

BMSIT & M, Bengaluru -560064

Mr. Shankar R

15CSL68 – Computer

Graphics Lab Manual
A comprehensive package

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 2

SYLLABUS

PART A

Design, develop, and implement the following programs using OpenGL API

1. Implement Bresenham’s line drawing algorithm for all types of slope.

2. Create and rotate a triangle about the origin and a fixed point.

3. Draw a colour cube and spin it using OpenGL transformation matrices.

4. Draw a color cube and allow the user to move the camera suitably to experiment with perspective

viewing.

5. Clip a line using Cohen-Sutherland algorithm

6. To draw a simple shaded scene consisting of a tea pot on a table. Define suitably the position and

properties of the light source along with the properties of the surfaces of the solid object used in the

scene.

7. Design, develop and implement recursively subdivide a tetrahedron to form 3D sierpinski gasket.

The number of recursive steps is to be specified by the user.

8. Develop a menu driven program to animate a flag using Bezier Curve algorithm.

9. Develop a menu driven program to fill the polygon using scan line algorithm

PART –B (MINI-PROJECT)

Student should develop mini project on the topics mentioned below or similar applications using Open

GL API. Consider all types of attributes like color, thickness, styles, font, background, speed etc., while

doing mini project.

(During the practical exam: the students should demonstrate and answer Viva-Voce)

Sample Topics: Simulation of concepts of OS, Data structures, algorithms etc.

Conduction of Practical Examination:

1. All laboratory experiments from part A are to be included for practical examination.

2. Mini project has to be evaluated for 30 Marks as per 6(b).

3. Report should be prepared in a standard format prescribed for project work.

4. Students are allowed to pick one experiment from the lot.

5. Strictly follow the instructions as printed on the cover page of answer script.

6. Marks distribution: a) Part A: Procedure + Conduction + Viva:10 + 35 +5 =50 Marks b) Part B:

Demonstration + Report + Viva voce = 15+10+05 = 30 Marks

7. Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 3

INTRODUCTION

Computer graphics are graphics created using computers and, more generally, the representation and

manipulation of image data by a computer hardware and software. The development of computer graphics,

or simply referred to as CG, has made computers easier to interact with, and better for understanding and

interpreting many types of data. Developments in computer graphics have had a profound impact on many

types of media and have revolutionized the animation and video game industry. 2D computer graphics are

digital images—mostly from two-dimensional models, such as 2D geometric models, text (vector array), and

2D data. 3D computer graphics in contrast to 2D computer graphics are graphics that use a three-

dimensional representation of geometric data that is stored in the computer for the purposes of performing

calculations and rendering images.

OPEN GL

OpenGL is the most extensively documented 3D graphics API(Application Program Interface) to date.

Information regarding OpenGL is all over the Web and in print. It is impossible to exhaustively list all

sources of OpenGL information. OpenGL programs are typically written in C and C++. One can also

program OpenGL from Delphi (a Pascal-like language), Basic, Fortran, Ada, and other langauges. To

compile and link OpenGL programs, one will need OpenGL header files. To run OpenGL programs one

may need shared or dynamically loaded OpenGL libraries, or a vendor-specific OpenGL Installable Client

Driver (ICD).

GLUT

The OpenGL Utility Toolkit (GLUT) is a library of utilities for OpenGL programs, which primarily perform

system-level I/O with the host operating system. Functions performed include window definition, window

control, and monitoring of keyboard and mouse input. Routines for drawing a number of geometric

primitives (both in solid and wireframe mode) are also provided, including cubes, spheres, and cylinders.

GLUT even has some limited support for creating pop-up menus. The two aims of GLUT are to allow the

creation of rather portable code between operating systems (GLUT is cross-platform) and to make learning

OpenGL easier. All GLUT functions start with the glut prefix (for example, glutPostRedisplay marks the

current window as needing to be redrawn).

KEY STAGES IN THE OPENGL RENDERING PIPELINE:

 Display Lists

All data, whether it describes geometry or pixels, can be saved in a display list for current or later use. (The

alternative to retaining data in a display list is processing the data immediately - also known as immediate

mode.) When a display list is executed, the retained data is sent from the display list just as if it were sent by

the application in immediate mode

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 4

 Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and surfaces may be

initially described by control points and polynomial functions called basis functions. Evaluators provide a

method to derive the vertices used to represent the surface from the control points. The method is a

polynomial mapping, which can produce surface normal, texture coordinates, colors, and spatial coordinate

values from the control points.

 Per-Vertex Operations

For vertex data, next is the "per-vertex operations" stage, which converts the vertices into primitives. Some

vertex data (for example, spatial coordinates) are transformed by 4 x 4 floating-point matrices. Spatial

coordinates are projected from a position in the 3D world to a position on your screen. If advanced features

are enabled, this stage is even busier. If texturing is used, texture coordinates may be generated and

transformed here. If lighting is enabled, the lighting calculations are performed using the transformed vertex,

surface normal, light source position, material properties, and other lighting information to produce a color

value.

 Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions of geometry which fall outside a

half-space, defined by a plane. Point clipping simply passes or rejects vertices; line or polygon clipping can

add additional vertices depending upon how the line or polygon is clipped. In some cases, this is followed by

perspective division, which makes distant geometric objects appear smaller than closer objects. Then

viewport and depth (z coordinate) operations are applied. If culling is enabled and the primitive is a polygon,

it then may be rejected by a culling test. Depending upon the polygon mode, a polygon may be drawn as

points or lines.

The results of this stage are complete geometric primitives, which are the transformed and clipped vertices

with related color, depth, and sometimes texture-coordinate values and guidelines for the rasterization step.

 Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline, pixel data takes a different

route. Pixels from an array in system memory are first unpacked from one of a variety of formats into the

proper number of components. Next the data is scaled, biased, and processed by a pixel map. The results are

clamped and then either written into texture memory or sent to the rasterization step If pixel data is read

from the frame buffer, pixel-transfer operations (scale, bias, mapping, and clamping) are performed. Then

these results are packed into an appropriate format and returned to an array in system memory.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 5

There are special pixel copy operations to copy data in the framebuffer to other parts of the framebuffer or to

the texture memory. A single pass is made through the pixel transfer operations before the data is written to

the texture memory or back to the framebuffer.

 Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to make them look more

realistic. If several texture images are used, it’s wise to put them into texture objects so that you can easily

switch among them.

Some OpenGL implementations may have special resources to accelerate texture performance. There may

be specialized, high-performance texture memory. If this memory is available, the texture objects may be

prioritized to control the use of this limited and valuable resource.

 Rasterization

Rasterization is the conversion of both geometric and pixel data into fragments. Each fragment square

corresponds to a pixel in the framebuffer. Line and polygon stipples, line width, point size, shading model,

and coverage calculations to support antialiasing are taken into consideration as vertices are connected into

lines or the interior pixels are calculated for a filled polygon. Color and depth values are assigned for each

fragment square.

 Fragment Operations

Before values are actually stored into the framebuffer, a series of operations are performed that may alter or

even throw out fragments. All these operations can be enabled or disabled.

The first operation which may be encountered is texturing, where a texel (texture element) is generated from

texture memory for each fragment and applied to the fragment. Then fog calculations may be applied,

followed by the scissor test, the alpha test, the stencil test, and the depth-buffer test (the depth buffer is for

hidden-surface removal). Failing an enabled test may end the continued processing of a fragment’s square.

Then, blending, dithering, logical operation, and masking by a bitmask may be performed.Finally, the

thoroughly processedfragment is drawn into the appropriate buffer, where it has finally advanced to be a

pixel and achieved its final resting place.

 OpenGL-Related Libraries

OpenGL provides a powerful but primitive set of rendering commands, and all higher-level drawing must be

done in terms of these commands. Also, OpenGL programs have to use the underlying mechanisms of the

windowing system. A number of libraries exist to allow you to simplify your programming tasks, including

the following:

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

The OpenGL Utility Library (GLU) contains several routines that use lower-level OpenGL commands to

perform such tasks as setting up matrices for specific viewing orientations and projections, performing

polygon tessellation, and rendering surfaces. This library is provided as part of every OpenGL

implementation. Portions of the GLU are described in the OpenGL

For every window system, there is a library that extends the functionality of that window system to support

OpenGL rendering. For machines that use the X Window System, the OpenGL Extension to the X Window

System (GLX) is provided as an adjunct to OpenGL. GLX routines use the prefix glX. For Microsoft

Windows, the WGL routines provide the Windows to OpenGL interface. All WGL routines use the prefix

wgl. For IBM OS/2, the PGL is the Presentation Manager to OpenGL interface, and its routines use the

prefix pgl.

The OpenGL Utility Toolkit (GLUT) is a window system-independent toolkit, written by Mark Kilgard, to

hide the complexities of differing window system APIs. Open Inventor is an object-oriented toolkit based on

OpenGL which provides objects and methods for creating interactive three-dimensional graphics

applications. Open Inventor, which is written in C++, provides prebuilt objects and a built-in event model

for user interaction, high-level application components for creating and editing three-dimensional scenes,

and the ability to print objects and exchange data in other graphics formats. Open Inventor is separate from

OpenGL.

 GLUT, the OpenGL Utility Toolkit

As you know, OpenGL contains rendering commands but is designed to be independent of any window

system or operating system. Consequently, it contains no commands for opening windows or reading events

from the keyboard or mouse. Unfortunately, it’s impossible to write a complete graphics program without at

least opening a window, and most interesting programs require a bit of user input or other services from the

operating system or window system. In many cases, complete programs make the most interesting examples,

so this book uses GLUT to simplify opening windows, detecting input, and so on. If you have an

implementation of OpenGL and GLUT on your system, the examples in this book should run without

change when linked with them.

In addition, since OpenGL drawing commands are limited to those that generate simple geometric primitives

(points, lines, and polygons), GLUT includes several routines that create more complicated three-

dimensional objects such as a sphere, a torus, and a teapot. This way, snapshots of program output can be

interesting to look at. (Note that the OpenGL Utility Library, GLU, also has quadrics routines that create

some of the same three-dimensional objects as GLUT, such as a sphere, cylinder, or cone.)

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

GLUT may not be satisfactory for full-featured OpenGL applications, but you may find it a useful starting

point for learning OpenGL. The rest of this section briefly describes a small subset of GLUT routines so that

you can follow the programming examples in the rest of this book.

OBJECTIVE AND APPLICATION OF THE LAB

The objective of this lab is to give students hands on learning exposure to understand and apply computer

graphics with real world problems. The lab gives the direct experience to Visual Basic Integrated

Development Environment (IDE) and GLUT toolkit. The students get a real world exposure to Windows

programming API. Applications of this lab are profoundly felt in gaming industry, animation industry and

Medical Image Processing Industry. The materials learned here will useful in Programming at the Software

Industry.

Setting up GLUT - main()

GLUT provides high-level utilities to simplify OpenGL programming, especially in interacting with the

Operating System (such as creating a window, handling key and mouse inputs). The following GLUT

functions were used in the above program:

 glutInit: initializes GLUT, must be called before other GL/GLUT functions. It takes the same

arguments as the main().

 void glutInit(int *argc, char **argv)

 glutCreateWindow: creates a window with the given title.

 int glutCreateWindow(char *title)

 glutInitWindowSize: specifies the initial window width and height, in pixels.

 void glutInitWindowSize(int width, int height)

 glutInitWindowPosition: positions the top-left corner of the initial window at (x, y). The

coordinates (x, y), in term of pixels, is measured in window coordinates, i.e., origin (0, 0) is at the

top-left corner of the screen; x-axis pointing right and y-axis pointing down.

 void glutInitWindowPosition(int x, int y)

 glutDisplayFunc: registers the callback function (or event handler) for handling window-paint

event. The OpenGL graphic system calls back this handler when it receives a window re-paint

request. In the example, we register the function display() as the handler.

 void glutDisplayFunc(void (*func)(void))

 glutMainLoop: enters the infinite event-processing loop, i.e, put the OpenGL graphics system to

wait for events (such as re-paint), and trigger respective event handlers (such as display()).

 void glutMainLoop()

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

 glutInitDisplayMode: requests a display with the specified mode, such as color mode

(GLUT_RGB, GLUT_RGBA, GLUT_INDEX), single/double buffering (GLUT_SINGLE,

GLUT_DOUBLE), enable depth (GLUT_DEPTH), joined with a bit OR '|'.

 void glutInitDisplayMode(unsigned int displayMode)

 void glMatrixMode (GLenum mode);

The glMatrixMode function specifies which matrix is the current matrix.

 void

glOrtho(GLdoubleleft,GLdoubleright,GLdoublebottom,GLdoubletop,GLdoublezNear,GLdou

blezFar);

 The glOrtho function multiplies the current matrix by an orthographic matrix.

 void glPointSize (GLfloat size);

 The glPointSize function specifies the diameter of rasterized points.

 voidglutPostRedisplay(void);

glutPostRedisplay marks the current window as needing to be redisplayed.

 void glPushMatrix (void);

 void glPopMatrix (void);

The glPushMatrix and glPopMatrix functions push and pop the current matrix stack.

 GLintglRenderMode (GLenum mode);

 The glRenderMode function sets the rasterization mode.

 void glRotatef (GLfloat angle, GLfloat x, GLfloat y, GLfloat);

 The glRotatef functions multiply the current matrix by a rotation matrix.

 void glScalef (GLfloat x, GLfloat y, GLfloat z);

 The glScalef functions multiply the current matrix by a general scaling matrix.

 void glTranslatef (GLfloat x, GLfloat y, GLfloat z);

 The glTranslatef functions multiply the current matrix by a translation matrix.

 void glViewport (GLint x, GLint y, GLsizei width, GLsizei height);

 The glViewport function sets the viewport.

 void glEnable, glDisable();

 The glEnable and glDisable functions enable or disable OpenGL capabilities.

 glutBitmapCharacter();

 The glutBitmapCharacter function used for font style.

http://msdn.microsoft.com/en-us/library/ms537035%28v=vs.85%29.aspx

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 9

OpenGL Primitives

INTRODUCTION TO openGL

 OpenGL is an API.OpenGL is nothing more than a set of functions you call from your program (think of as collection

of .h files.

OpenGL Hierarchy:

 Several levels of abstraction are provided

 GL

 Lowest level: vertex, matrix manipulation

 glVertex3f(point.x, point.y, point.z)

 GLU

OpenGL

Application

GLU GL GLUT GLX

Frame Buffer

Display

OpenGL

Application

OpenGL Libraries:

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 10

 Helper functions for shapes, transformations

 gluPerspective(fovy, aspect, near, far)

 gluLookAt(0, 0, 10, 0, 0, 0, 0, 1, 0);

 GLUT

 Highest level: Window and interface management

 glutSwapBuffers()

 glutInitWindowSize (500, 500);

OpenGL Implementations :

 OpenGL IS an API (think of as collection of .h files):

 #include <GL/gl.h>

 #include <GL/glu.h>

 #include <GL/glut.h>

 Windows, Linux, UNIX, etc. all provide a platform specific implementation.

 Windows: opengl32.lib glu32.lib glut32.lib

 Linux: -l GL -l GLU –l GLUT

Event Loop:

• OpenGL programs often run in an event loop:

– Start the program

– Run some initialization code

– Run an infinite loop and wait for events such as

• Key press

• Mouse move, click

• Reshape window

• Expose event

OpenGL Command Syntax (1) :

• OpenGL commands start with “gl”

• OpenGL constants start with “GL_”

• Some commands end in a number and one, two or three letters at the

 end (indicating number and type of arguments)

• A Number indicates number of arguments

• Characters indicate type of argument

OpenGL Command Syntax (2)

– `f' float

– `d' double float

– `s' signed short integer

– `i' signed integer

– `b' character

– `ub' unsigned character

– `us' unsigned short integer

– `ui' unsigned integer

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 11

Ten gl Primitives:

GL_POINTS GL_LINES

GL_POLYGON GL_TRIANGLES

GL_QUADS GL_LINE_STRIP

GL_LINE_LOOP GL_QUAD_STRIP

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 12

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 13

Projections in OpenGL

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,GLdouble top, GLdouble near, GLdouble far);

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far)

Perspective projection:

Orthographic projection:

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 14

Viva questions and answers

1. What is Computer Graphics? Answer: Computer graphics are graphics created using computers and, more
generally, the representation and manipulation of image data by a computer.

2. What is OpenGL? Answer: OpenGL is the most extensively documented 3D graphics API (Application Program
Interface) to date. It is used to create Graphics.

3. What is GLUT? Answer: The OpenGL Utility Toolkit (GLUT) is a library of utilities for OpenGL programs, which
primarily perform system-level I/O with the host operating system.

4. What are the applications of Computer Graphics? Answer: Gaming Industry, Animation Industry and Medical
Image Processing Industries. The sum total of these industries is a Multi Billion Dollar Market. Jobs will continue to
increase in this arena in the future.

5. Explain in breif 3D Sierpinski gasket? Answer: The Sierpinski triangle (also with the original orthography
Sierpinski), also called the Sierpinski gasket or the Sierpinski Sieve, is a fractal named after the Polish mathemati-
cian Waclaw Sierpinski who described it in 1915. Originally constructed as a curve, this is one of the basic
examples of self-similar sets, i.e. it is a mathematically generated pattern that can be reproducible at any
magnifcation or reduction.

6. What is Liang-Barsky line clipping algorithm? Answer: In computer graphics, the Liang-Barsky algorithm is a line
clipping algorithm. The Liang-Barsky algorithm uses the parametric equation of a line and inequalities describing
the range of the clipping box to determine the intersections between the line and the clipping box. With these
intersections it knows which portion of the line should be drawn.

7. Explain in brief Cohen-Sutherland line-clipping algorithm? Answer: The Cohen-Sutherland line clipping algorithm
quickly detects and dispenses with two common and trivial cases. To clip a line, we need to consider only its
endpoints. If both endpoints of a line lie inside the window, the entire line lies inside the window. It is trivially
accepted and needs no clipping. On the other hand, if both endpoints of a line lie entirely to one side of the
window, the line must lie entirely outside of the window. It is trivially rejected and needs to be neither clipped nor
displayed.

8. Explain in brief scan-line area flling algorithm? Answer: The scanline fll algorithm is an ingenious way of flling in
irregular polygons. The algorithm begins with a set of points. Each point is connected to the next, and the line
between them is considered to be an edge of the polygon. The points of each edge are adjusted to ensure that
the point with the smaller y value appears frst. Next, a data structure is created that contains a list of edges that
begin on each scanline of the image. The program progresses from the frst scanline upward. For each line, any
pixels that contain an intersection between this scanline and an edge of the polygon are flled in. Then, the
algorithm progresses along the scanline, turning on when it reaches a polygon pixel and turning of when it
reaches another one, all the way across the scanline.

9. Explain Midpoint Line algorithm Answer: The Midpoint line algorithm is an algorithm which determines which
points in an n-dimensional raster should be plotted in order to form a close approximation to a straight line between
two given points. It is commonly used to draw lines on a computer screen, as it uses only integer addition, subtraction
and bit shifting, all of which are very cheap operations in standard computer architectures.

10. What is a Pixel? Answer: In digital imaging, a pixel (or picture element) is a single point in a raster image. The
Pixel is the smallest addressable screen element; it is the smallest unit of picture which can be controlled. Each Pixel
has its address. The address of Pixels corresponds to its coordinate. Pixels are normally arranged in a 2-dimensional
grid, and are often represented using dots or squares.

11. What is Graphical User Interface? Answer: A graphical user interface (GUI) is a type of user interface item
that allows people to interact with programs in more ways than typing such as computers; hand-held devices such as
MP3 Players, Portable Media Players or Gaming devices; household appliances and ofce equipment with images
rather than text commands.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 15

12. What is the general form of an OpenGL program? Answer: There are no hard and fast rules. The following

pseudocode is generally recognized as good OpenGL form. program entrypoint { // Determine which depth or pixel

format should be used. // Create a window with the desired format. // Create a rendering context and make it current

with the window. // Set up initial OpenGL state. // Set up callback routines for window resize and window refresh. }

handle resize { glViewport(...); glMatrixMode(GL PROJECTION); glLoadIdentity(); // Set projection transform with

glOrtho, glFrustum, gluOrtho2D, gluPerspective, etc. } handle refresh { glClear(...); glMatrixMode(GL MODELVIEW);

glLoadIdentity(); // Set view transform with gluLookAt or equivalent // For each object (i) in the scene that needs to be

rendered: // Push relevant stacks, e.g., glPushMatrix, glPushAttrib. // Set OpenGL state specifc to object (i). // Set

model transform for object (i) using glTranslatef, glScalef, glRotatef, and/or equivalent. // Issue rendering commands
for object (i). // Pop relevant stacks, (e.g., glPopMatrix, glPopAttrib.) // End for loop. // Swap bufers. }

13. What support for OpenGL does Open,Net,FreeBSD or Linux provide? Answer: The X Windows
implementation, XFree86 4.0, includes support for OpenGL using Mesa or the OpenGL Sample Implementation.
XFree86 is released under the XFree86 license. http://www.xfree86.org/

14. What is the AUX library? Answer: The AUX library was developed by SGI early in OpenGL's life to ease
creation of small OpenGL demonstration programs. It's currently neither supported nor maintained. Developing
OpenGL programs using AUX is strongly discouraged. Use the GLUT instead. It's more fexible and powerful and is
available on a wide range of platforms. Very important: Don't use AUX. Use GLUT instead.

15. How does the camera work in OpenGL? Answer: As far as OpenGL is concerned, there is no camera. More
specifcally, the camera is always located at the eye space coordinate (0., 0., 0.). To give the appearance of moving
the camera, your OpenGL application must move the scene with the inverse of the camera transformation.

16. How do I implement a zoom operation? Answer: A simple method for zooming is to use a uniform scale on the
ModelView matrix. However, this often results in clipping by the zNear and zFar clipping planes if the model is scaled
too large. A better method is to restrict the width and height of the view volume in the Projection matrix.

17. What are OpenGL coordinate units? Answer: Depending on the contents of your geometry database, it may
be convenient for your application to treat one OpenGL coordinate unit as being equal to one millimeter or one parsec
or anything in between (or larger or smaller). OpenGL also lets you specify your geometry with coordinates of difering
values. For example, you may fnd it convenient to model an airplane's controls in centimeters, its fuselage in meters,
and a world to fy around in kilometers. OpenGL's ModelView matrix can then scale these diferent coordinate systems
into the same eye coordinate space. It's the application's responsibility to ensure that the Projection and ModelView
matrices are constructed to provide an image that keeps the viewer at an appropriate distance, with an appropriate
feld of view, and keeps the zNear and zFar clipping planes at an appropriate range. An application that displays
molecules in micron scale, for example, would probably not want to place the viewer at a distance of 10 feet with a 60
degree feld of view.

18. What is Microsoft Visual Studio? Answer: Microsoft Visual Studio is an integrated development environment
(IDE) for developing windows applications. It is the most popular IDE for developing windows applications or windows
based software.

19. What does the .gl or .GL fle format have to do with OpenGL? Answer: .gl fles have nothing to do with
OpenGL, but are sometimes confused with it. .gl is a fle format for images, which has no relationship to OpenGL.

20. Who needs to license OpenGL? Who doesn't? Is OpenGL free software? Answer: Companies which will be
creating or selling binaries of the OpenGL library will need to license OpenGL. Typical examples of licensees include
hardware vendors, such as Digital Equipment, and IBM who would distribute OpenGL with the system software on
their workstations or PCs. Also, some software vendors, such as Portable Graphics and Template Graphics, have a
business in creating and distributing versions of OpenGL, and they need to license OpenGL. Applications developers
do NOT need to license OpenGL. If a developer wants to use OpenGL that developer needs to obtain copies of a
linkable OpenGL library for a particular machine. Those OpenGL libraries may be bundled in with the development
and/or run-time options or may be purchased from a third-party software vendor, without licensing the source code or
use of the OpenGLtrademark.

21. How do we make shadows in OpenGL? Answer: There are no individual routines to control neither shadows
nor an OpenGL state for shadows. However, code can be written to render shadows.

22. What is the use of Glutinit? Answer: void glutInit(int *argcp, char **argv); glutInit will initialize the GLUT library
and negotiate a session with the window system. During this process, glutInit may cause the termination of the GLUT
program with an error message to the user if GLUT cannot be properly initialized.

23. Describe the usage of glutInitWindowSize and glutInitWindowPosition? Answer: void glutInitWindowSize(int
width, int height); void glutInitWindowPosition(int x, int y); Windows created by glutCreateWindow will be requested to
be created with the current initial window position and size. The intent of the initial window position and size values is

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 16

to provide a suggestion to the window system for a window's initial size and position. The window system is not
obligated to use this information. Therefore, GLUT programs should not assume the window was created at the
specifed size or position. A GLUT program should use the window's reshape callback to determine the true size of the
window.

24. Describe the usage of glutMainLoop? Answer: void glutMainLoop(void); glutMainLoop enters the GLUT event
processing loop. This routine should be called at most once in a GLUT program. Once called, this routine will never
return. It will call as necessary any callbacks that have been registered.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

#include<GL/glut.h>

#include<stdio.h>

int x1, y1, x2, y2;

void draw_pixel(int x, int y)

{

 glColor3f(1.0,0.0,0.0);

 glBegin(GL_POINTS);

 glVertex2i(x, y);

 glEnd();

}

void bresenhams_line_draw(int x1, int y1, int x2, int y2)

{

 int dx = x2 - x1; // x difference

 int dy = y2 - y1; // y difference

 int m = dy/dx; // slope

 if (m < 1)

 {

 int decision_parameter = 2*dy - dx;

 int x = x1; // initial x

 int y = y1; // initial y

 if (dx < 0) // decide the first point and second point

 {

 x = x2; // making second point as first point

 y = y2;

 x2 = x1;

 }

 draw_pixel (x, y); // plot a point

 while (x < x2) // from 1st point to 2nd point

 {

 if (decision_parameter >= 0)

 {

 x = x+1;

 y = y+1;

 decision_parameter = decision_parameter + 2*dy - 2*dx * (y+1 - y);

 }

 else

 {

 x = x+1;

 y = y;

 decision_parameter = decision_parameter + 2*dy - 2*dx * (y - y);

 }

 draw_pixel (x, y);

 }

 }

1. Implement Bresenham’s Line drawing algorithm for all types of slope.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

 else if (m > 1)

 {

 int decision_parameter = 2*dx - dy;

 int x = x1; // initial x

 int y = y1; // initial y

 if (dy < 0)

 {

 x = x2;

 y = y2;

 y2 = y1;

 }

 draw_pixel (x, y);

 while (y < y2)

 {

 if (decision_parameter >= 0)

 {

 x = x+1;

 y = y+1;

 decision_parameter = decision_parameter + 2*dx - 2*dy * (x+1 - x);

 }

 else

 {

 y = y+1;

 x = x;

 decision_parameter = decision_parameter + 2*dx - 2*dy * (x- x);

 }

 draw_pixel(x, y);

 }

 }

 else if (m == 1)

 {

 int x = x1;

 int y = y1;

 draw_pixel (x, y);

 while (x < x2)

 {

 x = x+1;

 y = y+1;

 draw_pixel (x, y);

 }

 }

}

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

void init()

{

 glClearColor(1,1,1,1);

 gluOrtho2D(0.0, 500.0, 0.0, 500.0); // left ->0, right ->500, bottom ->0, top ->500

}

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 bresenhams_line_draw(x1, y1, x2, y2);

 glFlush();

}

int main(int argc, char **argv)

{

 printf("Enter Start Points (x1,y1)\n");

 scanf("%d %d", &x1, &y1); // 1st point from user

 printf("Enter End Points (x2,y2)\n");

 scanf("%d %d", &x2, &y2); // 2nd point from user

 glutInit(&argc, argv); // initialize graphics system

 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); //single buffered mode with RGB colour variants

 glutInitWindowSize(500, 500); // 500 by 500 window size

 glutInitWindowPosition(220, 200); // where do you wanna see your window

 glutCreateWindow("Bresenham's Line Drawing"); // the title of your window

 init(); // initialize the canvas

 glutDisplayFunc(display); // call display function

 glutMainLoop(); // run forever

}

OUTPUT

Case 1: m < 1

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 9

Case 2: m > 1

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 10

Case 3: m == 1

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

#include<GL/glut.h>

#include<stdio.h>

int x,y;

int where_to_rotate=0; // don't rotate initially

float rotate_angle=0; // initial angle

float translate_x=0,translate_y=0; // initial translation

void draw_pixel(float x1, float y1)

{

 glPointSize(5);

 glBegin(GL_POINTS);

 glVertex2f(x1,y1); // plot a single point

 glEnd();

}

void triangle(int x, int y)

{

 glColor3f(1,0,0);

 glBegin(GL_POLYGON); // drawing a Triangle

 glVertex2f(x,y);

 glVertex2f(x+400,y+300);

 glVertex2f(x+300,y+0);

 glEnd();

}

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glLoadIdentity();

 glColor3f(1,1,1); // mark origin point as white dot

 draw_pixel(0,0); // plot origin - white colour

 if (where_to_rotate == 1) // rotate around origin

 {

 translate_x = 0; // no translation for rotation around origin

 translate_y = 0;

 rotate_angle += 1; // the amount of rotation angle

 }

 if (where_to_rotate == 2) // rotate around Fixed Point

 {

 translate_x = x; // SET the translation to wherever the customer says

 translate_y = y;

 rotate_angle += 1; // the amount of rotation angle

 glColor3f(0,0,1); // mark the customer coordinate as blue dot

 draw_pixel(x,y); // plot the customer coordinate - blue colour

 }

2. Create and rotate a triangle about the origin and a fixed point.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

 glTranslatef(translate_x, translate_y, 0); // ACTUAL translation +ve

 glRotatef(rotate_angle, 0, 0, 1); // rotate

 glTranslatef(-translate_x, -translate_y, 0); // ACTUAL translation -ve

 triangle(translate_x,translate_y); // what to rotate? – TRIANGLE boss

 glutPostRedisplay(); // call display function again and again

 glutSwapBuffers(); // show the output

}

void init()

{

 glClearColor(0,0,0,1); //setting to black

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluOrtho2D(-800, 800, -800, 800);

 glMatrixMode(GL_MODELVIEW);

}

void rotateMenu (int option)

{

 if(option==1)

 where_to_rotate=1; // rotate around origin

 if(option==2)

 where_to_rotate=2; // rotate around customer's coordinates

 if(option==3)

 where_to_rotate=3; // stop rotation

}

int main(int argc, char **argv)

{

 printf("Enter Fixed Points (x,y) for Rotation: \n");

 scanf("%d %d", &x, &y); // getting the user's coordinates to rotate

 glutInit(&argc, argv); // initialize the graphics system

 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB); // SINGLE also works

 glutInitWindowSize(800, 800); // 800 by 800 size..you can change it

 glutInitWindowPosition(0, 0); // where do you wanna see your window

 glutCreateWindow("Create and Rotate Triangle"); // title

 init(); // initialize the canvas

 glutDisplayFunc(display); // call display function

 glutCreateMenu(rotateMenu); // menu items

 glutAddMenuEntry("Rotate around ORIGIN",1);

 glutAddMenuEntry("Rotate around FIXED POINT",2);

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

 glutAddMenuEntry("Stop Rotation",3);

 glutAttachMenu(GLUT_RIGHT_BUTTON);

 glutMainLoop(); // run forever

}

OUTPUT

if we select “Rotate around ORIGIN” option

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 9

if we select “Rotate around FIXED POINT” option

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

#include<stdlib.h>

#include<GL/glut.h>

GLfloat vertices[] = { -1, -1, -1,

 1, -1, -1,

 1, 1, -1,

 -1, 1, -1,

 -1, -1, 1,

 1, -1, 1,

 1, 1, 1,

 -1, 1, 1

 };

GLfloat colors[] = { 0, 0, 0, // white color

 1, 0, 0, // red color .. so on for eight faces of cube

 1, 1, 0,

 0, 1, 0,

 0, 0, 1,

 1, 0, 1,

 1, 1, 1,

 0, 1, 1

 };

GLubyte cubeIndices[] = {0, 3, 2, 1,

 2, 3, 7, 6,

 0, 4, 7, 3,

 1, 2, 6, 5,

 4, 5, 6, 7,

 0, 1, 5, 4

 };

static GLfloat theta[]= {0, 0, 0}; // initial angles

static GLint axis=2; // let us assume the right mouse button has been clicked initially

void display(void)

{

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glLoadIdentity();

 glRotatef (theta[0], 1, 0, 0); // first angle rotation via x axis

 glRotatef (theta[1], 0, 1, 0); // second angle rotation via y axis

 glRotatef (theta[2], 0, 0, 1); // third angle rotation via z axis

 glDrawElements(GL_QUADS,24,GL_UNSIGNED_BYTE,cubeIndices); // draw the cube

 glutSwapBuffers(); // show the output

}

Anti-clockwise ->

visible face

Clockwise -> Non

visible face

glDrawElements() draws a sequence of primitives by

hopping around vertex arrays with the associated array

indices. It reduces both the number of function calls

and the number of vertices to transfer.

glDrawElements() requires 4 parameters. The first one

is the type of primitive, the second is the number of

indices of index array, the third is data type of index

array and the last parameter is the address of index

array.

3. Program to draw a color cube and spin it using OpenGL transformation matrices.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

void spinCube()

{

 theta[axis] += 2; // rotate every 2 degrees

 if (theta[axis] > 360) // it the rotation angle crosses 360 degrees, make it 0 degree

 theta[axis] -= 360;

 glutPostRedisplay(); // call display again

}

void mouse(int btn, int state, int x, int y)

{

 if (btn==GLUT_LEFT_BUTTON && state==GLUT_DOWN)

 axis=0; // x axis rotation

 if (btn==GLUT_MIDDLE_BUTTON && state==GLUT_DOWN)

 axis=1; // y axis rotation

 if (btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)

 axis=2; // z axis rotation

}

void myReshape(int w, int h)

{

 glViewport(0,0,w,h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 if(w<=h)

 glOrtho (-2, 2, -2*(GLfloat)h/(GLfloat)w, 2*(GLfloat)h / (GLfloat)w, -10, 10);

 else

 glOrtho (-2*(GLfloat)w/(GLfloat)h, 2*(GLfloat)w / (GLfloat)h, -2, 2, -10, 10);

 glMatrixMode(GL_MODELVIEW);

}

int main(int argc, char **argv)

{

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);

 glutInitWindowSize(500, 500);

 glutCreateWindow("Spin a color cube");

 glutReshapeFunc(myReshape); // calls myReshape whenever we change the window size

 glutDisplayFunc(display); // call display function

 glutIdleFunc(spinCube); // whenever we are idle, calls spinCube function

Maintaining the ASPECT RATIO,

i.e., whenever we change the

window size, our output should

remain same, not distorted

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

 glutMouseFunc(mouse); // calls mouse function whenever we interact with mouse

 glEnable(GL_DEPTH_TEST); // enables depth – for 3D

 glEnableClientState(GL_COLOR_ARRAY); // enables colour and vertex properties

 glEnableClientState(GL_VERTEX_ARRAY);

 glVertexPointer(3, GL_FLOAT, 0, vertices); // glVertexPointer(size,type,stride,pointer)

 glColorPointer(3, GL_FLOAT, 0, colors); // glColorPointer(size,type,stride,pointer)

 glColor3f(1, 1, 1);

 glutMainLoop();

}

glVertexPointer specifies the location and data format of an array

of vertex coordinates to use when rendering. size specifies the

number of coordinates per vertex, and must be 2, 3, or

4. type specifies the data type of each coordinate,

and stride specifies the byte stride from one vertex to the next,

allowing vertices and attributes to be packed into a single array or

stored in separate arrays. pointer specifies a pointer to the first

coordinate of the first vertex in the array. The initial value is 0.

glColorPointer specifies the location and data format of an array of

color components to use when rendering. size specifies the number

of components per color, and must be 3 or 4. type specifies the data

type of each color component, and stride specifies the byte stride

from one color to the next, allowing vertices and attributes to be

packed into a single array or stored in separate arrays. pointer

specifies a pointer to the first color of the first vertex in the array.

The initial value is 0.

void glEnableClientState (GLenum cap);

cap

Specifies the capability to enable. Symbolic constants

GL_COLOR_ARRAY, GL_EDGE_FLAG_ARRAY,

GL_FOG_COORD_ARRAY, GL_INDEX_ARRAY,

GL_NORMAL_ARRAY, GL_SECONDARY_COLOR_ARRAY,

GL_TEXTURE_COORD_ARRAY, and GL_VERTEX_ARRAY are

accepted.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 9

OUTPUT

Press left mouse button, middle and

right ones and observe the change

in the rotation

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

#include <stdlib.h>

#include <GL/glut.h>

GLfloat vertices[][3] = { {-1,-1,-1},

 {1,-1,-1},

 {1, 1,-1},

 {-1, 1,-1},

 {-1,-1, 1},

 {1,-1, 1},

 {1, 1, 1},

 {-1, 1, 1}

 };

GLfloat colors[][3] = { {1, 0, 0},

 {1, 1, 0},

 {0, 1, 0},

 {0, 0, 1},

 {1, 0, 1},

 {1, 1, 1},

 {0, 1, 1},

 {0.5, 0.5, 0.5}

 };

GLfloat theta[] = {0, 0, 0};

GLint axis = 2;

GLdouble viewer[]= {0, 0, 5}; // initial viewer location //

void polygon(int a, int b, int c, int d)

{

 glBegin(GL_POLYGON);

 glColor3fv(colors[a]);

 glVertex3fv(vertices[a]);

 glColor3fv(colors[b]);

 glVertex3fv(vertices[b]);

 glColor3fv(colors[c]);

 glVertex3fv(vertices[c]);

 glColor3fv(colors[d]);

 glVertex3fv(vertices[d]);

 glEnd();

}

4. Program to draw a color cube and allow the user to move the camera suitably to experiment

with perspective viewing.

90% same as

previous

program

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

void colorcube(void)

{

 polygon (0,3,2,1);

 polygon (0,4,7,3);

 polygon (5,4,0,1);

 polygon (2,3,7,6);

 polygon (1,2,6,5);

 polygon (4,5,6,7);

}

void display(void)

{

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glLoadIdentity();

 gluLookAt (viewer[0],viewer[1],viewer[2], 0, 0, 0, 0, 1, 0);

 glRotatef (theta[0], 1, 0, 0);

 glRotatef (theta[1], 0, 1, 0);

 glRotatef (theta[2], 0, 0, 1);

 colorcube();

 glFlush();

 glutSwapBuffers();

}

void mouse(int btn, int state, int x, int y)

{

 if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)

 axis = 0;

 if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)

 axis = 1;

 if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

 axis = 2;

 theta[axis] += 2;

 if(theta[axis] > 360)

 theta[axis] -= 360;

 display();

}

void keys(unsigned char key, int x, int y)

{

 if(key == 'x') viewer[0] -= 1;

 if(key == 'X') viewer[0] += 1;

 if(key == 'y') viewer[1] -= 1;

 if(key == 'Y') viewer[1] += 1;

 if(key == 'z') viewer[2] -= 1;

 if(key == 'Z') viewer[2] += 1;

 display();

}

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

void myReshape(int w, int h)

{

 glViewport(0, 0, w, h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 if(w<=h)

 glFrustum(-2, 2, -2 * (GLfloat) h/ (GLfloat) w, 2* (GLfloat) h / (GLfloat) w, 2, 20);

 else

 glFrustum(-2, 2, -2 * (GLfloat) w/ (GLfloat) h, 2* (GLfloat) w / (GLfloat) h, 2, 20);

 glMatrixMode(GL_MODELVIEW);

}

int main(int argc, char **argv)

{

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

 glutInitWindowSize(500, 500);

 glutCreateWindow("Colorcube Viewer");

 glutReshapeFunc(myReshape);

 glutDisplayFunc(display);

 glutMouseFunc(mouse);

 glutKeyboardFunc(keys);

 glEnable(GL_DEPTH_TEST);

 glutMainLoop();

}

OUTPUT

as and when you click left,

middle & right mouse

buttons, the cube rotates.

Also, press x, X

y, Y

z, Z

and observe the cube

rotation

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

#include <stdio.h>

#include <GL/glut.h>

double xmin = 50, ymin = 50, xmax = 100, ymax = 100; //window coordinates

double xvmin = 200, yvmin = 200, xvmax = 300, yvmax = 300; //viewport coordinates

const int LEFT = 1; // assuming code words for LEFT, RIGHT, BOTTOM & TOP.

const int RIGHT = 2;

const int BOTTOM = 4;

const int TOP = 8;

int ComputeOutCode (double x, double y)

{

 int code = 0;

 if (y > ymax) //above the clip window

 code |= TOP;

 else if (y < ymin) //below the clip window

 code |= BOTTOM;

 if (x > xmax) //to the right of clip window

 code |= RIGHT;

 else if (x < xmin) //to the left of clip window

 code |= LEFT;

 return code; //return the calculated code

}

void CohenSutherland(double x0, double y0, double x1, double y1)

{

 int outcode0, outcode1, outcodeOut;

 bool accept = false, done = false;

 outcode0 = ComputeOutCode (x0, y0); //calculate the region of 1st point

 outcode1 = ComputeOutCode (x1, y1); //calculate the region of 2nd point

 do

 {

 if (! (outcode0 | outcode1))

 {

 accept = true; //both the points

 done = true; are inside the window

 }

 else if (outcode0 & outcode1)

 done = true; //both are outside

 else

 {

 double x, y;

 double m = (y1 - y0) / (x1 - x0);

 outcodeOut = outcode0 ? outcode0: outcode1;

5. Program to clip a line using Cohen-Sutherland line-clipping algorithm.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

 if (outcodeOut & TOP)

 {

 x = x0 + (1/m) * (ymax - y0);

 y = ymax;

 }

 else if (outcodeOut & BOTTOM)

 {

 x = x0 + (1/m) * (ymin - y0);

 y = ymin;

 }

 else if (outcodeOut & RIGHT)

 {

 y = y0 + m * (xmax - x0);

 x = xmax;

 }

 else

 {

 y = y0 + m * (xmin - x0);

 x = xmin;

 }

 /* Intersection calculations are done,

go ahead and mark the clipped line */

 if (outcodeOut == outcode0)

 {

 x0 = x;

 y0 = y;

 outcode0 = ComputeOutCode (x0, y0);

 }

 else

 {

 x1 = x;

 y1 = y;

 outcode1 = ComputeOutCode (x1, y1);

 }

 }

 }

 while (!done);

 if (accept)

 {

 double sx = (xvmax - xvmin) / (xmax - xmin);

 double sy = (yvmax - yvmin) / (ymax - ymin);

 double vx0 = xvmin + (x0 - xmin) * sx;

 double vy0 = yvmin + (y0 - ymin) * sy;

 double vx1 = xvmin + (x1 - xmin) * sx;

 double vy1 = yvmin + (y1 - ymin) * sy;

Zooming (scaling) the clipping rectangle

and the clipped line and show it to the

customer. The customer can see both

before and after clipping effects. See

the output for better clarity.

sx, sy -> scaling parameters

vx0, vy0, vx1, vy1 -> line coordinates

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

 glBegin(GL_LINE_LOOP); // draw the zoomed rectangle

 glVertex2f (xvmin, yvmin);

 glVertex2f (xvmax, yvmin);

 glVertex2f (xvmax, yvmax);

 glVertex2f (xvmin, yvmax);

 glEnd();

 glBegin(GL_LINES); // draw the zoomed clipped line

 glVertex2d (vx0, vy0);

 glVertex2d (vx1, vy1);

 glEnd();

 }

}

void display()

{

 double x0 = 60, y0 = 20, x1 = 80, y1 = 120; // the line coordinates

 glClear (GL_COLOR_BUFFER_BIT);

 glColor3f(1, 1, 1); // white colour to draw line

 glBegin (GL_LINES);

 glVertex2d (x0, y0); // draw the line that has to be clipped

 glVertex2d (x1, y1);

 glEnd ();

 glBegin (GL_LINE_LOOP); // draw the clipping / viewing rectangle window

 glVertex2f (xmin, ymin);

 glVertex2f (xmax, ymin);

 glVertex2f (xmax, ymax);

 glVertex2f (xmin, ymax);

 glEnd ();

 CohenSutherland (x0, y0, x1, y1); // call the algorithm

 glFlush (); // show the output

}

void init()

{

 glClearColor (0, 0, 0, 1); //black background colour

 gluOrtho2D (0, 500, 0, 500);

}

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 9

int main(int argc, char **argv)

{

 glutInit (&argc,argv);

 glutInitDisplayMode (GLUT_SINGLE|GLUT_RGB);

 glutInitWindowSize (500, 500);

 glutInitWindowPosition (0, 0);

 glutCreateWindow ("Cohen Sutherland Line Clipping Algorithm");

 init();

 glutDisplayFunc(display);

 glutMainLoop();

}

OUTPUT

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

#include<GL/glut.h>

void teapot(GLfloat x, GLfloat y, GLfloat z)

{

 glPushMatrix (); //save the current state

 glTranslatef (x, y, z); //move your item appropriately

 glutSolidTeapot (0.1); //render your teapot

 glPopMatrix (); //get back your state with the recent changes that you have done

}

void tableTop(GLfloat x, GLfloat y, GLfloat z) // table top which is actually a CUBE

{

 glPushMatrix ();

 glTranslatef (x, y, z);

 glScalef (0.6, 0.02, 0.5);

 glutSolidCube (1);

 glPopMatrix ();

}

void tableLeg(GLfloat x, GLfloat y, GLfloat z) // table leg which is actually a CUBE

{

 glPushMatrix ();

 glTranslatef (x, y, z);

 glScalef (0.02, 0.3, 0.02);

 glutSolidCube (1);

 glPopMatrix ();

}

void wall(GLfloat x, GLfloat y, GLfloat z) // wall which is actually a CUBE

{

 glPushMatrix ();

 glTranslatef (x, y, z);

 glScalef (1, 1, 0.02);

 glutSolidCube (1);

 glPopMatrix ();

}

void light() // set the lighting arrangements

{

 GLfloat mat_ambient[] = {1, 1, 1, 1}; // ambient colour

 GLfloat mat_diffuse[] = {0.5, 0.5, 0.5, 1};

 GLfloat mat_specular[] = {1, 1, 1, 1};

 GLfloat mat_shininess[] = {50.0f}; // shininess value

6. Program to draw a simple shaded scene consisting of a tea pot on a table. Define suitably

the position and properties of the light source along with the properties of the properties of

the surfaces of the solid object used in the scene.

glPushMatrix — pushes the current matrix stack. There is a stack of matrices for

each of the matrix modes. In GL_MODELVIEW mode, the stack depth is at least

32. In the other modes, GL_COLOR, GL_PROJECTION, and GL_TEXTURE, the

depth is at least 2. The current matrix in any mode is the matrix on the top of the

stack for that mode. glPushMatrix pushes the current matrix stack down by one,

duplicating the current matrix. That is, after a glPushMatrix call, the matrix on top

of the stack is identical to the one below it. glPopMatrix pops the current matrix

stack, replacing the current matrix with the one below it on the stack. Initially, each

of the stacks contains one matrix, an identity matrix.

glutSolidCube(size) and glutWireCube(size) render a

solid or wireframe cube respectively. The cube is

centered at the modeling coordinates’ origin with sides

of length size.

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glPopMatrix.xml

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

 glMaterialfv (GL_FRONT, GL_AMBIENT, mat_ambient);

 glMaterialfv (GL_FRONT, GL_DIFFUSE, mat_diffuse);

 glMaterialfv (GL_FRONT, GL_SPECULAR, mat_specular);

 glMaterialfv (GL_FRONT, GL_SHININESS, mat_shininess);

 GLfloat light_position[] = {2, 6, 3, 1};

 GLfloat light_intensity[] = {0.7, 0.7, 0.7, 1};

 glLightfv (GL_LIGHT0, GL_POSITION, light_position);

 glLightfv (GL_LIGHT0, GL_DIFFUSE, light_intensity);

}

void display()

{

 GLfloat teapotP = -0.07, tabletopP = -0.15, tablelegP = 0.2, wallP = 0.5;

 glClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glLoadIdentity();

 gluLookAt (-2, 2, 5, 0, 0, 0, 0, 1, 0); // camera position & viewing

 light (); //Adding light source to your project

 teapot (0, teapotP, 0); //Create teapot

 tableTop (0, tabletopP, 0); //Create table’s top

 tableLeg (tablelegP, -0.3, tablelegP); //Create 1st leg

 tableLeg (-tablelegP, -0.3, tablelegP); //Create 2nd leg

 tableLeg (-tablelegP, -0.3, -tablelegP); //Create 3rd leg

 tableLeg (tablelegP, -0.3, -tablelegP); //Create 4th leg

 wall (0, 0, -wallP); //Create 1st wall

 glRotatef (90, 1, 0, 0);

 wall (0, 0, wallP); //Create 2nd wall

 glRotatef (90, 0, 1, 0);

 wall (0, 0, wallP); //Create 3rd wall

 glFlush (); // show the output to the user

}

void init()

{

 glClearColor (0, 0, 0, 1); // black colour background

 glMatrixMode (GL_PROJECTION);

 glLoadIdentity ();

 glOrtho (-1, 1, -1, 1, -1, 10);

 glMatrixMode (GL_MODELVIEW);

}

glMaterial — specify material

parameters for the lighting model. fv

means floating point vector

glMaterial takes three arguments.

The first, face, specifies whether

the GL_FRONT materials,

the GL_BACK materials, or

both GL_FRONT_AND_BACK materials

will be modified. The second, pname,

specifies which of several parameters

in one or both sets will be modified.

The third, params, specifies what

value or values will be assigned to the

specified parameter.

glLight sets the values of

individual light source

parameters. It takes 3

parameters – light, pname,

params.

 light names the light and is a

symbolic name of the

form GL_LIGHT i, where i ranges

from 0 to the value

of GL_MAX_LIGHTS -1.

pname specifies one of ten light

source parameters, again by

symbolic name.

params is either a single value or

a pointer to an array that

contains the new values.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

int main (int argc, char **argv)

{

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);

 glutInitWindowSize(500, 500);

 glutInitWindowPosition(0, 0);

 glutCreateWindow("Teapot on a table");

 init();

 glutDisplayFunc(display);

 glEnable(GL_LIGHTING); // enable the lighting properties

 glEnable(GL_LIGHT0); // enable the light source

 glShadeModel(GL_SMOOTH); // for smooth shading (select flat or smooth shading)

 glEnable(GL_NORMALIZE); // If enabled and no vertex shader is active, normal vectors

 are normalized to unit length after transformation and before

 lighting.
 glEnable(GL_DEPTH_TEST); // do depth comparisons and update the depth buffer.

 glutMainLoop();

}

OUTPUT

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

#include<stdlib.h>

#include<stdio.h>

#include<GL/glut.h>

typedef float point[3];

point v[]= {{0, 0, 1}, {0, 1, 0}, {-1, -0.5, 0}, {1, -0.5, 0}};

int n;

void triangle(point a, point b, point c)

{

 glBegin(GL_POLYGON);

 glVertex3fv(a);

 glVertex3fv(b);

 glVertex3fv(c);

 glEnd();

}

void divide_triangle(point a, point b, point c, int n)

{

 point v1,v2,v3;

 int j;

 if(n>0)

 {

 for(j=0; j<3; j++)

 v1[j] = (a[j]+b[j])/2; // calculate mid-point between a and b

 for(j=0; j<3; j++)

 v2[j] = (a[j]+c[j])/2; // calculate mid-point between a and c

 for(j=0; j<3; j++)

 v3[j] = (c[j]+b[j])/2; // calculate mid-point between c and b

 divide_triangle(a,v1,v2,n-1); // divide triangle between points a, ab/2, ac/2 recursively

 divide_triangle(c,v2,v3,n-1);

 divide_triangle(b,v3,v1,n-1);

 }

 else

 triangle (a,b,c);// draw triangle

}

7. Program to recursively subdivide a tetrahedron to from 3D Sierpinski gasket. The

number of recursive steps is to be specified by the user

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

void tetrahedron(int n)

{

 glColor3f(1, 0, 0); // assign color for each of the side

 divide_triangle(v[0], v[1], v[2], n); // draw triangle between a, b, c

 glColor3f(0, 1, 0);

 divide_triangle(v[3], v[2], v[1], n);

 glColor3f(0, 0, 1);

 divide_triangle(v[0], v[3], v[1], n);

 glColor3f(0, 0, 0);

 divide_triangle(v[0], v[2], v[3], n);

}

void display(void)

{

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glLoadIdentity();

 tetrahedron(n);

 glFlush(); // show the output

}

void myReshape(int w,int h) // please see the earlier program for explanation on this

{

 glViewport(0, 0, w, h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 if(w<=h)

 glOrtho(-2, 2, -2*(GLfloat)h/(GLfloat)w, 2*(GLfloat)h/(GLfloat)w, -10, 10);

 else

 glOrtho(-2*(GLfloat)w/(GLfloat)h, 2*(GLfloat)w/(GLfloat)h, -2, 2, -10, 10);

 glMatrixMode(GL_MODELVIEW);

 glutPostRedisplay();

}

int main(int argc,char ** argv)

{

 printf("No of Recursive steps/Division: ");

 scanf("%d",&n);

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);

 glutCreateWindow(" 3D Sierpinski gasket");

 glutReshapeFunc(myReshape);

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

 glutDisplayFunc(display); // call display function

 glEnable(GL_DEPTH_TEST); // do depth comparisons and update the depth buffer.

 glClearColor(1, 1, 1, 0);

 glutMainLoop();

 return 0;

}

OUTPUT

// for your information & understanding

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

Lets understand Bézier Curves first

Bézier curves are parametric curves that are generated with the control points. It is

widely used in computer graphics and other related industry, as they appear reasonably

smooth at all scales. Bézier curves was name after french engineer Pierre Bézier, who

discovered it. Mathematically Bézier curves is represented as –

Bézier curves are of different degree - linear curves, quadratic curve, cubic curve and

high order curve.

8. Develop a menu driven program to animate a flag using Bezier curve algorithm.

So basically we need to calculate

Bezier curve = Berstein Polynomial * For every point

Bezier curve = (nCr) *

* For every point

Where n = (number_of_control_points - 1)

 = 4 – 1

 n = 3

t ranges from 0 to 1

THE BASIC FLOW OF THIS CALCULATION IS:

Step 1: computeNcR

Step 2: bernstein_polynomial

Step 3: For every point

Finally – Multiply all

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

#include<GL/glut.h>

#include<stdio.h>

#include<math.h>

#define PI 3.1416

float theta = 0;

struct point

{

 GLfloat x, y, z;

};

int factorial (int n)

{

if (n<=1)

 return (1);

else

 n = n * factorial (n-1);

return n;

}

void computeNcR (int n, int *hold_ncr_values)

{

int r;

for (r=0; r<=n; r++) //start from nC0, then nC1, nC2, nC3 till nCn

{

 hold_ncr_values [r] = factorial (n) / (factorial (n-r) * factorial (r));

}

}

void computeBezierPoints (float t, point *actual_bezier_point, int number_of_control_points,

 point *control_points_array, int *hold_ncr_values) // 5 parameters

{

int i, n = number_of_control_points - 1;

float bernstein_polynomial;

actual_bezier_point -> x = 0;

actual_bezier_point -> y = 0;

actual_bezier_point -> z = 0;

for (i=0; i<number_of_control_points; i++)

 {

bernstein_polynomial = hold_ncr_values [i] * pow(t, i) * pow(1-t, n-i);

actual_bezier_point->x += bernstein_polynomial * control_points_array [i].x;

actual_bezier_point->y += bernstein_polynomial * control_points_array [i].y;

actual_bezier_point->z += bernstein_polynomial * control_points_array [i].z;

 }

}

See the above

explanation to

understand this

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

void Bezier (point *control_points_array, int number_of_control_points, int number_of_bezier_points)

{

point actual_bezier_point;

float t;

int *hold_ncr_values, i;

hold_ncr_values = new int [number_of_control_points]; // to hold the nCr values

computeNcR (number_of_control_points - 1, hold_ncr_values); // calculate nCr values

glBegin (GL_LINE_STRIP);

for(i=0; i<=number_of_bezier_points; i++)

 {

t=float (i) / float (number_of_bezier_points);

computeBezierPoints (t, &actual_bezier_point, number_of_control_points,

 control_points_array, hold_ncr_values);// 5 parameters

glVertex2f (actual_bezier_point.x, actual_bezier_point.y);

}

glEnd ();

delete [] hold_ncr_values;

}

void display()

{

glClear (GL_COLOR_BUFFER_BIT);

int number_of_control_points= 4, number_of_bezier_points= 20;

point control_points_array[4]= {{100, 400, 0}, {150, 450, 0}, {250, 350, 0},{300, 400, 0}};

control_points_array[1].x += 50 * sin (theta * PI/180.0); // for animating the flag

control_points_array[1].y += 25 * sin (theta * PI/180.0);

control_points_array[2].x -= 50 * sin ((theta+30) * PI/180.0);

control_points_array[2].y -= 50 * sin ((theta+30) * PI/180.0);

control_points_array[3].x -= 25 * sin ((theta-30) * PI/180.0);

control_points_array[3].y += sin ((theta-30) * PI/180.0);

theta += 2; //animating speed

glPushMatrix ();

glPointSize (5); // for plotting the point

See the above

explanation to

understand this

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 9

glColor3f (1, 0.4, 0.2); //Indian flag: Saffron color code

for (int i=0; i<50; i++)

{

glTranslatef(0, -0.8, 0);

bezier(control_points_array, number_of_control_points, number_of_bezier_points);

}

glColor3f(1, 1, 1); //Indian flag: white color code

for(int i=0; i<50; i++)

{

glTranslatef(0, -0.8, 0);

bezier(control_points_array, number_of_control_points, number_of_bezier_points);

}

glColor3f(0, 1, 0); //Indian flag: green color code

for(int i=0; i<50; i++)

{

glTranslatef(0, -0.8, 0);

bezier(control_points_array, number_of_control_points, number_of_bezier_points);

}

glPopMatrix();

glLineWidth(5);

glColor3f(0.7, 0.5,0.3); //pole colour

glBegin(GL_LINES);

glVertex2f(100,400);

glVertex2f(100,40);

glEnd();

glutPostRedisplay(); // call display again

glutSwapBuffers(); // show the output

}

void init ()

{

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,500,0,500);

}

int main(int argc, char ** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

glutInitWindowPosition(0, 0);

glutInitWindowSize(500,500);

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 10

glutCreateWindow ("Bezier Curve - updated");

init ();

glutDisplayFunc (display);

glutMainLoop ();

}

OUTPUT

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 6

Step Description Output
Step

1

Define the

boundary ->

x axis and y

axis

Also, define

your polygon

i,e., x1,y1

 x2,y2

 x3,y3

 x4,y4

Step

2

Run 4 big

for loops

and mark

your left

edges and

right edges

9. Develop a menu driven program to fill any given polygon using scan-line area filling
algorithm.

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 7

Step

3

Start filling

from the

left edge to

right edge

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 8

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 9

Step

4

STOP once

you fill all

the rows of

left edge to

right edge

You remember I had taught all the iterations via debug - breakpoints and an excel sheet which

kinda looked like this after 4th iteration?

and so on….

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 10

#include <stdlib.h>

#include <stdio.h>

#include <GL/glut.h>

float x1, x2, x3, x4, y1, y2, y3, y4; // our polygon has 4 lines - so 8 coordinates

void edgedetect(float x1, float y1, float x2, float y2, int *left_edge, int *right_edge)

{

 float x_slope, x, temp;

 int i;

 if ((y2-y1)<0) // decide where to start

 {

 temp = y1;

 y1 = y2;

 y2 = temp;

 temp = x1;

 x1 = x2;

 x2 = temp;

 }

 if ((y2-y1)!=0) // compute the values

 x_slope = (x2 - x1) / (y2 - y1);

 else

 x_slope = x2 - x1;

 x = x1;

 for (i = y1; i <= y2; i++) // fill the values

 {

 if (x < left_edge[i])

 left_edge[i] = x;

 if (x > right_edge[i])

 right_edge[i] = x;

 x = x + x_slope;

 }

}

void draw_pixel (int x, int y) // fill the polygon point by point (pixel by pixel)

{

 glColor3f (1, 1, 0); // fill the RHOMBUS in yellow colour

 glBegin (GL_POINTS);

 glVertex2i (x, y);

 glEnd ();

}

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 11

void scanfill (float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4)

{

 int left_edge[500], right_edge[500];

 int i, y;

 for (i = 0; i <= 500; i++)

 {

 left_edge [i] = 500; // fill all the left_edge values as 500 initially

 right_edge [i] = 0; // fill all the right_edge values as 0 initially

 }

 edgedetect (x1, y1, x2, y2, left_edge, right_edge); // first line

 edgedetect (x2, y2, x3, y3, left_edge, right_edge); // second line

 edgedetect (x3, y3, x4, y4, left_edge, right_edge); // third line

 edgedetect (x4, y4, x1, y1, left_edge, right_edge); // fourth line

 for (y = 0; y <= 500; y++) // now that you have calculated all values, start filling

 { from left edge to right edge row by row pixel by pixel

 if (left_edge[y] <= right_edge[y])

 {

 for (i = left_edge[y]; i <= right_edge[y]; i++)

 {

 draw_pixel (i, y);

 glFlush ();

 }

 }

 }

}

void display()

{

 x1 = 200, y1 = 200; // RHOMBUS coordinates

 x2 = 100, y2 = 300;

 x3 = 200, y3 = 400;

 x4 = 300, y4 = 300;

 glClear (GL_COLOR_BUFFER_BIT);

 glColor3f (0, 0, 1); // blue RHOMBUS

 glBegin (GL_LINE_LOOP); // draw the RHOMBUS

 glVertex2f (x1, y1);

 glVertex2f (x2, y2);

 glVertex2f (x3, y3);

 glVertex2f (x4, y4);

 glEnd ();

15CSL68 – Computer Graphics Lab Manual

BMSIT & M, Bengaluru -560064 | Author: Mr. Shankar R, Asst. Prof, CSE 12

 scanfill (x1, y1, x2, y2, x3, y3, x4, y4); // FILL the RHOMBUS

}

void init()

{

 glClearColor (1, 1, 1, 1);

 gluOrtho2D (0, 499, 0, 499);

}

int main (int argc, char** argv)

{

 glutInit (&argc, argv);

 glutInitDisplayMode (GLUT_SINGLE|GLUT_RGB);

 glutInitWindowSize (500, 500);

 glutInitWindowPosition (0, 0);

 glutCreateWindow ("Filling a Polygon using Scan-line Algorithm");

 init ();

 glutDisplayFunc (display);

 glutMainLoop ();

}

OUTPUT

