active edge list for each scan line crossing the polygon boundaries.
The active edge list for a scan line contains all edges crossed by that scan line,
with iterative coherence calculations used to obtain the edge intersections.

Implementation of edge-intersection calculations can be facilitated by storing
�x and �y values in the sorted edge list. Also, to ensure that we correctly fill
the interior of specified polygons, we can apply the considerations discussed in
Section 8. For each scan line, we fill in the pixel spans for each pair of x intercepts
starting from the leftmost x intercept value and ending at one position before the
rightmost x intercept. Each polygon edge can be shortened by one unit in the
y direction at the top endpoint. These measures also guarantee that pixels in
adjacent polygons will not overlap.

11 Scan-Line Fill of Convex Polygons
When we apply a scan-line fill procedure to a convex polygon, there can be no
more than a single interior span for each screen scan line. So we need to process
the polygon edges only until we have found two boundary intersections for each
scan line crossing the polygon interior.

The general polygon scan-line algorithm discussed in the preceding section
can be simplified considerably for convex-polygon fill. We again use coordinate
extents to determine which edges cross a scan line. Intersection calculations with
these edges then determine the interior pixel span for that scan line, where any
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vertex crossing is counted as a single boundary intersection point. When a scan
line intersects a single vertex (at an apex, for example), we plot only that point.
Some graphics packages further restrict fill areas to be triangles. This makes filling
even easier because each triangle has just three edges to process.

12 Scan-Line Fill for Regions with
Curved Boundaries

Because an area with curved boundaries is described with nonlinear equations,
a scan-line fill generally takes more time than a polygon scan-line fill. We can
use the same general approach detailed in Section 10, but the boundary inter-
section calculations are performed with curve equations. In addition, the slope
of the boundary is continuously changing, so we cannot use the straightforward
incremental calculations that are possible with straight-line edges.

For simple curves such as circles or ellipses, we can apply fill methods
similar to those for convex polygons. Each scan line crossing a circle or ellipse
interior has just two boundary intersections; and we can determine these two
intersection points along the boundary of a circle or an ellipse using the incre-
mental calculations in the midpoint method. Then we simply fill in the hori-
zontal pixel spans from one intersection point to the other. Symmetries between
quadrants (and between octants for circles) are used to reduce the boundary
calculations.

Similar methods can be used to generate a fill area for a curve section. For
example, an area bounded by an elliptical arc and a straight line section (Fig-
ure 51) can be filled using a combination of curve and line procedures. Sym-
metries and incremental calculations are exploited whenever possible to reduce
computations.

Filling other curve areas can involve considerably more processing. We could
use similar incremental methods in combination with numerical techniques to
determine the scan-line intersections, but usually such curve boundaries are
approximated with straight-line segments.

F I G U R E 5 1
Interior fill of an elliptical arc.

13 Fill Methods for Areas with
Irregular Boundaries

Another approach for filling a specified area is to start at an inside position and
“paint” the interior, point by point, out to the boundary. This is a particularly
useful technique for filling areas with irregular borders, such as a design created
with a paint program. Generally, these methods require an input starting position
inside the area to be filled and some color information about either the boundary
or the interior.

Boundary-Fill Algorithm
If the boundary of some region is specified in a single color, we can fill the inte-
rior of this region, pixel by pixel, until the boundary color is encountered. This

We can fill irregular regions with a single color or with a color pattern. For
a pattern fill, we overlay a color mask. As each pixel within the region is pro-
cessed, its color is determined by the corresponding values in the overlaid pattern.
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(a) (b)

F I G U R E 5 2
Example of color boundaries for a boundary-fill procedure.

method, called the boundary-fill algorithm, is employed in interactive paint-
ing packages, where interior points are easily selected. Using a graphics tablet
or other interactive device, an artist or designer can sketch a figure outline, se-
lect a fill color from a color menu, specify the area boundary color, and pick an
interior point. The figure interior is then painted in the fill color. Both inner and
outer boundaries can be set up to define an area for boundary fill, and Figure 52
illustrates examples for specifying color regions.

Basically, a boundary-fill algorithm starts from an interior point (x, y) and
tests the color of neighboring positions. If a tested position is not displayed in
the boundary color, its color is changed to the fill color and its neighbors are
tested. This procedure continues until all pixels are processed up to the designated
boundary color for the area.

(a)

(b)

F I G U R E 5 3
Fill methods applied to a 4-connected
area (a) and to an 8-connected area
(b). Hollow circles represent pixels to
be tested from the current test
position, shown as a solid color.

Figure 53 shows two methods for processing neighboring pixels from a
current test position. In Figure 53(a), four neighboring points are tested. These
are the pixel positions that are right, left, above, and below the current pixel.
Areas filled by this method are called 4-connected. The second method, shown
in Figure 53(b), is used to fill more complex figures. Here the set of neighboring
positions to be tested includes the four diagonal pixels, as well as those in the
cardinal directions. Fill methods using this approach are called 8-connected. An
8-connected boundary-fill algorithm would correctly fill the interior of the area
defined in Figure 54, but a 4-connected boundary-fill algorithm would fill only
part of that region.

The following procedure illustrates a recursive method for painting a
4-connected area with a solid color, specified in parameter fillColor, up to
a boundary color specified with parameter borderColor. We can extend this
procedure to fill an 8-connected region by including four additional statements
to test the diagonal positions (x ± 1, y ± 1).

Start Position
(a) (b)

F I G U R E 5 4
The area defined within the color boundary (a) is only partially filled
in (b) using a 4-connected boundary-fill algorithm.
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void boundaryFill4 (int x, int y, int fillColor, int borderColor)
{

int interiorColor;

/* Set current color to fillColor, then perform the following operations. */
getPixel (x, y, interiorColor);
if ((interiorColor != borderColor) && (interiorColor != fillColor)) {

setPixel (x, y); // Set color of pixel to fillColor.
boundaryFill4 (x + 1, y , fillColor, borderColor);
boundaryFill4 (x - 1, y , fillColor, borderColor);
boundaryFill4 (x , y + 1, fillColor, borderColor);
boundaryFill4 (x , y - 1, fillColor, borderColor)

}
}

Recursive boundary-fill algorithms may not fill regions correctly if some inte-
rior pixels are already displayed in the fill color. This occurs because the algorithm
checks the next pixels both for boundary color and for fill color. Encountering a
pixel with the fill color can cause a recursive branch to terminate, leaving other
interior pixels unfilled. To avoid this, we can first change the color of any inte-
rior pixels that are initially set to the fill color before applying the boundary-fill
procedure.

Also, because this procedure requires considerable stacking of neighboring
points, more efficient methods are generally employed. These methods fill hor-
izontal pixel spans across scan lines, instead of proceeding to 4-connected or
8-connected neighboring points. Then we need only stack a beginning position
for each horizontal pixel span, instead of stacking all unprocessed neighboring
positions around the current position. Starting from the initial interior point with
this method, we first fill in the contiguous span of pixels on this starting scan line.
Then we locate and stack starting positions for spans on the adjacent scan lines,
where spans are defined as the contiguous horizontal string of positions bounded
by pixels displayed in the border color. At each subsequent step, we retrieve the
next start position from the top of the stack and repeat the process.

An example of how pixel spans could be filled using this approach is
illustrated for the 4-connected fill region in Figure 55. In this example, we first
process scan lines successively from the start line to the top boundary. After all
upper scan lines are processed, we fill in the pixel spans on the remaining scan
lines in order down to the bottom boundary. The leftmost pixel position for each
horizontal span is located and stacked, in left-to-right order across successive scan
lines, as shown in Figure 55. In (a) of this figure, the initial span has been filled,
and starting positions 1 and 2 for spans on the next scan lines (below and above)
are stacked. In Figure 55(b), position 2 has been unstacked and processed to
produce the filled span shown, and the starting pixel (position 3) for the single
span on the next scan line has been stacked. After position 3 is processed, the
filled spans and stacked positions are as shown in Figure 55(c). Figure 55(d)
shows the filled pixels after processing all spans in the upper-right portion of the
specified area. Position 5 is next processed, and spans are filled in the upper-left
portion of the region; then position 4 is picked up to continue the processing for
the lower scan lines.
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F I G U R E 5 5
Boundary fill across pixel spans for a
4-connected area: (a) Initial scan line
with a filled pixel span, showing the
position of the initial point (hollow)
and the stacked positions for pixel
spans on adjacent scan lines. (b) Filled
pixel span on the first scan line above
the initial scan line and the current
contents of the stack. (c) Filled pixel
spans on the first two scan lines above
the initial scan line and the current
contents of the stack. (d) Completed
pixel spans for the upper-right portion
of the defined region and the
remaining stacked positions to be
processed.
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Flood-Fill Algorithm
Sometimes we want to fill in (or recolor) an area that is not defined within a single
color boundary. Figure 56 shows an area bordered by several different color
regions. We can paint such areas by replacing a specified interior color instead of
searching for a particular boundary color. This fill procedure is called a flood-fill
algorithm. We start from a specified interior point (x, y) and reassign all pixel
values that are currently set to a given interior color with the desired fill color.
If the area that we want to paint has more than one interior color, we can first
reassign pixel values so that all interior points have the same color. Using either
a 4-connected or 8-connected approach, we then step through pixel positions
until all interior points have been repainted. The following procedure flood fills
a 4-connected region recursively, starting from the input position.

F I G U R E 5 6
An area defined within multiple color
boundaries.

void floodFill4 (int x, int y, int fillColor, int interiorColor)
{

int color;

/* Set current color to fillColor, then perform the following operations. */
getPixel (x, y, color);
if (color = interiorColor) {

setPixel (x, y); // Set color of pixel to fillColor.
floodFill4 (x + 1, y, fillColor, interiorColor);
floodFill4 (x - 1, y, fillColor, interiorColor);
floodFill4 (x, y + 1, fillColor, interiorColor);
floodFill4 (x, y - 1, fillColor, interiorColor)

}
}

We can modify the above procedure to reduce the storage requirements of
the stack by filling horizontal pixel spans, as discussed for the boundary-fill
algorithm. In this approach, we stack only the beginning positions for those pixel
spans having the value interiorColor. The steps in this modified flood-fill
algorithm are similar to those illustrated in Figure 55 for a boundary fill. Start-
ing at the first position of each span, the pixel values are replaced until a value
other than interiorColor is encountered.

14 Implementation Methods for Fill Styles
There are two basic procedures for filling an area on raster systems, once the
definition of the fill region has been mapped to pixel coordinates. One procedure
first determines the overlap intervals for scan lines that cross the area. Then, pixel
positions along these overlap intervals are set to the fill color. Another method for
area filling is to start from a given interior position and “paint” outward, pixel-
by-pixel, from this point until we encounter specified boundary conditions. The
scan-line approach is usually applied to simple shapes such as circles or regions
with polyline boundaries, and general graphics packages use this fill method. Fill
algorithms that use a starting interior point are useful for filling areas with more
complex boundaries and in interactive painting systems.
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Fill Styles
We can implement a pattern fill by determining where the pattern overlaps those
scan lines that cross a fill area. Beginning from a specified start position for a
pattern fill, we map the rectangular patterns vertically across scan lines and hor-
izontally across pixel positions on the scan lines. Each replication of the pattern
array is performed at intervals determined by the width and height of the mask.
Where the pattern overlaps the fill area, pixel colors are set according to the values
stored in the mask.

Hatch fill could be applied to regions by drawing sets of line segments to
display either single hatching or cross-hatching. Spacing and slope for the hatch
lines could be set as parameters in a hatch table. Alternatively, hatch fill can be
specified as a pattern array that produces sets of diagonal lines.

A reference point (xp, yp) for the starting position of a fill pattern can be set at
any convenient position, inside or outside the fill region. For instance, the refer-
ence point could be set at a polygon vertex; or the reference point could be chosen
as the lower-left corner of the bounding rectangle (or bounding box) determined
by the coordinate extents of the region. To simplify selection of the reference coor-
dinates, some packages always use the coordinate origin of the display window
as the pattern start position. Always setting (xp, yp) at the coordinate origin also
simplifies the tiling operations when each element of a pattern is to be mapped to
a single pixel. For example, if the row positions in the pattern array are referenced
from bottom to top, starting with the value 1, a color value is then assigned to
pixel position (x, y) in screen coordinates from pattern position (y mod ny + 1,
x mod nx+1). Here, ny and nx specify the number of rows and number of columns
in the pattern array. Setting the pattern start position at the coordinate origin, how-
ever, effectively attaches the pattern fill to the screen background rather than to
the fill regions. Adjacent or overlapping areas filled with the same pattern would
show no apparent boundary between the areas. Also, repositioning and refill-
ing an object with the same pattern can result in a shift in the assigned pixel
values over the object interior. A moving object would appear to be transparent
against a stationary pattern background instead of moving with a fixed interior
pattern.

Color-Blended Fill Regions
Color-blended regions can be implemented using either transparency factors to
control the blending of background and object colors, or using simple logical
or replace operations as shown in Figure 57, which demonstrates how these
operations would combine a 2 × 2 fill pattern with a background pattern for a
binary (black-and-white) system.

The linear soft-fill algorithm repaints an area that was originally painted by
merging a foreground color F with a single background color B, where F �= B.
Assuming we know the values for F and B, we can check the current contents
of the frame buffer to determine how these colors were combined. The current
color P of each pixel within the area to be refilled is some linear combination of F
and B:

P = tF + (1 − t)B (64)

where the transparency factor t has a value between 0 and 1 for each pixel. For
values of t less than 0.5, the background color contributes more to the interior
color of the region than does the fill color. If our color values are represented
using separate red, green, and blue (RGB) components, Equation 64 holds for
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each component of the colors, with

P = (PR, PG , PB), F = (FR, FG , FB), B = (BR, BG , BB) (65)

We can thus calculate the value of parameter t using one of the RGB color com-
ponents as follows:

t = Pk − Bk

Fk − Bk
(66)

where k = R, G, or B; and Fk �= Bk . Theoretically, parameter t has the same value
for each RGB component, but the round-off calculations to obtain integer codes
can result in different values of t for different components. We can minimize this
round-off error by selecting the component with the largest difference between
F and B. This value of t is then used to mix the new fill color NF with the back-
ground color. We can accomplish this mixing using either a modified flood-fill or
boundary-fill procedure, as described in Section 13.

Similar color-blending procedures can be applied to an area whose fore-
ground color is to be merged with multiple background color areas, such as a
checkerboard pattern. When two background colors B1 and B2 are mixed with
foreground color F, the resulting pixel color P is

P = t0F + t1B1 + (1 − t0 − t1)B2 (67)

where the sum of the color-term coefficients t0, t1, and (1 − t0 − t1) must equal
1. We can set up two simultaneous equations using two of the three RGB color
components to solve for the two proportionality parameters, t0 and t1. These
parameters are then used to mix the new fill color with the two background colors
to obtain the new pixel color. With three background colors and one foreground
color, or with two background and two foreground colors, we need all three RGB
equations to obtain the relative amounts of the four colors. For some foreground
and background color combinations, however, the system of two or three RGB
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equations cannot be solved. This occurs when the color values are all very similar
or when they are all proportional to each other.

15 Implementation Methods
for Antialiasing

Line segments and other graphics primitives generated by the raster algorithms
discussed earlier in this chapter have a jagged, or stair-step, appearance because
the sampling process digitizes coordinate points on an object to discrete integer
pixel positions. This distortion of information due to low-frequency sampling
(undersampling) is called aliasing. We can improve the appearance of displayed
raster lines by applying antialiasing methods that compensate for the undersam-
pling process.

An example of the effects of undersampling is shown in Figure 58. To avoid
losing information from such periodic objects, we need to set the sampling fre-
quency to at least twice that of the highest frequency occurring in the object,
referred to as the Nyquist sampling frequency (or Nyquist sampling rate) fs :

fs = 2 fmax (68)

Another way to state this is that the sampling interval should be no larger than
one-half the cycle interval (called the Nyquist sampling interval). For x-interval
sampling, the Nyquist sampling interval �xs is

�xs = �xcycle

2
(69)

where �xcycle = 1/ fmax. In Figure 58, our sampling interval is one and one-half
times the cycle interval, so the sampling interval is at least three times too large.
If we want to recover all the object information for this example, we need to cut
the sampling interval down to one-third the size shown in the figure.

One way to increase sampling rate with raster systems is simply to display
objects at higher resolution. However, even at the highest resolution possible with
current technology, the jaggies will be apparent to some extent. There is a limit
to how big we can make the frame buffer and still maintain the refresh rate at
60 frames or more per second. To represent objects accurately with continuous
parameters, we need arbitrarily small sampling intervals. Therefore, unless hard-
ware technology is developed to handle arbitrarily large frame buffers, increased
screen resolution is not a complete solution to the aliasing problem.

With raster systems that are capable of displaying more than two intensity
levels per color, we can apply antialiasing methods to modify pixel intensities. By

* * * * * Sampling
Positions(a)

(b)

F I G U R E 5 8
Sampling the periodic shape in (a) at the
indicated positions produces the aliased
lower-frequency representation in (b).
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appropriately varying the intensities of pixels along the boundaries of primitives,
we can smooth the edges to lessen their jagged appearance.

A straightforward antialiasing method is to increase sampling rate by treating
the screen as if it were covered with a finer grid than is actually available. We can
then use multiple sample points across this finer grid to determine an appropriate
intensity level for each screen pixel. This technique of sampling object character-
istics at a high resolution and displaying the results at a lower resolution is called
supersampling (or postfiltering, because the general method involves comput-
ing intensities at subpixel grid positions and then combining the results to obtain
the pixel intensities). Displayed pixel positions are spots of light covering a finite
area of the screen, and not infinitesimal mathematical points. Yet in the line and
fill-area algorithms we have discussed, the intensity of each pixel is determined
by the location of a single point on the object boundary. By supersampling, we
obtain intensity information from multiple points that contribute to the overall
intensity of a pixel.

An alternative to supersampling is to determine pixel intensity by calculating
the areas of overlap of each pixel with the objects to be displayed. Antialiasing by
computing overlap areas is referred to as area sampling (or prefiltering, because
the intensity of the pixel as a whole is determined without calculating subpixel
intensities). Pixel overlap areas are obtained by determining where object bound-
aries intersect individual pixel boundaries.

Raster objects can also be antialiased by shifting the display location of pixel
areas. This technique, called pixel phasing, is applied by “micropositioning” the
electron beam in relation to object geometry. For example, pixel positions along a
straight-line segment can be moved closer to the defined line path to smooth out
the raster stair-step effect.

Supersampling Straight-Line Segments
We can perform supersampling in several ways. For a straight-line segment, we
can divide each pixel into a number of subpixels and count the number of sub-
pixels that overlap the line path. The intensity level for each pixel is then set to
a value that is proportional to this subpixel count. An example of this method is
given in Figure 59. Each square pixel area is divided into nine equal-sized square
subpixels, and the shaded regions show the subpixels that would be selected by
Bresenham’s algorithm. This scheme provides for three intensity settings above
zero, because the maximum number of subpixels that can be selected within
any pixel is three. For this example, the pixel at position (10, 20) is set to the
maximum intensity (level 3); pixels at (11, 21) and (12, 21) are each set to the next
highest intensity (level 2); and pixels at (11, 20) and (12, 22) are each set to the
lowest intensity above zero (level 1). Thus, the line intensity is spread out over
a greater number of pixels to smooth the original jagged effect. This procedure
displays a somewhat blurred line in the vicinity of the stair steps (between hori-
zontal runs). If we want to use more intensity levels to antialiase the line with this
method, we increase the number of sampling positions across each pixel. Sixteen
subpixels gives us four intensity levels above zero; twenty-five subpixels gives us
five levels; and so on.

In the supersampling example of Figure 59, we considered pixel areas of
finite size, but we treated the line as a mathematical entity with zero width.
Actually, displayed lines have a width approximately equal to that of a pixel.
If we take the finite width of the line into account, we can perform supersam-
pling by setting pixel intensity proportional to the number of subpixels inside the
polygon representing the line area. A subpixel can be considered to be inside the
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Supersampling subpixel positions along a
straight-line segment whose left endpoint is at
screen coordinates (10, 20).
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Supersampling subpixel positions in relation to
the interior of a line of finite width.

line if its lower-left corner is inside the polygon boundaries. An advantage of this
supersampling procedure is that the number of possible intensity levels for each
pixel is equal to the total number of subpixels within the pixel area. For the exam-
ple in Figure 59, we can represent this line with finite width by positioning the
polygon boundaries parallel to the line path as in Figure 60. In addition, each
pixel can now be set to one of nine possible brightness levels above zero.

Another advantage of supersampling with a finite-width line is that the total
line intensity is distributed over more pixels. In Figure 60, we now have the
pixel at grid position (10, 21) turned on (at intensity level 1), and we also pick
up contributions from pixels immediately below and immediately to the left of
position (10, 21). Also, if we have a color display, we can extend the method to
take background colors into account. A particular line might cross several different
color areas, and we can average subpixel intensities to obtain pixel color settings.
For instance, if five subpixels within a particular pixel area are determined to be
inside the boundaries for a red line and the remaining four subpixels fall within
a blue background area, we can calculate the color for this pixel as

pixelcolor = (5 · red + 4 · blue)

9
The trade-off for these gains from supersampling a finite-width line is that

identifying interior subpixels requires more calculations than simply determining
which subpixels are along the line path. Also, we need to take into account the
positioning of the line boundaries in relation to the line path. This positioning
depends on the slope of the line. For a 45◦ line, the line path is centered on
the polygon area; but for either a horizontal or a vertical line, we want the line
path to be one of the polygon boundaries. For example, a horizontal line passing
through grid coordinates (10, 20) could be represented as the polygon bounded
by horizontal grid lines y = 20 and y = 21. Similarly, the polygon representing
a vertical line through (10, 20) can have vertical boundaries along grid lines x =
10 and x = 11. For lines with slope |m| < 1, the mathematical line path will
be positioned proportionately closer to either the lower or the upper polygon
boundary depending upon where the line intersects the polygon; in Figure 59,
for instance, the line intersects the pixel at (10, 20) closer to the lower boundary,
but intersects the pixel at (11, 20) closer to the upper boundary. Similarly, for lines
with slope |m| > 1, the line path is placed closer to the left or right polygon
boundary depending on where it intersects the polygon.
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Subpixel Weighting Masks
Supersampling algorithms are often implemented by giving more weight to sub-
pixels near the center of a pixel area because we would expect these subpixels to
be more important in determining the overall intensity of a pixel. For the 3 × 3
pixel subdivisions we have considered so far, a weighting scheme as in Figure 61
could be used. The center subpixel here is weighted four times that of the cor-
ner subpixels and twice that of the remaining subpixels. Intensities calculated for
each of the nine subpixels would then be averaged so that the center subpixel is
weighted by a factor of 1

4 ; the top, bottom, and side subpixels are each weighted
by a factor of 1

8 ; and the corner subpixels are each weighted by a factor of 1
16 . An

array of values specifying the relative importance of subpixels is usually referred
to as a weighting mask. Similar masks can be set up for larger subpixel grids. Also,
these masks are often extended to include contributions from subpixels belonging
to neighboring pixels, so that intensities can be averaged with adjacent pixels to
provide a smoother intensity variation between pixels.
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F I G U R E 6 1
Relative weights for a grid of
3 × 3 subpixels.

Area Sampling Straight-Line Segments
We perform area sampling for a straight line by setting pixel intensity proportional
to the area of overlap of the pixel with the finite-width line. The line can be treated
as a rectangle, and the section of the line area between two adjacent vertical (or
two adjacent horizontal) screen grid lines is then a polygon. Overlap areas for
pixels are calculated by determining how much of the polygon overlaps each
pixel in that column (or row). In Figure 60, the pixel with screen grid coordinates
(10, 20) is about 90 percent covered by the line area, so its intensity would be set
to 90 percent of the maximum intensity. Similarly, the pixel at (10, 21) would be
set to an intensity of about 15 percent of maximum. A method for estimating
pixel overlap areas is illustrated by the supersampling example in Figure 60.
The total number of subpixels within the line boundaries is approximately equal
to the overlap area, and this estimation is improved by using finer subpixel grids.

Filtering Techniques
A more accurate method for antialiasing lines is to use filtering techniques. The
method is similar to applying a weighted pixel mask, but now we imagine a con-
tinuous weighting surface (or filter function) covering the pixel. Figure 62 shows
examples of rectangular, conical, and Gaussian filter functions. Methods for apply-
ing the filter function are similar to those for applying a weighting mask, but now
we integrate over the pixel surface to obtain the weighted average intensity. To
reduce computation, table lookups are commonly used to evaluate the integrals.

Pixel Phasing
On raster systems that can address subpixel positions within the screen grid,
pixel phasing can be used to antialias objects. A line display is smoothed with
this technique by moving (micropositioning) pixel positions closer to the line
path. Systems incorporating pixel phasing are designed so that the electron beam
can be shifted by a fraction of a pixel diameter. The electron beam is typically
shifted by 1

4 , 1
2 , or 3

4 of a pixel diameter to plot points closer to the true path of
a line or object edge. Some systems also allow the size of individual pixels to be
adjusted as an additional means for distributing intensities. Figure 63 illustrates
the antialiasing effects of pixel phasing on a variety of line paths.
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F I G U R E 6 2
Common filter functions used to
antialias line paths. The volume of
each filter is normalized to 1.0, and
the height gives the relative weight at
any subpixel position.
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F I G U R E 6 3
Jagged lines (a), plotted on the Merlin
9200 system, are smoothed (b) with
an antialiasing technique called pixel
phasing. This technique increases the
number of addressable points on the
system from 768 by 576 to 3072 by
2304. (Courtesy of Peritek Corp.)

Compensating for Line-Intensity Differences
Antialiasing a line to soften the stair-step effect also compensates for another raster
effect, illustrated in Figure 64. Both lines are plotted with the same number of
pixels, yet the diagonal line is longer than the horizontal line by a factor of

√
2. For

example, if the horizontal line had a length of 10 centimeters, the diagonal line
would have a length of more than 14 centimeters. The visual effect of this is that
the diagonal line appears less bright than the horizontal line, because the diagonal
line is displayed with a lower intensity per unit length. A line-drawing algorithm
could be adapted to compensate for this effect by adjusting the intensity of each
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F I G U R E 6 4
Unequal length lines displayed with the same number of
pixels in each line.

line according to its slope. Horizontal and vertical lines would be displayed with
the lowest intensity, while 45◦ lines would be given the highest intensity. But
if antialiasing techniques are applied to a display, intensities are compensated
automatically. When the finite width of a line is taken into account, pixel intensities
are adjusted so that the line displays a total intensity proportional to its length.

Antialiasing Area Boundaries
The antialiasing concepts that we have discussed for lines can also be applied to
the boundaries of areas to remove their jagged appearance. We can incorporate
these procedures into a scan-line algorithm to smooth out the boundaries as the
area is generated.

If system capabilities permit the repositioning of pixels, we could smooth
area boundaries by shifting pixel positions closer to the boundary. Other methods
adjust pixel intensity at a boundary position according to the percent of the pixel
area that is interior to the object. In Figure 65, the pixel at position (x, y) has
about half its area inside the polygon boundary. Therefore, the intensity at that
position would be adjusted to one-half its assigned value. At the next position
(x + 1, y + 1) along the boundary, the intensity is adjusted to about one-third the
assigned value for that point. Similar adjustments, based on the percent of pixel
area coverage, are applied to the other intensity values around the boundary.

Supersampling methods can be applied by determining the number of sub-
pixels that are in the interior of an object. A partitioning scheme with four subareas
per pixel is shown in Figure 66. The original 4 × 4 grid of pixels is turned into
an 8 × 8 grid, and we now process eight scan lines across this grid instead of
four. Figure 67 shows one of the pixel areas in this grid that overlaps an object
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Adjusting pixel intensities along an area
boundary.

F I G U R E 6 6
A 4 × 4 pixel section of a raster display
subdivided into an 8 × 8 grid.
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A subdivided pixel area with three subdivisions
inside an object boundary line.
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boundary. Along the two scan lines, we determine that three of the subpixel areas
are inside the boundary. So we set the pixel intensity at 75 percent of its maximum
value.

Another method for determining the percentage of pixel area within a fill
region, developed by Pitteway and Watkinson, is based on the midpoint line
algorithm. This algorithm selects the next pixel along a line by testing the location
of the midposition between two pixels. As in the Bresenham algorithm, we set up
a decision parameter p whose sign tells us which of the next two candidate pixels
is closer to the line. By slightly modifying the form of p, we obtain a quantity that
also gives the percentage of the current pixel area that is covered by an object.

We first consider the method for a line with slope m in the range from 0 to 1. In
Figure 68, a straight-line path is shown on a pixel grid. Assuming that the pixel
at position (xk , yk) has been plotted, the next pixel nearest the line at x = xk + 1 is
either the pixel at yk or the one at yk + 1. We can determine which pixel is nearer
with the calculation

y − ymid = [m(xk + 1) + b] − (yk + 0.5) (70)

This gives the vertical distance from the actual y coordinate on the line to the
halfway point between pixels at position yk and yk + 1. If this difference calculation
is negative, the pixel at yk is closer to the line. If the difference is positive, the pixel
at yk + 1 is closer. We can adjust this calculation so that it produces a positive
number in the range from 0 to 1 by adding the quantity 1 − m:

p = [m(xk + 1) + b] − (yk + 0.5) + (1 − m) (71)

Now the pixel at yk is nearer if p < 1 − m, and the pixel at yk + 1 is nearer if
p > 1 − m.

Parameter p also measures the amount of the current pixel that is overlapped
by the area. For the pixel at (xk , yk ) in Figure 69, the interior part of the pixel is
trapezoidal and has an area that can be calculated as

area = m · xk + b − yk + 0.5 (72)

This expression for the overlap area of the pixel at (xk , yk) is the same as that for
parameter p in Equation 71. Therefore, by evaluating p to determine the next
pixel position along the polygon boundary, we also determine the percentage of
area coverage for the current pixel.

We can generalize this algorithm to accommodate lines with negative slopes
and lines with slopes greater than 1. This calculation for parameter p could then

y � mx � b
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be incorporated into a midpoint line algorithm to locate pixel positions along
a polygon edge and, concurrently, adjust pixel intensities along the boundary
lines. Also, we can adjust the calculations to reference pixel coordinates at their
lower-left coordinates and maintain area proportions, as discussed in Section 8.

F I G U R E 7 0
Polygons with more than one
boundary line passing through
individual pixel regions.

At polygon vertices and for very skinny polygons, as shown in Figure 70,
we have more than one boundary edge passing through a pixel area. For these
cases, we need to modify the Pitteway-Watkinson algorithm by processing all
edges passing through a pixel and determining the correct interior area.

Filtering techniques discussed for line antialiasing can also be applied to area
edges. In addition, the various antialiasing methods can be applied to polygon
areas or to regions with curved boundaries. Equations describing the boundaries
are used to estimate the amount of pixel overlap with the area to be displayed,
and coherence techniques are used along and between scan lines to simplify the
calculations.

16 Summary
Three methods that can be used to locate pixel positions along a straight-line
path are the DDA algorithm, Bresenham’s algorithm, and the midpoint method.
Bresenham’s line algorithm and the midpoint line method are equivalent, and
they are the most efficient. Color values for the pixel positions along the line path
are efficiently stored in the frame buffer by incrementally calculating the memory
addresses. Any of the line-generating algorithms can be adapted to a parallel
implementation by partitioning the line segments and distributing the partitions
among the available processors.

Circles and ellipses can be efficiently and accurately scan-converted using
midpoint methods and taking curve symmetry into account. Other conic sections
(parabolas and hyperbolas) can be plotted with similar methods. Spline curves,
which are piecewise continuous polynomials, are widely used in animation and
in CAD. Parallel implementations for generating curve displays can be accom-
plished with methods similar to those for parallel line processing.

To account for the fact that displayed lines and curves have finite widths, we
can adjust the pixel dimensions of objects to coincide to the specified geometric
dimensions. This can be done with an addressing scheme that references pixel
positions at their lower-left corner, or by adjusting line lengths.

Scan-line methods are commonly used to fill polygons, circles, and ellipses.
Across each scan line, the interior fill is applied to pixel positions between each
pair of boundary intersections, left to right. For polygons, scan-line intersections
with vertices can result in an odd number of intersections. This can be resolved
by shortening some polygon edges. Scan-line fill algorithms can be simplified if
fill areas are restricted to convex polygons. A further simplification is achieved if
all fill areas in a scene are triangles. The interior pixels along each scan line are
assigned appropriate color values, depending on the fill-attribute specifications.
Painting programs generally display fill regions using a boundary-fill method
or a flood-fill method. Each of these two fill methods requires an initial interior
point. The interior is then painted pixel by pixel from the initial point out to the
region boundaries.

Soft-fill procedures provide a new fill color for a region that has the same
variations as the previous fill color. One example of this approach is the lin-
ear soft-fill algorithm that assumes that the previous fill was a linear combina-
tion of foreground and background colors. This same linear relationship is then
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determined from the frame buffer settings and used to repaint the area in a new
color.

We can improve the appearance of raster primitives by applying antialiasing
procedures that adjust pixel intensities. One method for doing this is to supersam-
ple. That is, we consider each pixel to be composed of subpixels and we calculate
the intensity of the subpixels and average the values of all subpixels. We can also
weight the subpixel contributions according to position, giving higher weights to
the central subpixels. Alternatively, we can perform area sampling and determine
the percentage of area coverage for a screen pixel, then set the pixel intensity pro-
portional to this percentage. Another method for antialiasing is to build special
hardware configurations that can shift pixel positions.
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EXERCISES
1 Implement a polyline function using the DDA

algorithm, given any number (n) of input points.
A single point is to be plotted when n = 1.

2 Extend Bresenham’s line algorithm to generate
lines with any slope, taking symmetry between
quadrants into account.

3 Implement a polyline function, using the algorithm
from the previous exercise, to display the set of
straight lines connecting a list of n input points.
For n = 1, the routine displays a single point.

4 Use the midpoint method to derive decision
parameters for generating points along a straight-
line path with slope in the range 0 < m < 1. Show
that the midpoint decision parameters are the same
as those in the Bresenham line algorithm.

5 Use the midpoint method to derive decision
parameters that can be used to generate straight-
line segments with any slope.

6 Set up a parallel version of Bresenham’s line algo-
rithm for slopes in the range 0 < m < 1.

7 Set up a parallel version of Bresenham’s algorithm
for straight lines with any slope.

8 Suppose you have a system with an 8 inch by
10 inch video monitor that can display 100 pix-
els per inch. If memory is organized in one byte
words, the starting frame buffer address is 0, and
each pixel is assigned one byte of storage, what is
the frame buffer address of the pixel with screen
coordinates (x, y)?

9 Suppose you have a system with a 12 inch by
14 inch video monitor that can display 120 pix-
els per inch. If memory is organized in one byte
words, the starting frame buffer address is 0, and
each pixel is assigned one byte of storage, what is
the frame buffer address of the pixel with screen
coordinates (x, y)?

10 Suppose you have a system with a 12 inch by
14 inch video monitor that can display 120 pix-
els per inch. If memory is organized in one byte
words, the starting frame buffer address is 0, and
each pixel is assigned 4 bits of storage, what is the
frame buffer address of the pixel with screen coor-
dinates (x, y)?

11 Incorporate the iterative techniques for calculat-
ing frame-buffer addresses (Section 3) into the
Bresenham line algorithm.

12 Revise the midpoint circle algorithm to display cir-
cles with input geometric magnitudes preserved
(Section 8).

13 Set up a procedure for a parallel implementation
of the midpoint circle algorithm.

14 Derive decision parameters for the midpoint
ellipse algorithm assuming the start position is
(rx , 0) and points are to be generated along the
curve path in counterclockwise order.
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15 Set up a procedure for a parallel implementation
of the midpoint ellipse algorithm.

16 Devise an efficient algorithm that takes advantage
of symmetry properties to display a sine function
over one cycle.

17 Modify the algorithm in the preceding exercise to
display a sine curve over any specified angular
interval.

18 Devise an efficient algorithm, taking function sym-
metry into account, to display a plot of damped
harmonic motion:

y = Ae−kx sin(ωx + θ)

where ω is the angular frequency and θ is the phase
of the sine function. Plot y as a function of x for
several cycles of the sine function or until the max-
imum amplitude is reduced to A

10 .
19 Use the algorithm developed in the previous exer-

cise to write a program that displays one cycle of a
sine curve. The curve should begin at the left edge
of the display window and complete at the right
edge, and the amplitude should be scaled so that
the maximum and minimum values of the curve
are equal to the maximum and minimum y values
of the display window.

20 Using the midpoint method, and taking symme-
try into account, develop an efficient algorithm for
scan conversion of the following curve over the
interval −10 ≤ x ≤ 10.

y = 1
12

x3

21 Use the algorithm developed in the previous ex-
ercise to write a program that displays a portion
of a sine curve determined by an input angular
interval. The curve should begin at the left edge
of the display window and complete at the right
edge, and the amplitude should be scaled so that
the maximum and minimum values of the curve
are equal to the maximum and minimum y values
of the display window.

22 Use the midpoint method and symmetry consid-
erations to scan convert the parabola

x = y2 − 5

over the interval −10 ≤ x ≤ 10.
23 Use the midpoint method and symmetry consid-

erations to scan convert the parabola

y = 50 − x2

over the interval −5 ≤ x ≤ 5.
24 Set up a midpoint algorithm, taking symmetry

considerations into account to scan convert any

parabola of the form

y = ax2 + b

with input values for parameters a , b, and the range
for x.

25 Define an efficient polygon-mesh representation
for a cylinder and justify your choice of represen-
tation.

26 Implement a general line-style function by modify-
ing Bresenham’s line-drawing algorithm to display
solid, dashed, or dotted lines.

27 Implement a line-style function using a midpoint
line algorithm to display solid, dashed, or dotted
lines.

28 Devise a parallel method for implementing a line-
style function.

29 Devise a parallel method for implementing a line-
width function.

30 A line specified by two endpoints and a width can
be converted to a rectangular polygon with four
vertices and then displayed using a scan-line
method. Develop an efficient algorithm for com-
puting the four vertices needed to define such a
rectangle, with the line endpoints and line width
as input parameters.

31 Implement a line-width function in a line-drawing
program so that any one of three line widths can
be displayed.

32 Write a program to output a line graph of three
data sets defined over the same x-coordinate range.
Input to the program is to include the three
sets of data values and the labels for the graph.
The data sets are to be scaled to fit within a
defined coordinate range for a display window.
Each data set is to be plotted with a different line
style.

33 Modify the program in the previous exercise to plot
the three data sets in different colors, as well as dif-
ferent line styles.

34 Set up an algorithm for displaying thick lines
with butt caps, round caps, or projecting square
caps. These options can be provided in an option
menu.

35 Devise an algorithm for displaying thick polylines
with a miter join, a round join, or a bevel join. These
options can be provided in an option menu.

36 Implement pen and brush menu options for a line-
drawing procedure, including at least two options:
round and square shapes.

37 Modify a line-drawing algorithm so that the inten-
sity of the output line is set according to its slope.
That is, by adjusting pixel intensities according to
the value of the slope, all lines are displayed with
the same intensity per unit length.
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38 Define and implement a function for controlling
the line style (solid, dashed, dotted) of displayed
ellipses.

39 Define and implement a function for setting the
width of displayed ellipses.

40 Modify the scan-line algorithm to apply any spec-
ified rectangular fill pattern to a polygon interior,
starting from a designated pattern position.

41 Write a program to scan convert the interior of a
specified ellipse into a solid color.

42 Write a procedure to fill the interior of a given
ellipse with a specified pattern.

43 Write a procedure for filling the interior of any
specified set of fill-area vertices, including one with
crossing edges, using the nonzero winding number
rule to identify interior regions.

44 Modify the boundary-fill algorithm for a
4-connected region to avoid excessive stacking
by incorporating scan-line methods.

45 Write a boundary-fill procedure to fill an
8-connected region.

46 Explain how an ellipse displayed with the mid-
point method could be properly filled with a
boundary-fill algorithm.

47 Develop and implement a flood-fill algorithm to
fill the interior of any specified area.

48 Define and implement a procedure for changing
the size of an existing rectangular fill pattern.

49 Write a procedure to implement a soft-fill algo-
rithm. Carefully define what the soft-fill algorithm
is to accomplish and how colors are to be com-
bined.

50 Devise an algorithm for adjusting the height and
width of characters defined as rectangular grid
patterns.

51 Implement routines for setting the character up
vector and the text path for controlling the display
of character strings.

52 Write a program to align text as specified by input
values for the alignment parameters.

53 Develop procedures for implementing marker
attributes (size and color).

54 Implement an antialiasing procedure by extending
Bresenham’s line algorithm to adjust pixel intensi-
ties in the vicinity of a line path.

55 Implement an antialiasing procedure for the mid-
point line algorithm.

56 Develop an algorithm for antialiasing elliptical
boundaries.

57 Modify the scan-line algorithm for area fill to
incorporate antialiasing. Use coherence techniques
to reduce calculations on successive scan lines.

58 Write a program to implement the Pitteway-
Watkinson antialiasing algorithm as a scan-line
procedure to fill a polygon interior, using the
OpenGL point-plotting function.

IN MORE DEPTH
1 Write routines to implement Bresenham’s line-

drawing algorithm and the DDA line-drawing
algorithm and use them to draw the outlines of
the shapes in the current snapshot of your appli-
cation. Record the runtimes of the algorithms and
compare the performance of the two. Next exam-
ine the polygons that represent the objects in your
scene and either choose a few that would be better
represented using ellipses or other curves or add a
few objects with this property. Implement a mid-
point algorithm to draw the ellipses or curves that
represent these objects and use it to draw the out-
lines of those objects. Discuss ways in which you
could improve the performance of the algorithms
you developed if you had direct access to parallel
hardware.

2 Implement the general scan-line polygon-fill
algorithm to fill in the polygons that make up
the objects in your scene with solid colors. Next,
implement a scan-line curve-filling algorithm to fill
the curved objects you added in the previous exer-
cise. Finally, implement a boundary fill algorithm
to fill all of the objects in your scene. Compare the
run times of the two approaches to filling in the
shapes in your scene.
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Two-Dimensional Geometric
Transformations

1 Basic Two-Dimensional Geometric
Transformations

2 Matrix Representations and
Homogeneous Coordinates

3 Inverse Transformations

4 Two-Dimensional Composite
Transformations

5 Other Two-Dimensional
Transformations

6 Raster Methods for Geometric
Transformations

7 OpenGL Raster Transformations

8 Transformations between
Two-Dimensional Coordinate
Systems

9 OpenGL Functions for
Two-Dimensional Geometric
Transformations

10 OpenGL Geometric-Transformation
Programming Examples

11 Summary S o far, we have seen how we can describe a scene in

terms of graphics primitives, such as line segments and fill

areas, and the attributes associated with these primitives.

Also, we have explored the scan-line algorithms for displaying output

primitives on a raster device. Now, we take a look at transformation

operations that we can apply to objects to reposition or resize them.

These operations are also used in the viewing routines that convert a

world-coordinate scene description to a display for an output device.

In addition, they are used in a variety of other applications, such as

computer-aided design (CAD) and computer animation. An architect,

for example, creates a layout by arranging the orientation and size of

the component parts of a design, and a computer animator develops

a video sequence by moving the “camera” position or the objects

in a scene along specified paths. Operations that are applied to the

geometric description of an object to change its position, orientation,

or size are called geometric transformations.
Sometimes geometric transformations are also referred to as

modeling transformations, but some graphics packages make a

From Chapter  of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson 
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distinction between the two. In general, modeling transformations are used to con-

struct a scene or to give the hierarchical description of a complex object that is com-

posed of several parts, which in turn could be composed of simpler parts, and so

forth. For example, an aircraft consists of wings, tail, fuselage, engine, and other com-

ponents, each of which can be specified in terms of second-level components, and

so on, down the hierarchy of component parts. Thus, the aircraft can be described

in terms of these components and an associated “modeling” transformation for each

one that describes how that component is to be fitted into the overall aircraft design.

Geometric transformations, on the other hand, can be used to describe how objects

might move around in a scene during an animation sequence or simply to view them

from another angle. Therefore, some graphics packages provide two sets of transforma-

tion routines, while other packages have a single set of functions that can be used for

both geometric transformations and modeling transformations.

1 Basic Two-Dimensional Geometric
Transformations

The geometric-transformation functions that are available in all graphics pack-
ages are those for translation, rotation, and scaling. Other useful transformation
routines that are sometimes included in a package are reflection and shearing
operations. To introduce the general concepts associated with geometric trans-
formations, we first consider operations in two dimensions.
stand the basic concepts, we can easily write routines to perform geometric trans-
formations on objects in a two-dimensional scene.

Two-Dimensional Translation
We perform a translation on a single coordinate point by adding offsets to its
coordinates so as to generate a new coordinate position. In effect, we are moving
the original point position along a straight-line path to its new location. Simi-
larly, a translation is applied to an object that is defined with multiple coordinate
positions, such as a quadrilateral, by relocating all the coordinate positions by the
same displacement along parallel paths. Then the complete object is displayed at
the new location.

y

x

P

T

P�

F I G U R E 1
Translating a point from position P to
position P′ using a translation
vector T.

To translate a two-dimensional position, we add translation distances tx and
ty to the original coordinates (x, y) to obtain the new coordinate position (x′, y′)
as shown in Figure 1.

x′ = x + tx, y′ = y + ty (1)

The translation distance pair (tx, ty) is called a translation vector or shift vector.
We can express Equations 1 as a single matrix equation by using the follow-

ing column vectors to represent coordinate positions and the translation vector:

P =
[

x
y

]

, P′ =
[

x′

y′

]

, T =
[

tx

ty

]

(2)

This allows us to write the two-dimensional translation equations in the matrix
form

P′ = P + T (3)

 Once we under-
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F I G U R E 2
Moving a polygon from position (a) to position (b) with the
translation vector (−5.50, 3.75).

Translation is a rigid-body transformation that moves objects without defor-
mation. That is, every point on the object is translated by the same amount.
A straight-line segment is translated by applying Equation 3 to each of the
two line endpoints and redrawing the line between the new endpoint positions.
A polygon is translated similarly. We add a translation vector to the coordinate
position of each vertex and then regenerate the polygon using the new set of
vertex coordinates. Figure 2 illustrates the application of a specified translation
vector to move an object from one position to another.

The following routine illustrates the translation operations. An input transla-
tion vector is used to move the n vertices of a polygon from one world-coordinate
position to another, and OpenGL routines are used to regenerate the translated
polygon.

class wcPt2D {
public:

GLfloat x, y;
};

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)
{

GLint k;

for (k = 0; k < nVerts; k++) {
verts [k].x = verts [k].x + tx;
verts [k].y = verts [k].y + ty;

}
glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)
glVertex2f (verts [k].x, verts [k].y);

glEnd ( );
}

If we want to delete the original polygon, we could display it in the back-
ground color before translating it. Other methods for deleting picture components
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are available in some graphics packages. Also, if we want to save the original poly-
gon position, we can store the translated positions in a different array.

Similar methods are used to translate other objects. To change the position of
a circle or ellipse, we translate the center coordinates and redraw the figure in the
new location. For a spline curve, we translate the points that define the curve path
and then reconstruct the curve sections between the new coordinate positions.

Two-Dimensional Rotation
We generate a rotation transformation of an object by specifying a rotation axis
and a rotation angle. All points of the object are then transformed to new positions
by rotating the points through the specified angle about the rotation axis.

A two-dimensional rotation of an object is obtained by repositioning the object
along a circular path in the xy plane. In this case, we are rotating the object about
a rotation axis that is perpendicular to the xy plane (parallel to the coordinate
z axis). Parameters for the two-dimensional rotation are the rotation angle θ and
a position (xr , yr ), called the rotation point (or pivot point), about which the
object is to be rotated (Figure 3). The pivot point is the intersection position
of the rotation axis with the xy plane. A positive value for the angle θ defines a
counterclockwise rotation about the pivot point, as in Figure 3, and a negative
value rotates objects in the clockwise direction.

yr

xr

u

F I G U R E 3
Rotation of an object through angle θ

about the pivot point (xr , yr ).

(x�, y�)

(x, y)r

r
u

f

F I G U R E 4
Rotation of a point from position (x , y )
to position (x ′, y ′) through an angle θ

relative to the coordinate origin. The
original angular displacement of the
point from the x axis is φ.

To simplify the explanation of the basic method, we first determine the trans-
formation equations for rotation of a point position P when the pivot point is
at the coordinate origin. The angular and coordinate relationships of the origi-
nal and transformed point positions are shown in Figure 4. In this figure, r is
the constant distance of the point from the origin, angle φ is the original angu-
lar position of the point from the horizontal, and θ is the rotation angle. Using
standard trigonometric identities, we can express the transformed coordinates in
terms of angles θ and φ as

x′ = r cos(φ + θ) = r cos φ cos θ − r sin φ sin θ

y′ = r sin(φ + θ) = r cos φ sin θ + r sin φ cos θ

The original coordinates of the point in polar coordinates are

x = r cos φ , y = r sin φ

Substituting expressions 5 into 4, we obtain the transformation equations for
rotating a point at position (x, y) through an angle θ about the origin:

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ

With the column-vector representations 2 for coordinate positions, we can write
the rotation equations in the matrix form

P′ = R · P

where the rotation matrix is

R =
[

cos θ − sin θ

sin θ cos θ

]

(8)

A column-vector representation for a coordinate position P, as in Equa-
tions 2, is standard mathematical notation. However, early graphics systems
sometimes used a row-vector representation for point positions. This changes the
order in which the matrix multiplication for a rotation would be performed. But
now, graphics packages such as OpenGL, Java, PHIGS, and GKS all follow the
standard column-vector convention.

   (4)

   (5)

   (6)

   (7)
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f

F I G U R E 5
Rotating a point from position (x , y )
to position (x ′, y ′) through an angle θ

about rotation point (xr , yr ).

Rotation of a point about an arbitrary pivot position is illustrated in
Figure 5. Using the trigonometric relationships indicated by the two right trian-
gles in this figure, we can generalize Equations 6 to obtain the transformation
equations for rotation of a point about any specified rotation position (xr , yr ):

x′ = xr + (x − xr ) cos θ − (y − yr ) sin θ

y′ = yr + (x − xr ) sin θ + (y − yr ) cos θ
(9)

These general rotation equations differ from Equations 6 by the inclusion of
additive terms, as well as the multiplicative factors on the coordinate values.
The matrix expression 7 could be modified to include pivot coordinates by
including the matrix addition of a column vector whose elements contain the
additive (translational) terms in Equations 9. There are better ways, however, to
formulate such matrix equations, and in Section 2, we discuss a more consistent
scheme for representing the transformation equations.

As with translations, rotations are rigid-body transformations that move
objects without deformation. Every point on an object is rotated through the same
angle. A straight-line segment is rotated by applying Equations 9 to each of the
two line endpoints and redrawing the line between the new endpoint positions.
A polygon is rotated by displacing each vertex using the specified rotation angle
and then regenerating the polygon using the new vertices. We rotate a curve by
repositioning the defining points for the curve and then redrawing it. A circle or
an ellipse, for instance, can be rotated about a noncentral pivot point by moving
the center position through the arc that subtends the specified rotation angle. In
addition, we could rotate an ellipse about its center coordinates simply by rotating
the major and minor axes.

In the following code example, a polygon is rotated about a specified world-
coordinate pivot point. Parameters input to the rotation procedure are the original
vertices of the polygon, the pivot-point coordinates, and the rotation angle theta
specified in radians. Following the transformation of the vertex positions, the
polygon is regenerated using OpenGL routines.

class wcPt2D {
public:

GLfloat x, y;
};

void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt,
GLdouble theta)

{
wcPt2D * vertsRot;
GLint k;

for (k = 0; k < nVerts; k++) {
vertsRot [k].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta)

- (verts [k].y - pivPt.y) * sin (theta);
vertsRot [k].y = pivPt.y + (verts [k].x - pivPt.x) * sin (theta)

+ (verts [k].y - pivPt.y) * cos (theta);
}
glBegin {GL_POLYGON};

for (k = 0; k < nVerts; k++)
glVertex2f (vertsRot [k].x, vertsRot [k].y);

glEnd ( );
}
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Two-Dimensional Scaling
To alter the size of an object, we apply a scaling transformation. A simple two-
dimensional scaling operation is performed by multiplying object positions (x, y)
by scaling factors sx and sy to produce the transformed coordinates (x′, y′):

x′ = x · sx, y′ = y · sy

Scaling factor sx scales an object in the x direction, while sy scales in the y direc-
tion. The basic two-dimensional scaling equations 10 can also be written in the
following matrix form:

[
x′

y′

]

=
[

sx 0
0 sy

]

·
[

x
y

]

or

P′ = S · P

where S is the 2 × 2 scaling matrix in Equation 11.
Any positive values can be assigned to the scaling factors sx and sy. Values

less than 1 reduce the size of objects; values greater than 1 produce enlargements.
Specifying a value of 1 for both sx and sy leaves the size of objects unchanged.
When sx and sy are assigned the same value, a uniform scaling is produced,
which maintains relative object proportions. Unequal values for sx and sy result
in a differential scaling that is often used in design applications, where pictures
are constructed from a few basic shapes that can be adjusted by scaling and
positioning transformations (Figure 6). In some systems, negative values can
also be specified for the scaling parameters. This not only resizes an object, it
reflects it about one or more of the coordinate axes.

(a)

(b)

F I G U R E 6
Turning a square (a) into a rectangle
(b) with scaling factors sx = 2 and
sy = 1.

x� x

F I G U R E 7
A line scaled with Equation 12 using
sx = sy = 0.5 is reduced in size and
moved closer to the coordinate origin.

Objects transformed with Equation 11 are both scaled and repositioned.
Scaling factors with absolute values less than 1 move objects closer to the
coordinate origin, while absolute values greater than 1 move coordinate posi-
tions farther from the origin. Figure 7 illustrates scaling of a line by assigning
the value 0.5 to both sx and sy in Equation 11. Both the line length and the
distance from the origin are reduced by a factor of 1

2 .

y

x

P1

P2

P3

(xf, yf)

F I G U R E 8
Scaling relative to a chosen fixed point
(x f , y f ). The distance from each
polygon vertex to the fixed point is
scaled by Equations 13.

We can control the location of a scaled object by choosing a position, called the
fixed point, that is to remain unchanged after the scaling transformation. Coor-
dinates for the fixed point, (x f , yf ), are often chosen at some object position, such
as its centroid (see Appendix A), but any other spatial position can be selected.
Objects are now resized by scaling the distances between object points and the

point (Figure 8). For a coordinate position (x, y), the scaled coordinates
(x′, y′) are then calculated from the following relationships:

x′ − x f = (x − x f )sx, y′ − yf = (y − yf )sy

We can rewrite Equations 13 to separate the multiplicative and additive
terms as

x′ = x · sx + x f (1 − sx)

y′ = y · sy + yf (1 − sy)

where the additive terms x f (1 − sx) and yf (1 − sy) are constants for all points in
the object.

Including coordinates for a fixed point in the scaling equations is similar to
including coordinates for a pivot point in the rotation equations. We can set up

   (10)

   (11)

   (12)

   (13)

   (14)

fixed
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a column vector whose elements are the constant terms in Equations 14, then
add this column vector to the product S · P in Equation 12. In the next section,
we discuss a matrix formulation for the transformation equations that involves
only matrix multiplication.

Polygons are scaled by applying transformations 14 to each vertex, then
regenerating the polygon using the transformed vertices. For other objects,
we apply the scaling transformation equations to the parameters defining the
objects. To change the size of a circle, we can scale its radius and calculate the
new coordinate positions around the circumference. And to change the size of an
ellipse, we apply scaling parameters to its two axes and then plot the new ellipse
positions about its center coordinates.

The following procedure illustrates an application of the scaling calculations
for a polygon. Coordinates for the polygon vertices and for the fixed point are
input parameters, along with the scaling factors. After the coordinate transforma-
tions, OpenGL routines are used to generate the scaled polygon.

class wcPt2D {
public:

GLfloat x, y;
};

void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt,
GLfloat sx, GLfloat sy)

{
wcPt2D vertsNew;
GLint k;

for (k = 0; k < nVerts; k++) {
vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx);
vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy);

}
glBegin {GL_POLYGON};

for (k = 0; k < nVerts; k++)
glVertex2f (vertsNew [k].x, vertsNew [k].y);

glEnd ( );
}

2 Matrix Representations and
Homogeneous Coordinates

Many graphics applications involve sequences of geometric transformations. An
animation might require an object to be translated and rotated at each increment
of the motion. In design and picture construction applications, we perform trans-
lations, rotations, and scalings to fit the picture components into their proper
positions. The viewing transformations involve sequences of translations and
rotations to take us from the original scene specification to the display on an out-
put device. Here, we consider how the matrix representations discussed in the
previous sections can be reformulated so that such transformation sequences can
be processed efficiently.
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We have seen in Section 1 that each of the three basic two-dimensional
transformations (translation, rotation, and scaling) can be expressed in the general
matrix form

P′ = M1 · P + M2

with coordinate positions P and P′ represented as column vectors. Matrix M1 is
a 2 × 2 array containing multiplicative factors, and M2 is a two-element column
matrix containing translational terms. For translation, M1 is the identity matrix.
For rotation or scaling, M2 contains the translational terms associated with the
pivot point or scaling fixed point. To produce a sequence of transformations with
these equations, such as scaling followed by rotation and then translation, we
could calculate the transformed coordinates one step at a time. First, coordinate
positions are scaled, then these scaled coordinates are rotated, and finally, the
rotated coordinates are translated. A more efficient approach, however, is to com-
bine the transformations so that the final coordinate positions are obtained directly
from the initial coordinates, without calculating intermediate coordinate values.
We can do this by reformulating Equation 15 to eliminate the matrix addition
operation.

Homogeneous Coordinates
Multiplicative and translational terms for a two-dimensional geometric transfor-
mation can be combined into a single matrix if we expand the representations
to 3 × 3 matrices. Then we can use the third column of a transformation matrix
for the translation terms, and all transformation equations can be expressed as
matrix multiplications. But to do so, we also need to expand the matrix repre-
sentation for a two-dimensional coordinate position to a three-element column
matrix. A standard technique for accomplishing this is to expand each two-
dimensional coordinate-position representation (x, y) to a three-element repre-
sentation (xh , yh , h), called homogeneous coordinates, where the homogeneous
parameter h is a nonzero value such that

x = xh

h
, y = yh

h

Therefore, a general two-dimensional homogeneous coordinate representation
could also be written as (h·x, h·y, h). For geometric transformations, we can choose
the homogeneous parameter h to be any nonzero value. Thus, each coordinate
point (x, y) has an infinite number of equivalent homogeneous representations.
A convenient choice is simply to set h = 1. Each two-dimensional position is then
represented with homogeneous coordinates (x, y, 1). Other values for parameter
h are needed, for example, in matrix formulations of three-dimensional viewing
transformations.

The term homogeneous coordinates is used in mathematics to refer to the effect
of this representation on Cartesian equations. When a Cartesian point (x, y) is
converted to a homogeneous representation (xh , yh , h), equations containing x and
y, such as f (x, y) = 0, become homogeneous equations in the three parameters
xh , yh , and h. This just means that if each of the three parameters is replaced by
any value v times that parameter, the value v can be factored out of the equations.

Expressing positions in homogeneous coordinates allows us to represent all
geometric transformation equations as matrix multiplications, which is the stan-
dard method used in graphics systems. Two-dimensional coordinate positions
are represented with three-element column vectors, and two-dimensional trans-
formation operations are expressed as 3 × 3 matrices.

   (15)

   (16)
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Two-Dimensional Translation Matrix
Using a homogeneous-coordinate approach, we can represent the equations for a
two-dimensional translation of a coordinate position using the following matrix
multiplication:

⎡

⎣

x′

y′

1

⎤

⎦ =
⎡

⎣

1 0 tx

0 1 ty

0 0 1

⎤

⎦ ·
⎡

⎣

x
y
1

⎤

⎦

This translation operation can be written in the abbreviated form

P′ = T(tx, ty) · P

with T(tx, ty) as the 3 × 3 translation matrix in Equation 17. In situations where
there is no ambiguity about the translation parameters, we can simply represent
the translation matrix as T.

Two-Dimensional Rotation Matrix
Similarly, two-dimensional rotation transformation equations about the coordi-
nate origin can be expressed in the matrix form

⎡

⎣

x′

y′

1

⎤

⎦ =
⎡

⎣

cos θ −sinθ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣

x
y
1

⎤

⎦

or as

P′ = R(θ) · P

The rotation transformation operator R(θ ) is the 3 × 3 matrix in Equation 19
with rotation parameter θ . We can also write this rotation matrix simply as R.

In some graphics libraries, a two-dimensional rotation function generates
only rotations about the coordinate origin, as in Equation 19. A rotation about
any other pivot point must then be performed as a sequence of transformation
operations. An alternative approach in a graphics package is to provide additional
parameters in the rotation routine for the pivot-point coordinates. A rotation
routine that includes a pivot-point parameter then sets up a general rotation
matrix without the need to invoke a succession of transformation functions.

Two-Dimensional Scaling Matrix
Finally, a scaling transformation relative to the coordinate origin can now be
expressed as the matrix multiplication

⎡

⎣

x′

y′

1

⎤

⎦ =
⎡

⎣

sx 0 0
0 sy 0
0 0 1

⎤

⎦ ·
⎡

⎣

x
y
1

⎤

⎦

or

P′ = S(sx, sy) · P (22)

The scaling operator S(sx, sy ) is the 3 × 3 matrix in Equation 21 with parameters
sx and sy. And, in most cases, we can represent the scaling matrix simply as S.

Some libraries provide a scaling function that can generate only scaling with
respect to the coordinate origin, as in Equation 21. In this case, a scaling trans-
formation relative to another reference position is handled as a succession of
transformation operations. However, other systems do include a general scaling
routine that can construct the homogeneous matrix for scaling with respect to a
designated fixed point.

   (19)

   (20)

   (18)

   (17)

   (21)
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3 Inverse Transformations
For translation, we obtain the inverse matrix by negating the translation distances.
Thus, if we have two-dimensional translation distances tx and ty, the inverse
translation matrix is

T−1 =
⎡

⎣

1 0 −tx

0 1 −ty

0 0 1

⎤

⎦

This produces a translation in the opposite direction, and the product of a trans-
lation matrix and its inverse produces the identity matrix.

An inverse rotation is accomplished by replacing the rotation angle by its
negative. For example, a two-dimensional rotation through an angle θ about the
coordinate origin has the inverse transformation matrix

R−1 =
⎡

⎣

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤

⎦

Negative values for rotation angles generate rotations in a clockwise direction,
so the identity matrix is produced when any rotation matrix is multiplied by its
inverse. Because only the sine function is affected by the change in sign of the
rotation angle, the inverse matrix can also be obtained by interchanging rows
and columns. That is, we can calculate the inverse of any rotation matrix R by
evaluating its transpose (R−1 = RT ).

We form the inverse matrix for any scaling transformation by replacing
the scaling parameters with their reciprocals. For two-dimensional scaling with
parameters sx and sy applied relative to the coordinate origin, the inverse trans-
formation matrix is

S−1 =

⎡

⎢
⎢
⎢
⎢
⎣

1
sx

0 0

0
1
sy

0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

The inverse matrix generates an opposite scaling transformation, so the multipli-
cation of any scaling matrix with its inverse produces the identity matrix.

4 Two-Dimensional Composite
Transformations

Using matrix representations, we can set up a sequence of transformations as a
composite transformation matrix by calculating the product of the individual
transformations. Forming products of transformation matrices is often referred
to as a concatenation, or composition, of matrices. Because a coordinate posi-
tion is represented with a homogeneous column matrix, we must premultiply
the column matrix by the matrices representing any transformation sequence.
Also, because many positions in a scene are typically transformed by the same
sequence, it is more efficient to first multiply the transformation matrices to form
a single composite matrix. Thus, if we want to apply two transformations to point
position P, the transformed location would be calculated as

P′ = M2 · M1 · P

= M · P

    (23)

    (24)

    (25)

    (26)

Two-Dimensional Geometric Transformations

198



The coordinate position is transformed using the composite matrix M, rather than
applying the individual transformations M1 and then M2.

Composite Two-Dimensional Translations
If two successive translation vectors (t1x, t1y) and (t2x, t2y) are applied to a two-
dimensional coordinate position P, the final transformed location P′ is calcu-
lated as

P′ = T(t2x, t2y) · {T(t1x, t1y) · P}
= {T(t2x, t2y) · T(t1x, t1y)} · P

where P and P′ are represented as three-element, homogeneous-coordinate col-
umn vectors. We can verify this result by calculating the matrix product for the
two associative groupings. Also, the composite transformation matrix for this
sequence of translations is

⎡

⎣

1 0 t2x

0 1 t2y

0 0 1

⎤

⎦ ·
⎡

⎣

1 0 t1x

0 1 t1y

0 0 1

⎤

⎦ =
⎡

⎣

1 0 t1x + t2x

0 1 t1y + t2y

0 0 1

⎤

⎦

or

T(t2x, t2y) · T(t1x, t1y) = T(t1x + t2x, t1y + t2y)

which demonstrates that two successive translations are additive.

Composite Two-Dimensional Rotations
Two successive rotations applied to a point P produce the transformed position

P′ = R(θ2) · {R(θ1) · P}
= {R(θ2) · R(θ1)} · P

By multiplying the two rotation matrices, we can verify that two successive rota-
tions are additive:

R(θ2) · R(θ1) = R(θ1 + θ2)

so that the final rotated coordinates of a point can be calculated with the composite
rotation matrix as

P′ = R(θ1 + θ2) · P

Composite Two-Dimensional Scalings
Concatenating transformation matrices for two successive scaling operations in
two dimensions produces the following composite scaling matrix:

⎡

⎣

s2x 0 0
0 s2y 0
0 0 1

⎤

⎦ ·
⎡

⎣

s1x 0 0
0 s1y 0
0 0 1

⎤

⎦ =
⎡

⎣

s1x · s2x 0 0
0 s1y · s2y 0
0 0 1

⎤

⎦

or

S(s2x, s2y) · S(s1x, s1y) = S(s1x · s2x, s1y · s2y) (34)

The resulting matrix in this case indicates that successive scaling operations are
multiplicative. That is, if we were to triple the size of an object twice in succession,
the final size would be nine times that of the original.

   (27)

   (28)

   (29)

   (30)

   (31)

   (32)

   (33)
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F I G U R E 9
A transformation sequence for rotating
an object about a specified pivot point
using the rotation matrix R(θ ) of
transformation 19.

(b)

Translation of
Object so that

Pivot Point
(xr, yr) is at

Origin

(a)

Original Position
of Object and 

Pivot Point

(xr, yr)

(c)

Rotation
about
Origin

(d)

Translation of
Object so that
the Pivot Point

is Returned
to Position

(xr, yr)

(xr, yr)

General Two-Dimensional Pivot-Point Rotation
When a graphics package provides only a rotate function with respect to the coor-
dinate origin, we can generate a two-dimensional rotation about any other pivot
point (xr , yr ) by performing the following sequence of translate-rotate-translate
operations:

1. Translate the object so that the pivot-point position is moved to the coor-
dinate origin.

2. Rotate the object about the coordinate origin.
3. Translate the object so that the pivot point is returned to its original

position.

This transformation sequence is illustrated in Figure 9. The composite trans-
formation matrix for this sequence is obtained with the concatenation

⎡

⎣

1 0 xr

0 1 yr

0 0 1

⎤

⎦ ·
⎡

⎣

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣

1 0 −xr

0 1 −yr

0 0 1

⎤

⎦

=
⎡

⎣

cos θ −sin θ xr (1 − cos θ) + yr sin θ

sin θ cos θ yr (1 − cos θ) − xr sin θ

0 0 1

⎤

⎦

which can be expressed in the form

T(xr , yr ) · R(θ) · T(−xr , −yr ) = R(xr , yr , θ)

where T(−xr , −yr ) = T−1(xr , yr ). In general, a rotate function in a graphics
library could be structured to accept parameters for pivot-point coordinates, as
well as the rotation angle, and to generate automatically the rotation matrix of
Equation 35.

General Two-Dimensional Fixed-Point Scaling
Figure 10 illustrates a transformation sequence to produce a two-dimensional
scaling with respect to a selected fixed position (x f , yf ), when we have a function
that can scale relative to the coordinate origin only. This sequence is

1. Translate the object so that the fixed point coincides with the coordinate
origin.

   (35)

   (36)
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(b)

Translate Object
so that Fixed Point
(xf, yf) is at Origin

(a)

Original Position
of Object and 

Fixed Point

(xf, yf)

(c)

Scale Object
with Respect

to Origin

(xf, yf)

(d)

Translate Object
so that the Fixed
Point is Returned
to Position (xf, yf)

F I G U R E 1 0
A transformation sequence for scaling
an object with respect to a specified
fixed position using the scaling matrix
S(sx , sy ) of transformation 21.

2. Scale the object with respect to the coordinate origin.
3. Use the inverse of the translation in step (1) to return the object to its

original position.

Concatenating the matrices for these three operations produces the required
scaling matrix:

⎡

⎣

1 0 x f

0 1 yf

0 0 1

⎤

⎦ ·
⎡

⎣

sx 0 0
0 sy 0
0 0 1

⎤

⎦ ·
⎡

⎣

1 0 −x f

0 1 −yf

0 0 1

⎤

⎦ =
⎡

⎣

sx 0 x f (1 − sx)

0 sy yf (1 − sy)

0 0 1

⎤

⎦

or

T(x f , yf ) · S(sx, sy) · T(−x f , −yf ) = S(x f , yf , sx, sy)

This transformation is generated automatically in systems that provide a scale
function that accepts coordinates for the fixed point.

General Two-Dimensional Scaling Directions
Parameters sx and sy scale objects along the x and y directions. We can scale
an object in other directions by rotating the object to align the desired scaling
directions with the coordinate axes before applying the scaling transformation.

s1

s2

y

xu

F I G U R E 1 1
Scaling parameters s1 and s2 along
orthogonal directions defined
by the angular displacement θ .

Suppose we want to apply scaling factors with values specified by parameters
s1 and s2 in the directions shown in Figure 11. To accomplish the scaling without
changing the orientation of the object, we first perform a rotation so that the
directions for s1 and s2 coincide with the x and y axes, respectively. Then the
scaling transformation S(s1, s2) is applied, followed by an opposite rotation to
return points to their original orientations. The composite matrix resulting from
the product of these three transformations is

R−1(θ) · S(s1, s2) · R(θ) =
⎡

⎣

s1 cos2 θ + s2 sin2 θ (s2 − s1) cos θ sin θ 0
(s2 − s1) cos θ sin θ s1 sin2 θ + s2 cos2 θ 0

0 0 1

⎤

⎦

As an example of this scaling transformation, we turn a unit square into a
parallelogram (Figure 12) by stretching it along the diagonal from (0, 0) to (1, 1).
We first rotate the diagonal onto the y axis using θ = 45◦, then we double its length
with the scaling values s1 = 1 and s2 = 2, and then we rotate again to return the
diagonal to its original orientation.

In Equation 39, we assumed that scaling was to be performed relative to
the origin. We could take this scaling operation one step further and concatenate
the matrix with translation operators, so that the composite matrix would include
parameters for the specification of a scaling fixed position.

    (37)

    (38)

    (39)
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F I G U R E 1 2
A square (a) is converted to a
parallelogram (b) using the composite
transformation matrix 39, with
s1 = 1, s2 = 2, and θ = 45◦.

(1/2, 3/2)

(0, 0)

(3/2, 1/2)

(2, 2)

(b)

y

x

(0, 1)

(0, 0) (1, 0)

(1, 1)

(a)

y

x

Matrix Concatenation Properties
Multiplication of matrices is associative. For any three matrices, M1, M2, and M3,
the matrix product M3 · M2 · M1 can be performed by first multiplying M3 and
M2 or by first multiplying M2 and M1:

M3 · M2 · M1 = (M3 · M2) · M1 = M3 · (M2 · M1)

Therefore, depending upon the order in which the transformations are specified,
we can construct a composite matrix either by multiplying from left to right
(premultiplying) or by multiplying from right to left (postmultiplying). Some
graphics packages require that transformations be specified in the order in which
they are to be applied. In that case, we would first invoke transformation M1,
then M2, then M3. As each successive transformation routine is called, its matrix
is concatenated on the left of the previous matrix product. Other graphics systems,
however, postmultiply matrices, so that this transformation sequence would have
to be invoked in the reverse order: the last transformation invoked (which is M1
for this example) is the first to be applied, and the first transformation that is
called (M3 in this case) is the last to be applied.

Transformation products, on the other hand, may not be commutative. The
matrix product M2 · M1 is not equal to M1 · M2, in general. This means that if we
want to translate and rotate an object, we must be careful about the order in which
the composite matrix is evaluated (Figure 13). For some special cases—such as
a sequence of transformations that are all of the same kind—the multiplication of
transformation matrices is commutative. As an example, two successive rotations
could be performed in either order and the final position would be the same. This
commutative property holds also for two successive translations or two successive
scalings. Another commutative pair of operations is rotation and uniform scaling
(sx = sy).

(a)

Final
Position

(b)

Final
Position

F I G U R E 1 3
Reversing the order in which a sequence of transformations is performed may affect the transformed position of
an object. In (a), an object is first translated in the x direction, then rotated counterclockwise through an angle
of 45◦. In (b), the object is first rotated 45◦ counterclockwise, then translated in the x direction.

   (40)
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General Two-Dimensional Composite Transformations
and Computational Efficiency
A two-dimensional transformation, representing any combination of translations,
rotations, and scalings, can be expressed as

⎡

⎣

x′

y′

1

⎤

⎦ =
⎡

⎣

rsxx rsxy trsx

rsyx rsyy trsy

0 0 1

⎤

⎦ ·
⎡

⎣

x
y
1

⎤

⎦

The four elements rs jk are the multiplicative rotation-scaling terms in the transfor-
mation, which involve only rotation angles and scaling factors. Elements trsx and
trsy are the translational terms, containing combinations of translation distances,
pivot-point and fixed-point coordinates, rotation angles, and scaling parameters.
For example, if an object is to be scaled and rotated about its centroid coordi-
nates (xc , yc) and then translated, the values for the elements of the composite
transformation matrix are

T(tx, ty) · R(xc , yc , θ) · S(xc , yc , sx, sy)

=
⎡

⎣

sx cos θ −sy sin θ xc(1 − sx cos θ) + ycsy sin θ + tx

sx sin θ sy cos θ yc(1 − sy cos θ) − xcsx sin θ + ty

0 0 1

⎤

⎦

Although Equation 41 requires nine multiplications and six additions, the
explicit calculations for the transformed coordinates are

x′ = x · rsxx + y · rsxy + trsx, y′ = x · rsyx + y · rsyy + trsy

Thus, we need actually perform only four multiplications and four additions
to transform coordinate positions. This is the maximum number of computations
required for any transformation sequence, once the individual matrices have been
concatenated and the elements of the composite matrix evaluated. Without con-
catenation, the individual transformations would be applied one at a time, and the
number of calculations could be increased significantly. An efficient implementa-
tion for the transformation operations, therefore, is to formulate transformation
matrices, concatenate any transformation sequence, and calculate transformed co-
ordinates using Equations 43. On parallel systems, direct matrix multiplications
with the composite transformation matrix of Equation 41 can be equally efficient.

Because rotation calculations require trigonometric evaluations and sev-
eral multiplications for each transformed point, computational efficiency can
become an important consideration in rotation transformations. In animations and
other applications that involve many repeated transformations and small rotation
angles, we can use approximations and iterative calculations to reduce computa-
tions in the composite transformation equations. When the rotation angle is small,
the trigonometric functions can be replaced with approximation values based on
the first few terms of their power series expansions. For small-enough angles (less
than 10◦), cos θ is approximately 1.0 and sin θ has a value very close to the value of
θ in radians. If we are rotating in small angular steps about the origin, for instance,
we can set cos θ to 1.0 and reduce transformation calculations at each step to two
multiplications and two additions for each set of coordinates to be rotated. These
rotation calculations are

x′ = x − y sin θ , y′ = x sin θ + y

where sin θ is evaluated once for all steps, assuming the rotation angle does not
change. The error introduced by this approximation at each step decreases as the
rotation angle decreases; but even with small rotation angles, the accumulated

   (41)

   (42)

   (43)

   (44)
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error over many steps can become quite large. We can control the accumulated
error by estimating the error in x′ and y′ at each step and resetting object posi-
tions when the error accumulation becomes too great. Some animation applica-
tions automatically reset object positions at fixed intervals, such as every 360◦ or
every 180◦.

Composite transformations often involve inverse matrices. For example,
transformation sequences for general scaling directions and for some reflections
and shears (Section 5) require inverse rotations. As we have noted, the inverse
matrix representations for the basic geometric transformations can be generated
with simple procedures. An inverse translation matrix is obtained by changing
the signs of the translation distances, and an inverse rotation matrix is obtained
by performing a matrix transpose (or changing the sign of the sine terms). These
operations are much simpler than direct inverse matrix calculations.

Two-Dimensional Rigid-Body Transformation
If a transformation matrix includes only translation and rotation parameters, it
is a rigid-body transformation matrix. The general form for a two-dimensional
rigid-body transformation matrix is

⎡

⎣

rxx rxy trx

ryx ryy try

0 0 1

⎤

⎦

where the four elements r jk are the multiplicative rotation terms, and the elements
trx and try are the translational terms. A rigid-body change in coordinate position
is also sometimes referred to as a rigid-motion transformation. All angles and
distances between coordinate positions are unchanged by the transformation. In
addition, matrix 45 has the property that its upper-left 2 × 2 submatrix is an
orthogonal matrix. This means that if we consider each row (or each column) of the
submatrix as a vector, then the two row vectors (rxx, rxy) and (ryx, ryy) (or the two
column vectors) form an orthogonal set of unit vectors. Such a set of vectors is
also referred to as an orthonormal vector set. Each vector has unit length as follows:

r2
xx + r2

xy = r2
yx + r2

yy = 1

and the vectors are perpendicular (their dot product is 0):

rxxryx + rxyryy = 0

Therefore, if these unit vectors are transformed by the rotation submatrix, then
the vector (rxx, rxy) is converted to a unit vector along the x axis and the vector (ryx,
ryy) is transformed into a unit vector along the y axis of the coordinate system:

⎡

⎣

rxx rxy 0
ryx ryy 0
0 0 1

⎤

⎦ ·
⎡

⎣

rxx

rxy

1

⎤

⎦ =
⎡

⎣

1
0
1

⎤

⎦

⎡

⎣

rxx rxy 0
ryx ryy 0
0 0 1

⎤

⎦ ·
⎡

⎣

ryx

ryy

1

⎤

⎦ =
⎡

⎣

0
1
1

⎤

⎦

For example, the following rigid-body transformation first rotates an object
through an angle θ about a pivot point (xr , yr ) and then translates the object:

T(tx, ty) · R(xr , yr , θ) =
⎡

⎣

cos θ − sin θ xr (1 − cos θ) + yr sin θ + tx

sin θ cos θ yr (1 − cos θ) − xr sin θ + ty

0 0 1

⎤

⎦    (50)

   (49)

   (48)

   (47)

   (46)

   (45)
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y

x

(a)

y

x

(b)

u�

v�

F I G U R E 1 4
The rotation matrix for revolving an
object from position (a) to position (b)
can be constructed with the values of
the unit orientation vectors u′ and v′

relative to the original orientation.

Here, orthogonal unit vectors in the upper-left 2 × 2 submatrix are (cos θ , − sin θ )
and (sin θ , cos θ ), and

⎡

⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣

cos θ

− sin θ

1

⎤

⎦ =
⎡

⎣

1
0
1

⎤

⎦

Similarly, unit vector (sin θ , cos θ ) is converted by the preceding transformation
matrix to the unit vector (0, 1) in the y direction.

Constructing Two-Dimensional Rotation Matrices
The orthogonal property of rotation matrices is useful for constructing the matrix
when we know the final orientation of an object, rather than the amount of angular
rotation necessary to put the object into that position. This orientation information
could be determined by the alignment of certain objects in a scene or by reference
positions within the coordinate system. For example, we might want to rotate an
object to align its axis of symmetry with the viewing (camera) direction, or we
might want to rotate one object so that it is above another object. Figure 14 shows
an object that is to be aligned with the unit direction vectors u′ and v′. Assuming
that the original object orientation, as shown in Figure 14(a), is aligned with
the coordinate axes, we construct the desired transformation by assigning the
elements of u′ to the first row of the rotation matrix and the elements of v′ to the
second row. In a modeling application, for instance, we can use this method to
obtain the transformation matrix within an object’s local coordinate system when
we know what its orientation is to be within the overall world-coordinate scene. A
similar transformation is the conversion of object descriptions from one coordinate
system to another, and we take up these methods in more detail in Section 8.

Two-Dimensional Composite-Matrix Programming Example
An implementation example for a sequence of geometric transformations is given
in the following program. Initially, the composite matrix, compMatrix, is con-
structed as the identity matrix. For this example, a left-to-right concatenation
order is used to construct the composite transformation matrix, and we invoke
the transformation routines in the order that they are to be executed. As each of
the basic transformation routines (scale, rotate, and translate) is invoked, a matrix
is set up for that transformation and left-concatenated with the composite matrix.
When all transformations have been specified, the composite transformation is
applied to transform a triangle. The triangle is first scaled with respect to its cen-
troid position, then the triangle is rotated about its centroid, and, lastly, it is
translated. Figure 15 shows the original and final positions of the triangle that
is transformed by this sequence. Routines in OpenGL are used to dispaly the
initial and final position of the triangle.

   (51)
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F I G U R E 1 5
A triangle (a) is transformed into
position (b) using the composite-
matrix calculations in procedure
transformVerts2D.

50

50

100

150

200

50

100

150

200

100

(a) (b)

150 200

Centroid

x

y

50 100 150 200 x

y

Centroid

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

/* Set initial display-window size. */
GLsizei winWidth = 600, winHeight = 600;

/* Set range for world coordinates. */
GLfloat xwcMin = 0.0, xwcMax = 225.0;
GLfloat ywcMin = 0.0, ywcMax = 225.0;

class wcPt2D {
public:

GLfloat x, y;
};

typedef GLfloat Matrix3x3 [3][3];

Matrix3x3 matComposite;

const GLdouble pi = 3.14159;

void init (void)
{

/* Set color of display window to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);

}

/* Construct the 3 x 3 identity matrix. */
void matrix3x3SetIdentity (Matrix3x3 matIdent3x3)
{

GLint row, col;

for (row = 0; row < 3; row++)
for (col = 0; col < 3; col++)

matIdent3x3 [row][col] = (row == col);
}
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/* Premultiply matrix m1 times matrix m2, store result in m2. */
void matrix3x3PreMultiply (Matrix3x3 m1, Matrix3x3 m2)
{

GLint row, col;
Matrix3x3 matTemp;

for (row = 0; row < 3; row++)
for (col = 0; col < 3 ; col++)

matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] *
m2 [1][col] + m1 [row][2] * m2 [2][col];

for (row = 0; row < 3; row++)
for (col = 0; col < 3; col++)

m2 [row][col] = matTemp [row][col];
}

void translate2D (GLfloat tx, GLfloat ty)
{

Matrix3x3 matTransl;

/* Initialize translation matrix to identity. */
matrix3x3SetIdentity (matTransl);

matTransl [0][2] = tx;
matTransl [1][2] = ty;

/* Concatenate matTransl with the composite matrix. */
matrix3x3PreMultiply (matTransl, matComposite);

}

void rotate2D (wcPt2D pivotPt, GLfloat theta)
{

Matrix3x3 matRot;

/* Initialize rotation matrix to identity. */
matrix3x3SetIdentity (matRot);

matRot [0][0] = cos (theta);
matRot [0][1] = -sin (theta);
matRot [0][2] = pivotPt.x * (1 - cos (theta)) +

pivotPt.y * sin (theta);
matRot [1][0] = sin (theta);
matRot [1][1] = cos (theta);
matRot [1][2] = pivotPt.y * (1 - cos (theta)) -

pivotPt.x * sin (theta);

/* Concatenate matRot with the composite matrix. */
matrix3x3PreMultiply (matRot, matComposite);

}

void scale2D (GLfloat sx, GLfloat sy, wcPt2D fixedPt)
{

Matrix3x3 matScale;
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/* Set geometric transformation parameters. */
wcPt2D pivPt, fixedPt;
pivPt = centroidPt;
fixedPt = centroidPt;

GLfloat tx = 0.0, ty = 100.0;
GLfloat sx = 0.5, sy = 0.5;
GLdouble theta = pi/2.0;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set initial fill color to blue.
triangle (verts); // Display blue triangle.

/* Initialize composite matrix to identity. */
matrix3x3SetIdentity (matComposite);

/* Construct composite matrix for transformation sequence. */
scale2D (sx, sy, fixedPt); // First transformation: Scale.
rotate2D (pivPt, theta); // Second transformation: Rotate
translate2D (tx, ty); // Final transformation: Translate.

/* Apply composite matrix to triangle vertices. */
transformVerts2D (nVerts, verts);

glColor3f (1.0, 0.0, 0.0); // Set color for transformed triangle.
triangle (verts); // Display red transformed triangle.

glFlush ( );
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ( );
gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char ** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Geometric Transformation Sequence");

init ( );
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ( );
}
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/* Initialize scaling matrix to identity. */
matrix3x3SetIdentity (matScale);

matScale [0][0] = sx;
matScale [0][2] = (1 - sx) * fixedPt.x;
matScale [1][1] = sy;
matScale [1][2] = (1 - sy) * fixedPt.y;

/* Concatenate matScale with the composite matrix. */
matrix3x3PreMultiply (matScale, matComposite);

}

/* Using the composite matrix, calculate transformed coordinates. */
void transformVerts2D (GLint nVerts, wcPt2D * verts)
{

GLint k;
GLfloat temp;

for (k = 0; k < nVerts; k++) {
temp = matComposite [0][0] * verts [k].x + matComposite [0][1] *

verts [k].y + matComposite [0][2];
verts [k].y = matComposite [1][0] * verts [k].x + matComposite [1][1] *

verts [k].y + matComposite [1][2];
verts [k].x = temp;

}
}

void triangle (wcPt2D *verts)
{

GLint k;

glBegin (GL_TRIANGLES);
for (k = 0; k < 3; k++)

glVertex2f (verts [k].x, verts [k].y);
glEnd ( );

}

void displayFcn (void)
{

/* Define initial position for triangle. */
GLint nVerts = 3;
wcPt2D verts [3] = { {50.0, 25.0}, {150.0, 25.0}, {100.0, 100.0} };

/* Calculate position of triangle centroid. */
wcPt2D centroidPt;

GLint k, xSum = 0, ySum = 0;
for (k = 0; k < nVerts; k++) {

xSum += verts [k].x;
ySum += verts [k].y;

}
centroidPt.x = GLfloat (xSum) / GLfloat (nVerts);
centroidPt.y = GLfloat (ySum) / GLfloat (nVerts);
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5 Other Two-Dimensional Transformations
Basic transformations such as translation, rotation, and scaling are standard com-
ponents of graphics libraries. Some packages provide a few additional trans-
formations that are useful in certain applications. Two such transformations are
reflection and shear.

Reflection
A transformation that produces a mirror image of an object is called a reflection.
For a two-dimensional reflection, this image is generated relative to an axis of
reflection by rotating the object 180◦ about the reflection axis. We can choose
an axis of reflection in the xy plane or perpendicular to the xy plane. When the
reflection axis is a line in the xy plane, the rotation path about this axis is in a plane
perpendicular to the xy plane. For reflection axes that are perpendicular to the xy
plane, the rotation path is in the xy plane. Some examples of common reflections
follow.

Reflection about the line y = 0 (the x axis) is accomplished with the transfor-
mation matrix

⎡

⎣

1 0 0
0 −1 0
0 0 1

⎤

⎦

This transformation retains x values, but “flips” the y values of coordinate posi-
tions. The resulting orientation of an object after it has been reflected about the x
axis is shown in Figure 16. To envision the rotation transformation path for this
reflection, we can think of the flat object moving out of the xy plane and rotating
180◦ through three-dimensional space about the x axis and back into the xy plane
on the other side of the x axis.
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Position
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F I G U R E 1 6
Reflection of an object about the
x axis.

A reflection about the line x = 0 (the y axis) flips x coordinates while keeping
y coordinates the same. The matrix for this transformation is

⎡

⎣

−1 0 0
0 1 0
0 0 1

⎤

⎦

Figure 17 illustrates the change in position of an object that has been reflected
about the line x = 0. The equivalent rotation in this case is 180◦ through three-
dimensional space about the y axis.
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F I G U R E 1 7
Reflection of an object about the
y axis.

We flip both the x and y coordinates of a point by reflecting relative to an axis
that is perpendicular to the xy plane and that passes through the coordinate origin.
This reflection is sometimes referred to as a reflection relative to the coordinate
origin, and it is equivalent to reflecting with respect to both coordinate axes. The
matrix representation for this reflection is

⎡

⎣

−1 0 0
0 −1 0
0 0 1

⎤

⎦

An example of reflection about the origin is shown in Figure 18. The reflection
matrix 54 is the same as the rotation matrix R(θ ) with θ = 180 .◦

rotating the object in the xy plane half a revolution about the origin.
 We are simply

   (52)

   (53)

   (54)
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Reflection of an object relative to the
coordinate origin. This transformation can be
accomplished with a rotation in the x y plane
about the coordinate origin.
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F I G U R E 1 9
Reflection of an object relative to an axis
perpendicular to the x y plane and passing
through point Preflect.

Reflection 54 can be generalized to any reflection point in the xy plane
(Figure 19). This reflection is the same as a 180◦ rotation in the xy plane about
the reflection point.
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F I G U R E 2 0
Reflection of an object with respect to
the line y = x .

If we choose the reflection axis as the diagonal line y = x (Figure 20), the
reflection matrix is

⎡

⎣

0 1 0
1 0 0
0 0 1

⎤

⎦

We can derive this matrix by concatenating a sequence of rotation and coordinate-
axis reflection matrices. One possible sequence is shown in Figure 21. Here, we
first perform a clockwise rotation with respect to the origin through a 45◦ angle,
which rotates the line y = x onto the x axis. Next, we perform a reflection with
respect to the x axis. The final step is to rotate the line y = x back to its orig-
inal position with a counterclockwise rotation through 45◦. Another equivalent
sequence of transformations is to first reflect the object about the x axis, then rotate
it counterclockwise 90◦.

To obtain a transformation matrix for reflection about the diagonal y = −x,
we could concatenate matrices for the transformation sequence: (1) clockwise
rotation by 45◦, (2) reflection about the y axis, and (3) counterclockwise rotation
by 45◦. The resulting transformation matrix is

⎡

⎣

0 −1 0
−1 0 0
0 0 1

⎤

⎦

Figure 22 shows the original and final positions for an object transformed with
this reflection matrix.

Reflections about any line y = mx + b in the xy plane can be accomplished
with a combination of translate-rotate-reflect transformations. In general, we

   (55)

   (56)
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first translate the line so that it passes through the origin. Then we can rotate
the line onto one of the coordinate axes and reflect about that axis. Finally, we
restore the line to its original position with the inverse rotation and translation
transformations.

45�

(c)

45�

y � x

(a)

(b)

y

x

F I G U R E 2 1
Sequence of transformations to
produce a reflection about the line
y = x : A clockwise rotation of 45◦

(a), a reflection about the x axis (b),
and a counterclockwise rotation
by 45◦ (c).

We can implement reflections with respect to the coordinate axes or coordinate
origin as scaling transformations with negative scaling factors. Also, elements of
the reflection matrix can be set to values other than ±1. A reflection parameter
with a magnitude greater than 1 shifts the mirror image of a point farther from
the reflection axis, and a parameter with magnitude less than 1 brings the mirror
image of a point closer to the reflection axis. Thus, a reflected object can also be
enlarged, reduced, or distorted.

Shear
A transformation that distorts the shape of an object such that the trans-
formed shape appears as if the object were composed of internal layers that had
been caused to slide over each other is called a shear. Two common shearing
transformations are those that shift coordinate x values and those that shift y
values.

An x-direction shear relative to the x axis is produced with the transformation
matrix

⎡

⎣

1 shx 0
0 1 0
0 0 1

⎤

⎦

which transforms coordinate positions as

x′ = x + shx · y, y′ = y

Any real number can be assigned to the shear parameter shx. A coordinate position
(x, y) is then shifted horizontally by an amount proportional to its perpendicular
distance (y value) from the x axis. Setting parameter shx to the value 2, for exam-
ple, changes the square in Figure 23 into a parallelogram. Negative values for
shx shift coordinate positions to the left.
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F I G U R E 2 2
Reflection with respect to the line
y = −x .
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F I G U R E 2 3
A unit square (a) is converted to a parallelogram (b) using the x -direction shear
matrix 57 with shx = 2.
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F I G U R E 2 4
A unit square (a) is transformed to a
shifted parallelogram (b) with
sh x = 0.5 and yref = −1 in the
shear matrix 59.
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F I G U R E 2 5
A unit square (a) is turned into a
shifted parallelogram (b) with
parameter values sh y = 0.5 and
x ref = −1 in the y -direction shearing
transformation 61.

We can generate x-direction shears relative to other reference lines with
⎡

⎣

1 shx −shx · yref
0 1 0
0 0 1

⎤

⎦

Now, coordinate positions are transformed as

x′ = x + shx(y − yref), y′ = y

An example of this shearing transformation is given in Figure 24 for a shear
parameter value of 1

2 relative to the line yref = −1.
A y-direction shear relative to the line x = xref is generated with the transfor-

mation matrix
⎡

⎣

1 0 0
shy 1 −shy · xref
0 0 1

⎤

⎦

which generates the transformed coordinate values

x′ = x, y′ = y + shy(x − xref)

This transformation shifts a coordinate position vertically by an amount propor-
tional to its distance from the reference line x = xref. Figure 25 illustrates the
conversion of a square into a parallelogram with shy = 0.5 and xref = −1.

Shearing operations can be expressed as sequences of basic transformations.
The x-direction shear matrix 57, for example, can be represented as a composite
transformation involving a series of rotation and scaling matrices. This compos-
ite transformation scales the unit square of Figure 23 along its diagonal, while
maintaining the original lengths and orientations of edges parallel to the x axis.
Shifts in the positions of objects relative to shearing reference lines are equivalent
to translations.

   (59)
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6 Raster Methods for Geometric
Transformations

The characteristics of raster systems suggest an alternate method for performing
certain two-dimensional transformations. Raster systems store picture informa-
tion as color patterns in the frame buffer. Therefore, some simple object transfor-
mations can be carried out rapidly by manipulating an array of pixel values. Few
arithmetic operations are needed, so the pixel transformations are particularly
efficient.

unctions that manipulate rectangular pixel arrays are called
tions

 raster opera-
and moving a block of pixel values from one position to another is termed

a block transfer, a bitblt, or a pixblt. Routines for performing some raster opera-
tions are usually available in a graphics package.

Figure 26 illustrates a two-dimensional translation implemented as a block
transfer of a refresh-buffer area. All bit settings in the rectangular area shown are
copied as a block into another part of the frame buffer. We can erase the pattern
at the original location by assigning the background color to all pixels within that
block (assuming that the pattern to be erased does not overlap other objects in
the scene).

(a)

(b)

P0

Pmin

Pmax

F I G U R E 2 6
Translating an object from screen
position (a) to the destination position
shown in (b) by moving a rectangular
block of pixel values. Coordinate
positions Pmin and Pmax specify the
limits of the rectangular block to be
moved, and P0 is the destination
reference position.

Rotations in 90-degree increments are accomplished easily by rearranging
the elements of a pixel array. We can rotate a two-dimensional object or pattern
90◦ counterclockwise by reversing the pixel values in each row of the array, then
interchanging rows and columns. A 180◦ rotation is obtained by reversing the
order of the elements in each row of the array, then reversing the order of the rows.
Figure  27 demonstrates the array manipulations that can be used to rotate a pixel
block by 90◦ and by 180◦.

For array rotations that are not multiples of 90◦, we need to do some extra
processing. The general procedure is illustrated in Figure 28. Each destination
pixel area is mapped onto the rotated array and the amount of overlap with
the rotated pixel areas is calculated. A color for a destination pixel can then be
computed by averaging the colors of the overlapped source pixels, weighted by
their percentage of area overlap. Alternatively, we could use an approximation
method, as in antialiasing, to determine the color of the destination pixels.

We can use similar methods to scale a block of pixels. Pixel areas in the original
block are scaled, using specified values for sx and sy, and then mapped onto a set of
destination pixels. The color of each destination pixel is then assigned according
to its area of overlap with the scaled pixel areas (Figure 29).

An object can be reflected using raster transformations that reverse row or
column values in a pixel block, combined with translations. Shears are produced
with shifts in the positions of array values along rows or columns.
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F I G U R E 2 7
Rotating an array of pixel values. The original array is shown in (a), the
positions of the array elements after a 90◦ counterclockwise rotation are
shown in (b), and the positions of the array elements after a 180◦ rotation
are shown in (c).
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F I G U R E 2 8
A raster rotation for a rectangular block of pixels can be accomplished by
mapping the destination pixel areas onto the rotated block.
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F I G U R E 2 9
Mapping destination pixel areas onto a scaled array of pixel values. Scaling
factors sx = sy = 0.5 are applied relative to fixed point (x f , y f ).

7 OpenGL Raster Transformations

glCopyPixels (xmin, ymin, width, height, GL_COLOR);

The first four parameters in this function give the location and dimensions of the
pixel block; and the OpenGL symbolic constantGL COLOR specifies that it is color
values are to be copied. This array of pixels is to be copied to a rectangular area of
a refresh buffer whose lower-left corner is at the location specified by the current
raster position. Pixel-color values are copied as either RGBA values or color-table
indices, depending on the current setting for the color mode. Both the region
to be copied (the source) and the destination area should lie completely within
the bounds of the screen coordinates. This translation can be carried out on any
of the OpenGL buffers used for refreshing, or even between different buffers. A
source buffer for the glCopyPixels function is chosen with the glReadBuffer
routine, and a destination buffer is selected with the glDrawBuffer routine.

We can rotate a block of pixel-color values in 90-degree increments by first
saving the block in an array, then rearranging the elements of the array and placing
it back in the refresh buffer. A block of RGB color values in a buffer can be saved
in an array with the function

glReadPixels (xmin, ymin, width, height, GL_RGB,
GL_UNSIGNED_BYTE, colorArray);

If color-table indices are stored at the pixel positions, we replace the constant
GL RGB with GL COLOR INDEX. To rotate the color values, we rearrange the
rows and columns of the color array, as described in the previous section. Then
we put the rotated array back in the buffer with

glDrawPixels (width, height, GL_RGB, GL_UNSIGNED_BYTE,
colorArray);

The lower-left corner of this array is placed at the current raster position.
We select the source buffer containing the original block of pixel values with
glReadBuffer, and we designate a destination buffer with glDrawBuffer.

You should already be familiar with most of the OpenGL functions for per-
forming raster operations. A translation of a rectangular array of pixel-color val-
ues from one buffer area to another can be accomplished in OpenGL as the fol-
lowing copy operation:
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A two-dimensional scaling transformation can be performed as a raster
operation in OpenGL by specifying scaling factors and then invoking either
glCopyPixels or glDrawPixels. For the raster operations, we set the scal-
ing factors with

glPixelZoom (sx, sy);

where parameters sx and sy can be assigned any nonzero floating-point values.
Positive values greater than 1.0 increase the size of an element in the source array,
and positive values less than 1.0 decrease element size. A negative value for sx or
sy, or both, produces a reflection and scales the array elements. Thus, if sx = sy
= −3.0, the source array is reflected with respect to the current raster position and
each color element of the array is mapped to a 3 × 3 block of destination pixels. If
the center of a destination pixel lies within the rectangular area of a scaled color
element of an array, it is assigned the color of that array element. Destination pixels
whose centers are on the left or top boundary of the scaled array element are also
assigned the color of that element. The default value for both sx and sy is 1.0.

We can also combine raster transformations with logical operations to pro-
duce various effects. With the exclusive or operator, for example, two successive
copies of a pixel array to the same buffer area restores the values that were origi-
nally present in that area. This technique can be used in an animation application
to translate an object across a scene without altering the background pixels.

8 Transformations between
Two-Dimensional Coordinate Systems

Computer-graphics applications involve coordinate transformations from one ref-
erence frame to another during various stages of scene processing. The viewing
routines transform object descriptions from world coordinates to device coor-
dinates. For modeling and design applications, individual objects are typically
defined in their own local Cartesian references. These local-coordinate descrip-
tions must then be transformed into positions and orientations within the overall
scene coordinate system. A facility-management program for office layouts, for
instance, has individual coordinate descriptions for chairs and tables and other
furniture that can be placed into a floor plan, with multiple copies of the chairs
and other items in different positions.

Also, scenes are sometimes described in non-Cartesian reference frames that
take advantage of object symmetries. Coordinate descriptions in these systems
must be converted to Cartesian world coordinates for processing. Some examples
of non-Cartesian systems are polar coordinates, spherical coordinates, elliptical
coordinates, and parabolic coordinates.

dimensional Cartesian frame to another.
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F I G U R E 3 0
A Cartesian x ′ y ′ system positioned at
(x0, y0) with orientation θ in an x y
Cartesian system.

Figure 30 shows a Cartesian x ′ y ′ system specified with coordinate origin
(x0, y0) and orientation angle θ in a Cartesian xy reference frame. To transform
object descriptions from xy coordinates to x′y′ coordinates, we set up a transfor-
mation that superimposes the x′y′ axes onto the xy axes. This is done in two steps:

1. Translate so that the origin (x0, y0) of the x′y′ system is moved to the origin
(0, 0) of the xy system.

2. Rotate the x′ axis onto the x axis.

Here, we consider only the transforma-
tions involved in converting from one two-
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Translation of the coordinate origin is accomplished with the matrix
transformation

T(−x0, −y0) =
⎡

⎣

1 0 −x0
0 1 −y0

0 0 1

⎤

⎦

The orientation of the two systems after the translation operation would then
appear as in Figure 31. To get the axes of the two systems into coincidence, we
then perform the clockwise rotation

R(−θ) =
⎡

⎣

cos θ sin θ 0
−sin θ cos θ 0

0 0 1

⎤

⎦

Concatenating these two transformation matrices gives us the complete composite
matrix for transforming object descriptions from the xy system to the x′y′ system:

Mxy,x′ y′ = R(−θ) · T(−x0, −y0)
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F I G U R E 3 1
Position of the reference frames shown
in Figure 30 after translating the
origin of the x ′ y ′ system to the
coordinate origin of the x y system.

An alternate method for describing the orientation of the x′y′ coordinate sys-
tem is to specify a vector V that indicates the direction for the positive y′ axis, as
shown in Figure 32. We can specify vector V as a point in the xy reference frame
relative to the origin of the xy system, which we can convert to the unit vector

v = V
|V| = (vx, vy)

We obtain the unit vector u along the x′ axis by applying a 90◦ clockwise rotation
to vector v:

u = (vy, −vx)

= (ux, uy)

In Section  4, we noted that the elements of any rotation matrix could be expressed
as elements of a set of orthonormal vectors. Therefore, the matrix to rotate the
x′y′ system into coincidence with the xy system can be written as

R =
⎡

⎣

ux uy 0
vx vy 0
0 0 1

⎤

⎦

For example, suppose that we choose the orientation for the y′ axis as V = (−1, 0).
Then the x′ axis is in the positive y direction, and the rotation transformation
matrix is ⎡

⎣

0 1 0
−1 0 0
0 0 1

⎤

⎦

0 x axis

y axis

y� a
xis

x� a
xis

y0

x0

P0
V

F I G U R E 3 2
Cartesian system x ′ y ′ with origin at
P0 = ( x0, y0) and y ′ axis parallel to vector V.
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F I G U R E 3 3
A Cartesian x ′ y ′ system defined with two coordinate
positions, P0 and P1, within an x y reference frame.
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Equivalently, we can obtain this rotation matrix from Equation 64 by setting the
orientation angle as θ = 90◦.

In an interactive application, it may be more convenient to choose the direc-
tion of V relative to position P0 than to specify it relative to the xy-coordinate
origin. Unit vectors u and v would then be oriented as shown in Figure 33. The
components of v are now calculated as

v = P1 − P0

|P1 − P0|
and u is obtained as the perpendicular to v that forms a right-handed Cartesian
system.

9 OpenGL Functions for Two-Dimensional
Geometric Transformations

In the core library of OpenGL, a separate function is available for each of the basic
geometric transformations. Because OpenGL is designed as a three-dimensional
graphics application programming interface (API), all transformations are spec-
ified in three dimensions. Internally, all coordinate positions are represented
as four-element column vectors, and all transformations are represented using
4 × 4 matrices. Fortunately, performing two-dimensional transformations within
OpenGL is generally just a matter of using a value for the transformation in the
third (z) dimension that causes no change in that dimension.

To perform a translation, we invoke the translation routine and set the com-
ponents for the three-dimensional translation vector. In the rotation function, we
specify the angle and the orientation for a rotation axis that intersects the coor-
dinate origin. In addition, a scaling function is used to set the three coordinate
scaling factors relative to the coordinate origin. In each case, the transformation
routine sets up a 4 × 4 matrix that is applied to the coordinates of objects that are
referenced after the transformation call.

Basic OpenGL Geometric Transformations
A 4 × 4 translation matrix is constructed with the following routine:

glTranslate* (tx, ty, tz);

Translation parameters tx, ty, and tz can be assigned any real-number values,
and the single suffix code to be affixed to this function is either f (float) or d (dou-
ble). For two-dimensional applications, we set tz = 0.0; and a two-dimensional
position is represented as a four-element column matrix with the z component
equal to 0.0. The translation matrix generated by this function is used to transform

   (69)
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positions of objects defined after this function is invoked. For example, we trans-
late subsequently defined coordinate positions 25 units in the x direction and −10
units in the y direction with the statement

glTranslatef (25.0, -10.0, 0.0);

Similarly, a 4 × 4 rotation matrix is generated with

glRotate* (theta, vx, vy, vz);

where the vector v = (vx, vy, vz) can have any floating-point values for its com-
ponents. This vector defines the orientation for a rotation axis that passes through
the coordinate origin. If v is not specified as a unit vector, then it is normalized
automatically before the elements of the rotation matrix are computed. The suffix
code can be eitherf ord, and parametertheta is to be assigned a rotation angle in
degrees, which the routine converts to radians for the trigonometric calculations.
The rotation specified here will be applied to positions defined after this function
call. Rotation in two-dimensional systems is rotation about the z axis, specified
as a unit vector with x and y components of zero, and a z component of 1.0. For
example, the statement

glRotatef (90.0, 0.0, 0.0, 1.0);

sets up the matrix for a 90◦ rotation about the z axis. We should note here that
internally, this function generates a rotation matrix using quaternions. This method
is more efficient when rotation is about an arbitrarily-specific axis.

We obtain a 4 × 4 scaling matrix with respect to the coordinate origin with
the following routine:

glScale* (sx, sy, sz);

The suffix code is again either f or d, and the scaling parameters can be assigned
any real-number values. Scaling in a two-dimensional system involves changes
in the x and y dimensions, so a typical two-dimensional scaling operation has a
z scaling factor of 1.0 (which causes no change in the z coordinate of positions).
Because the scaling parameters can be any real-number value, this function will
also generate reflections when negative values are assigned to the scaling param-
eters. For example, the following statement produces a matrix that scales by a
factor of 2 in the x direction, scales by a factor of 3 in the y direction, and reflects
with respect to the x axis:

glScalef (2.0, -3.0, 1.0);

A zero value for any scaling parameter can cause a processing error because an
inverse matrix cannot be calculated. The scale-reflect matrix is applied to subse-
quently defined objects.

It is important to note that internally OpenGL uses composite matrices to hold
transformations. As a result, transformations are cumulative—that is, if we apply
a translation and then apply a rotation, objects whose positions are specified after
that will have both transformations applied to them. If that is not the behavior we
desired, we must be able to remove the effects of previous transformations. This
requires additional functions for manipulating the composite matrices.
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OpenGL Matrix Operations
glMatrixMode routine is used to set the projection mode,

nates the matrix that is to be used for the projection transformation. This trans-
formation. This transformation determines how a scene is to be projected onto
the screen. We use the same routine to set up a matrix for the geometric trans-
formations. In this case, however, the matrix is referred to as the modelview
matrix, and it is used to store and combine the geometric transformations. It is
also used to combine the geometric transformations with the transformation to a
viewing-coordinate system. We specify the modelview mode with the statement

glMatrixMode (GL_MODELVIEW);

which designates the 4 × 4 modelview matrix as the current matrix. The OpenGL
transformation routines discussed in the previous section are all applied to what-
ever composite matrix is the current matrix, so it is important to use glMatrix-
Mode to change to the modelview matrix before applying geometric transforma-
tions. Following this call, OpenGL transformation routines are used to modify
the modelview matrix, which is then applied to transform coordinate positions
in a scene. Two other modes that we can set with the glMatrixMode function
are the texture mode and the color mode. The texture matrix is used for mapping
texture patterns to surfaces, and the color matrix is used to convert from one
color model to another. We discuss viewing, projection, texture, and color trans-
formations in later chapters. For now, we limit our discussion to the details of the
geometric transformations. The default argument for the glMatrixMode func-
tion is GL MODELVIEW.

Once we are in the modelview mode (or any other mode), a call to a transfor-
mation routine generates a matrix that is multiplied by the current matrix for that
mode. In addition, we can assign values to the elements of the current matrix, and
there are two functions in the OpenGL library for this purpose. With the following
function, we assign the identity matrix to the current matrix:

glLoadIdentity ( );

Alternatively, we can assign other values to the elements of the current matrix
using

glLoadMatrix* (elements16);

A single-subscripted, 16-element array of floating-point values is specified with
parameter elements16, and a suffix code of either f or d is used to designate
the data type. The elements in this array must be specified in column-major order.
That is, we first list the four elements in the first column, and then we list the four
elements in the second column, the third column, and finally the fourth column.
To illustrate this ordering, we initialize the modelview matrix with the following
code:

glMatrixMode (GL_MODELVIEW);

GLfloat elems [16];
GLint k;

for (k = 0; k < 16; k++)
elems [k] = float (k);

glLoadMatrixf (elems);

The which desig-
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which produces the matrix

M =

⎡

⎢
⎢
⎣

0.0 4.0 8.0 12.0
1.0 5.0 9.0 13.0
2.0 6.0 10.0 14.0
3.0 7.0 11.0 15.0

⎤

⎥
⎥
⎦

We can also concatenate a specified matrix with the current matrix as follows:

glMultMatrix* (otherElements16);

Again, the suffix code is either f or d, and parameter otherElements16 is a
16-element, single-subscripted array that lists the elements of some other matrix
in column-major order. The current matrix is postmultiplied by the matrix specified
in glMultMatrix, and this product replaces the current matrix. Thus, assuming
that the current matrix is the modelview matrix, which we designate as M, then
the updated modelview matrix is computed as

M = M · M′

where M′ represents the matrix whose elements are specified by parameter
otherElements16 in the preceding glMultMatrix statement.

The glMultMatrix function can also be used to set up any transformation
sequence with individually defined matrices. For example,

glMatrixMode (GL_MODELVIEW);

glLoadIdentity ( ); // Set current matrix to the identity.
glMultMatrixf (elemsM2); // Postmultiply identity with matrix M2.
glMultMatrixf (elemsM1); // Postmultiply M2 with matrix M1.

produces the following current modelview matrix:

M = M2 · M1

The first transformation to be applied in this sequence is the last one specified in
the code. Thus, if we set up a transformation sequence in an OpenGL program,
we can think of the individual transformations as being loaded onto a stack, so the
last operation specified is the first one applied. This is not what actually happens,
but the stack analogy may help you remember that in an OpenGL program, a
transformation sequence is applied in the opposite order from which it is specified.

It is also important to keep in mind that OpenGL stores matrices in column-
major order. In addition, a reference to a matrix element such as m jk in OpenGL is
a reference to the element in column j and row k. This is the reverse of the standard
mathematical convention, where the row number is referenced first. However, we
can usually avoid errors in row-column references by always specifying matrices
in OpenGL as 16-element, single-subscript arrays and listing the elements in a
column-major order.
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OpenGL actually maintains a stack of composite matrices for each of the four
modes that we can select with the glMatrixMode routine.

10 OpenGL Geometric-Transformation
Programming Examples

In the following code segment, we apply each of the basic geometric transforma-
tions, one at a time, to a rectangle. Initially, the modelview matrix is the identity
matrix and we display a blue rectangle. Next, we reset the current color to red,
specify two-dimensional translation parameters, and display the red translated
rectangle (Figure 34). Because we do not want to combine transformations, we
next reset the current matrix to the identity. Then a rotation matrix is constructed
and concatenated with the current matrix (the identity matrix). When the origi-
nal rectangle is again referenced, it is rotated about the z axis and displayed in
red (Figure 35). We repeat this process once more to generate the scaled and
reflected rectangle shown in Figure 36.

glMatrixMode (GL_MODELVIEW);

glColor3f (0.0, 0.0, 1.0);
glRecti (50, 100, 200, 150); // Display blue rectangle.

glColor3f (1.0, 0.0, 0.0);
glTranslatef (-200.0, -50.0, 0.0); // Set translation parameters.
glRecti (50, 100, 200, 150); // Display red, translated rectangle.

glLoadIdentity ( ); // Reset current matrix to identity.
glRotatef (90.0, 0.0, 0.0, 1.0); // Set 90-deg. rotation about z axis.
glRecti (50, 100, 200, 150); // Display red, rotated rectangle.

glLoadIdentity ( ); // Reset current matrix to identity.
glScalef (-0.5, 1.0, 1.0); // Set scale-reflection parameters.
glRecti (50, 100, 200, 150); // Display red, transformed rectangle.

F I G U R E 3 4
Translating a rectangle using the
OpenGL function glTranslatef
(−200.0, −50.0, 0.0).

Original PositionTranslated
Position
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Original Position

Rotated Position

�150 �100 �50 50

200

150

100

50

100 150 200

F I G U R E 3 5
Rotating a rectangle about the z axis
using the OpenGL function
glRotatef (90.0, 0.0,
0.0, 1.0).

Original Position

�150 �100 �50 50

200

150

50

100 150 200

Scaled-Reflected
 Position

F I G U R E 3 6
Scaling and reflecting a rectangle using
the OpenGL function glScalef
(−0.5, 1.0, 1.0).

11 Summary
The basic geometric transformations are translation, rotation, and scaling. Transla-
tion moves an object in a straight-line path from one position to another. Rotation
moves an object from one position to another along a circular path around a spec-
ified rotation axis. For two-dimensional applications, the rotation path is in the xy
plane about an axis that is parallel to the z axis. Scaling transformations change
the dimensions of an object relative to a fixed position.

We can express two-dimensional transformations as 3 × 3 matrix operators,
so that sequences of transformations can be concatenated into a single composite
matrix. Performing geometric transformations with matrices is an efficient for-
mulation because it allows us to reduce computations by applying a composite
matrix to an object description to obtain its transformed position. To do this, we
express coordinate positions as column matrices. We choose a column-matrix rep-
resentation for coordinate points because this is the standard mathematical con-
vention, and most graphics packages now follow this convention. A three-element
column matrix (vector) is referred to as a homogeneous-coordinate representa-
tion. For geometric transformations, the homogeneous coefficient is assigned the
value 1.

As with two-dimensional systems, transformations between three-
dimensional Cartesian coordinate systems are accomplished with a sequence of
translate-rotate transformations that brings the two systems into coincidence.
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T A B L E 1

Summary of OpenGL Geometric Transformation Functions

Function Description

glTranslate* Specifies translation parameters.

glRotate* Specifies parameters for rotation about any axis
through the origin.

glScale* Specifies scaling parameters with respect to
coordinate origin.

glMatrixMode Specifies current matrix for geometric-viewing
transformations, projection transformations,
texture transformations, or color transformations.

glLoadIdentity Sets current matrix to identity.

glLoadMatrix* (elems); Sets elements of current matrix.

glMultMatrix* (elems); Postmultiplies the current matrix by the
specified matrix.

glPixelZoom Specifies two-dimensional scaling parameters for
raster operations.

However, in a three-dimensional system, we must specify two of the three axis
directions, not just one (as in a two-dimensional system).

The OpenGL basic library contains three functions for applying individual
translate, rotate, and scale transformations to coordinate positions. Each func-
tion generates a matrix that is premultiplied by the modelview matrix. Thus,
a sequence of geometric-transformation functions must be specified in reverse
order: the last transformation invoked is the first to be applied to coordinate
positions. Transformation matrices are applied to subsequently defined objects.
In addition to accumulating transformation sequences in the modelview matrix,
we can set this matrix to the identity or some other matrix. We can also form
products with the modelview matrix and any specified matrices. Several opera-
tions are available in OpenGL for performing raster transformations. A block of
pixels can be translated, rotated, scaled, or reflected with these OpenGL raster
operations.

Table 1 summarizes the OpenGL geometric-transformation functions and
matrix routines discussed in this chapter.

REFERENCES
For additional techniques involving matrices and geo-
metric transformations, see Glassner (1990), Arvo (1991),
Kirk (1992), Heckbert (1994), and Paeth (1995). Discus-
sions of homogeneous coordinates in computer graphics
can be found in Blinn and Newell (1978) and in Blinn
(1993, 1996, and 1998).

Additional programming examples using OpenGL
geometric-transformation functions are given in

Woo, et al. (1999). Programming examples for
the OpenGL geometric-transformation functions
are also available at Nate Robins’s tutorial web-
site: http://www.xmission.com/∼nate/opengl.html.
Finally, a complete listing of OpenGL geometric-
transformation functions is provided in Shreiner
(2000).
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EXERCISES
1 Write an animation program that implements the

example two-dimensional rotation procedure of
Section 1. An input polygon is to be rotated
repeatedly in small steps around a pivot point in
the xy plane. Small angles are to be used for each
successive step in the rotation, and approximations
to the sine and cosine functions are to be used
to speed up the calculations. To avoid excessive
accumulation of round-off errors, reset the origi-
nal coordinate values for the object at the start of
each new revolution.

2 Show that the composition of two rotations is
additive by concatenating the matrix representa-
tions for R(θ1) and R(θ2) to obtain

R(θ1) · R(θ2) = R(θ1 + θ2)

3 Modify the two-dimensional transformation
matrix (39), for scaling in an arbitrary direction,
to include coordinates for any specified scaling
fixed point (x f , y f ).

4 Prove that the multiplication of transformation ma-
trices for each of the following sequences is com-
mutative:
(a) Two successive rotations.
(b) Two successive translations.
(c) Two successive scalings.

5 Prove that a uniform scaling and a rotation form a
commutative pair of operations but that, in gen-
eral, scaling and rotation are not commutative
operations.

6 Multiple the individual scale, rotate, and translate
matrices in Equation 42 to verify the elements in
the composite transformation matrix.

7 Modify the example program in Section 4 so that
transformation parameters can be specified as user
input.

8 Modify the program from the previous exercise so
that the transformation sequence can be applied
to any polygon, with vertices specified as user
input.

9 Modify the example program in Section 4 so that
the order of the geometric transformation sequence
can be specified as user input.

10 Show that transformation matrix (55), for a
reflection about the line y = x, is equivalent to a
reflection relative to the x axis followed by a coun-
terclockwise rotation of 90◦.

11 Show that transformation matrix (56), for a
reflection about the line y = −x, is equivalent to a
reflection relative to the y axis followed by a coun-
terclockwise rotation of 90◦.

12 Show that two successive reflections about either
the x axis or the y axis is equivalent to a single

rotation in the xy plane about the coordinate
origin.

13 Determine the form of the two-dimensional trans-
formation matrix for a reflection about any line:
y = mx + b.

14 Show that two successive reflections about any line
in the xy plane that intersects the coordinate origin
is equivalent to a rotation in the xy plane about the
origin.

15 Determine a sequence of basic transformations
that is equivalent to the x-direction shearing
matrix (57).

16 Determine a sequence of basic transformations
that is equivalent to the y-direction shearing
matrix (61).

17 Set up a shearing procedure to display two-
dimensional italic characters, given a vector font
definition. That is, all character shapes in this font
are defined with straight-line segments, and italic
characters are formed with shearing transforma-
tions. Determine an appropriate value for the shear
parameter by comparing italics and plain text in
some available font. Define a simple vector font
for input to your routine.

18 Derive the following equations for transform-
ing a coordinate point P = (x, y) in one two-
dimensional Cartesian system to the coordinate
values (x′, y′) in another Cartesian system that is
rotated counterclockwise by an angle θ relative
to the first system. The transformation equations
can be obtained by projecting point P onto each
of the four axes and analyzing the resulting right
triangles.

x′ = x cos θ + y sin θ y′ = −x sin θ + y cos θ

19 Write a procedure to compute the elements of the
matrix for transforming object descriptions from
one two-dimensional Cartesian coordinate system
to another. The second coordinate system is to be
defined with an origin point P0 and a vector V that
gives the direction for the positive y′ axis of this
system.

20 Set up procedures for implementing a block trans-
fer of a rectangular area of a frame buffer, using
one function to read the area into an array and
another function to copy the array into the des-
ignated transfer area.

21 Determine the results of performing two succes-
sive block transfers into the same area of a frame
buffer using the various Boolean operations.

22 What are the results of performing two successive
block transfers into the same area of a frame buffer
using the binary arithmetic operations?
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frame buffer using any specified Boolean operation
or a replacement (copy) operation.

24 Write a routine to implement rotations in incre-
ments of 90◦ in frame-buffer block transfers.

25 Write a routine to implement rotations by any spec-
ified angle in a frame-buffer block transfer.

26 Write a routine to implement scaling as a raster
transformation of a pixel block.

27 Write a program to display an animation of a black
square on a white background tracing a circular,
clockwise path around the display window with
the path’s center at the display window’s center
(like the tip of the minute hand on a clock). The
orientation of the square should not change. Use
only basic OpenGL geometric transformations to
do this.

28 Repeat the previous exercise using OpenGL matrix
operations.

29 Modify the program in Exercise 27 to have the
square rotate clockwise about its own center as it
moves along its path. The square should complete
one revolution about its center for each quarter of
its path around the window that it completes. Use
only basic OpenGL geometric transformations to
do this.

30 Repeat the previous exercise using OpenGL matrix
operations.

31 Modify the program in Exercise 29 to have the
square additionally “pulse” as it moves along its
path. That is, for every revolution about its own
center that it makes, it should go through one
pulse cycle that begins with the square at full size,
reduces smoothly in size down to 50normal size
by the end of the cycle. Do this using only basic
OpenGL geometric transformations.

32 Repeat the previous exercise using only OpenGL
matrix operations.

IN MORE DEPTH
1 In this exercise, you’ll set up the routines neces-

sary to make a crude animation of the objects in
your application using two-dimensional geomet-
ric transformations. Decide on some simple motion
behaviors for the objects in your application that
can be achieved with the types of transformations
discussed in this chapter (translations, rotations,
scaling, shearing, and reflections). These behaviors
may be motion patterns that certain objects will
always be exhibiting, or they may be trajectories
that are triggered or guided by user input (you can
generate fixed example trajectories since we have
not yet included user input). Set up the transforma-
tion matrices needed to produce these behaviors
via composition of matrices. The matrices should
be defined in homogeneous coordinates. If two
or more objects act as a single “unit” in certain
behaviors that are easier to model in terms of rel-
ative positions, you can use the techniques in Sec-
tion 8 to convert the local transformations of the
objects relative to each other (in their own coor-
dinate frame) into transformations in the world
coordinate frame.

2 Use the matrices you designed in the previous
exercise to produce an animation of the behav-
iors of the objects in your scene. You should
employ the OpenGL matrix operations and have
the matrices produce small changes in position
for each of the objects in the scene. The scene
should then be redrawn several times per second
to produce the animation, with the transformations
being applied each time. Set the animation up so
that it “loops”; that is, the behaviors should either
be cyclical, or once the trajectories you designed
for the objects have completed, the positions of
all of the objects in the scene should be reset to
their starting positions and the animation begun
again.

 23 Implement a routine to perform block transfers in a
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