COMPUTER GR	APHICS AND VI	SUALIZATION			
[As per Choice Bas	sed Credit System	(CBCS) scheme]			
(Effective from the academic year 2017 - 2018)					
SEMESTER – VI					
Subject Code	17CS62	IA Marks	40	0	
Number of Lecture Hours/Week	4	Exam Marks	60	0	
Total Number of Lecture Hours	50	Exam Hours	03	03	
CREDITS – 04					
Module – 1				Teaching	
				Hours	
Overview: Computer Graphics and OpenGL: Computer Graphics:Basics of				10 Hours	
computer graphics, Application of Computer Graphics, Video Display Devices:					
Random Scan and Raster Scan displays, color CRT monitors, Flat panel displays.					
Raster-scan systems: video controller, raster scan Display processor, graphics					
workstations and viewing systems, Input devices, graphics networks, graphics on					
the internet, graphics software. OpenGL: Introduction to OpenGL, coordinate					
reference frames, specifying two-dimensional world coordinate reference frames					
in OpenGL, OpenGL point functions, OpenGL line functions, point attributes,					
line attributes, curve attributes, OpenGL point attribute functions, OpenGL line					
attribute functions, Line drawing algorithms(DDA, Bresenham's), circle					
generation algorithms (Bresenham's).					
Text-1: Chapter -1: 1-1 to 1-9.2-1 to 2-9 (Excluding 2-5).3-1 to 3-5.3-9.3-20					
Module – 2		////	I		
Fill area Primitives, 2D Geometric	Transformation	s and 2D viewing:	Fill	10 Hours	
area Primitives: Polygon fill-areas. OpenGL polygon fill area functions fill area				10 110415	
attributes general scan line polygon	fill algorithm Or	enGI fill-area attrib	nute		
functions 2DGeometric Transformations: Basic 2D Geometric Transformations					
matrix representations and homogeneous coordinates. Inverse transformations					
2DComposite transformations other 2D transformations restar methods for					
2D composite transformations, other 2D transformations, faster methods for geometric transformations, Open CL rester transformations, Open CL geometric					
geometric transformations, OpenGL faster transformations, OpenGL geometric transformations function, 2D viewing, 2D viewing ninoling, OpenGL 2D viewing					
functions					
Turchonis. Text 1. Chapter 3 14 to 3 16 4 0 4 10 4 14 5 1 to 5 7 5 17 6 1 6 4					
1ext-1:Chapter 5-14 to 5-16,4-9,4-10,4-14,5-1 to 5-7,5-17,0-1,0-4					
Module – 5 Climits - 2D. Commetric Transformations, Color, and Illumits that Modeley, 10 House					
Clipping, 5D Geometric Transform	ations, Color and		eis:	10 Hours	
Clipping: clipping window, normaliza	tion and viewport	ransformations, clipp	ing		
algorithms, 2D point clipping, 2D line clipping algorithms: cohen-sutherland line			ine		
clipping only -polygon fill area clipping: Sutherland-Hodgeman polygon clipping					
algorithm only.3DGeometric Transformations: 3D translation, rotation, scaling,					
composite 3D transformations, other 3D transformations, affine transformations,					
OpenGL geometric transformations functions. Color Models: Properties of light,					
color models, RGB and CMY color models. Illumination Models: Light sources,					
basic illumination models-Ambient light, diffuse reflection, specular and phong					
model, Corresponding openGL functions.					
Text-1:Chapter :6-2 to 6-08 (Excluding 6-4),5-9 to 5-17(Excluding 5-15),12-					
1,12-2,12-4,12-6,10-1,10-3					
Module – 4					

3D Viewing and Visible Surface Detection: 3D Viewing 3D viewing concepts	10 Hours			
3D viewing nineline 3D viewing coordinate parameters. Transformation from	10 110015			
world to viewing coordinates. Projection transformation, orthogonal projections				
wond to viewing coordinates, Projection transformation, orthogonal projections,				
OpenCL 2D viewing functions. Visible Surface Detection Methods				
OpenGL 5D viewing functions. Visible Surface Detection Methods.				
Classification of visible surface Detection algorithms, back face detection, depth				
buffer method and OpenGL visibility detection functions.				
Text-1:Chapter: 7-1 to 7-10(Excluding 7-7), 9-1 to 9-3, 9-14				
Module – 5				
Input& interaction, Curves and Computer Animation: Input and Interaction:	10 Hours			
Input devices, clients and servers, Display Lists, Display Lists and Modelling,				
Programming Event Driven Input, Menus Picking, Building Interactive Models,				
Animating Interactive programs, Design of Interactive programs, Logic				
operations .Curved surfaces, quadric surfaces, OpenGL Quadric-Surface and				
Cubic-Surface Functions, Bezier Spline Curves, Bezier surfaces, OpenGL curve				
functions. Corresponding openGL functions.				
Text-1: Chapter :8-3 to 8-6 (Excluding 8-5).8-9.8-10.8-11.3-8.8-18.13-11.3-				
2.13-3.13-4.13-10				
Text-2:Chanter 3: 3-1 to 3.11: Input& interaction				
Course outcomes: The students should be able to:				
Design and implement algorithms for 2D graphics primitives and attributes				
 Design and implement algorithms for 2D graphics primitives and autobuces. Illustrate Commetrie transformations on both 2D and 2D shipsts 				
• Inustrate Geometric transformations on both 2D and 3D objects.				
• Understand the concepts of clipping and visible surface detection in 2D and	3D			
viewing, and Illumination Models.				
 Discussabout suitable hardware and software for developing graphics packa 	iges using			
OpenGL.				
Question paper pattern:				
The question paper will have TEN questions.				
There will be TWO questions from each module.				
Each question will have questions covering all the topics under a module.				
The students will have to answer FIVE full questions, selecting ONE full question from each				
module.				
Text Books:				
1. Donald Hearn & Pauline Baker: Computer Graphics with OpenGL V	Version,3 rd /			
4 th Edition, Pearson Education,2011	,			
2. Edward Angel: Interactive Computer Graphics- A Top Down approach with OpenGL, 5 th adition Pearson Education 2008				
5 Califon. I carson Education, 2000				
Reference Books:				
1. James D Foley, Andries Van Dam, Steven K Feiner, John F Huges Comput	er graphics			
with OpenGL: pearson education				
2. Xiang, Plastock : Computer Graphics _ sham's outline series. 2 nd edition T	MG.			
3 Kelvin Sung Peter Shirley steven Baer · Interactive Computer Graphics concents				
and applications Cengage Learning	, concepts			
4 M MRaiker Computer Graphics using OpenGL Filin learning/Flsevier				
1. In mixance, computer Orapines using OpenOL, rinp tearning/Elsevier				

4. M MRaiker, Computer Graphics using OpenGL, Filip learning/Elsevier