Window to Viewport Transformation

Viewing

- Transformation world \rightarrow screen
- Clipping: Removing parts outside screen

World Coordinates

The clipping window is mapped into a viewport.

Viewing world has its own coordinates, which may be a non-uniform scaling of world coordinates.

Viewport Coordinates

2D viewing transformation pipeline

2D Viewing pipeline

World:
Screen:

Clipping window:
What do we want to see?

Viewport:
Where do we want to see it?

2D Viewing pipeline

World:
Screen:

Clipping window:
Panning...

2D Viewing pipeline

World:
Screen:

Clipping window:
Panning...

2D Viewing pipeline

World:
Screen:

Clipping window:
Zooming...

2D Viewing pipeline

World:
Screen:

Clipping window:
Zooming...

2D Viewing pipeline

MC: Modeling Coordinates
Apply model transformations
WC: World Coordinates
Determine visible parts VC: Viewing Coordinates
$\downarrow T o$ standard coordinates
NC: Normalized Coordinates

Window to Viewport Transformation

- What is window?

Window to Viewport Transformation

- What is viewport?

So, we have to map (convert) window to View port coordinal How, let see!

Relative position will be same for both winder \& Viempsit, but the size of the object changes.

Since the relative proton is same, we "can have for $x^{-} \sqrt{\frac{x_{W}-x_{W_{\text {Min }}}}{x_{W_{\text {max }}}-x_{W_{\text {Min }}}}=\frac{x_{V}-x_{V_{\text {min }}}}{x_{V_{\text {max }}}-x_{V_{\text {Min }}}}}$

$$
f_{0} y^{2} \frac{y_{1}-y_{w_{\operatorname{Min}}}}{y_{\omega_{\text {max }}}-y_{N_{\operatorname{Min}}}}=\frac{y_{y}-y_{v_{\operatorname{Min}}}}{y_{v_{\operatorname{May}}}-y_{v_{\text {min }}}}
$$

2) $x_{V}-x_{V_{\text {min }}}=\left(x_{H}-x_{L_{\text {min }}}\right)\left(\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{H_{\text {max }}}-x_{\omega_{\text {min }}}}\right)$
leave some 4 lines gap here

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow x_{V}-x_{V_{\text {min }}}=x_{\nu}\left(\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{L_{\text {max }}}-x_{L_{\text {min }}}}\right)-x_{\omega_{\text {min }}}\left(\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{L_{\text {max }}}-x_{L_{\text {min }}}}\right) \\
\Rightarrow x_{V_{\text {min }}}
\end{array} \\
& \Rightarrow x_{V}-x_{V_{\text {min }}}=x_{L}\left(\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{W_{\text {max }}}-x_{\omega_{\text {min }}}}\right)-\frac{x_{H_{\text {min }}} x_{V_{\text {max }}}+x_{U_{\text {min }}} x_{V_{\text {Min }}}}{x_{H_{\text {max }}}-x_{U_{\text {min }}}} \\
& \Rightarrow x_{V}=x_{L}\left(\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{W_{\text {max }}}-x_{W_{\text {min }}}}\right)+x_{V_{\text {min }}}+\frac{x_{L_{\text {min }}} x_{V_{\text {min }}}-x_{L_{\text {min }}} x_{V_{\text {max }}}}{x_{W_{\text {max }}}-x_{\omega_{\omega_{\text {min }}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x_{V}=x_{L}\left(\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{L_{\text {max }}}-x_{\text {mini }}}\right)+\frac{x_{V_{\text {min }}} x_{\mu_{\text {max }}}-x_{V_{\text {min }}} x_{N_{\text {min }}}+x_{L_{\text {min }}} x_{V_{\text {min }}}-\lambda_{V_{\text {min }}} x_{V_{\text {xxx }}}}{x_{W_{\text {max }}}-\lambda_{W_{\text {min }}}}
\end{aligned}
$$

$\Rightarrow x_{V}=x_{H}(\underbrace{\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{\mu_{\text {max }}}-x_{\nu_{\text {min }}}}})+\underbrace{\left(\frac{x_{\omega_{\text {max }}} x_{\nu_{\text {min }}}-x_{\nu_{\text {min }}} x_{V_{\text {max }}}}{x_{\omega_{\text {max }}}-x_{\nu_{\text {min }}}}\right)}$
$\Rightarrow x_{V}=x_{\omega} S_{x}^{\nu}+T_{x}^{S}$ where $S_{x}=\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{1_{\text {MAX }}}-x_{\text {AN M }^{\prime}}}$

$$
\tau_{\lambda}=\frac{x_{\omega_{\text {max }}} x_{V_{\text {mix }}}-x_{r_{\text {min }}}}{x_{\mu_{\text {max }}}-x_{H_{\text {min }}}}
$$

Similarly, do for $\mathbf{Y v}$

$$
y_{v}=y_{w} s_{y}+\vec{P}_{y}
$$

where $s_{y}=\frac{y_{v_{\max }}-x v_{\min }}{y_{u_{\max }}-y_{\min }}$

$$
T_{y}=\frac{y_{w_{\text {max }}} y_{v_{\min }}-y_{w_{\min }} y_{v_{\max }}}{y_{w_{\max }}-y_{w_{\min }}}
$$

Example Problem
(8)
(4.)

Given:-

$$
\begin{aligned}
\therefore x_{\nu_{\text {min }}} & =20 \\
x_{\nu_{\text {max }}} & =80 \\
y_{\nu_{\text {min }}} & =40 \\
y_{U_{\text {max }}} & =80 \\
\left(x_{H}, V_{H}\right) & =(50,60)
\end{aligned}
$$

$$
\begin{aligned}
& x_{v_{\text {min }}}=30 \\
& x_{v_{\text {max }}}=60 \\
& y_{v_{\text {min }}}=40 \\
& y_{v_{\text {max }}}=60 \\
& \left(x_{v}, y_{r}\right)=?
\end{aligned}
$$

To find out? $\left(x_{v}, y_{v}\right)$

Substitute the given in (1) $\varepsilon(2)$

$$
\begin{aligned}
(1) \Rightarrow & \frac{x_{r}-30}{60-30}=\frac{50-20}{80-20} \\
& x_{V}-30=15 \\
& x_{V}=45
\end{aligned}
$$

(2) \Rightarrow

$$
\begin{aligned}
& \frac{y_{v}-40}{60-40}=\frac{60-40}{80-40} \\
& y_{v}-40=10 \\
& y_{v}=50
\end{aligned}
$$

Concusion:-
An ofject which was at $\left(\begin{array}{ll}50 & 60\end{array}\right)$ is Lorla coorcinatio, when capoued il olne $\left(x_{v}, y_{v}\right)$ at $(4 s, 50)$

Now, go back to that gap...

$$
\begin{aligned}
& x_{V}-x_{V_{\text {min }}}=\left(x_{w}-x_{\omega_{\text {min }}}\right)\left(\frac{x_{V_{\text {max }}}-x_{V_{\text {min }}}}{x_{\omega_{\text {max }}}-x_{\nu_{\text {min }}}}\right) \\
& \therefore x_{V}=x_{V_{\text {min }}}+\left(x_{w}-x_{w_{\text {min }}}\right) S_{x}
\end{aligned}
$$

similarly,

$$
y_{v}=y_{v_{\text {min }}}+\left(y_{w}-y_{w_{\text {min }}}\right) s_{y}
$$

Apparently, in $5^{\text {th }}$ lab program (cohen Sutherland line clip)

double sx=(xvmax-xvmin)/(xmax-xmin) ; double sy=(yvmax-yvmin)/(ymax-ymin) ; double vx0=xvmin+(x0-xmin)*sx; double vy0=yvmin+(y0-ymin) *sy; double vx1=xvmin+(x1-xmin)*sx; double vy1=yvmin+(y1-ymin)*sy;

Clipping window

- Clipping window usually an axis-aligned rectangle
- Sometimes rotation
- From world to view coordinates: $\mathbf{T}\left(-x w_{\min },-y w_{\min }\right)$ possibly followed by rotation
- More complex in 3D

To normalized coordinates

Scale with:
$\mathbf{S}\left(\frac{x v_{\text {max }}-x v_{\text {min }}}{x w_{\text {max }}-x w_{\text {min }}}, \frac{y v_{\text {max }}-y v_{\text {min }}}{y w_{\text {max }}-y w_{\text {min }}}\right)$
If the twoscale factors are unequal, then the aspect-ratio changes: distortion!

To normalized coordinates

Translate with:
$\mathbf{T}\left(x v_{\min }, y v_{\text {min }}\right)$

To normalized coordinates

All together:
$\mathbf{T}\left(x v_{\min }, y v_{\min }\right) \mathbf{S}\left(\frac{x v_{\max }-x v_{\min }}{x w_{\max }-x w_{\min }}, \frac{y v_{\max }-y v_{\min }}{y w_{\max }-y w_{\min }}\right) \mathbf{T}\left(-x w_{\min },-y w_{\min }\right)$

OpenGL 2D Viewing

Specification of 2D Viewing in OpenGL:

- Standard pattern, follows terminology.

First, this is about projection. Hence, select and the Projection Matrix (instead of the ModelView matrix) with:
glMatrixMode (GL_PROJECTION);

OpenGL 2D Viewing

Next, specify the 2D clipping window:
gluOrtho2D (xwmin, xwmax, ywmin, ywmax) ;
xwmin, xwmax: horizontal range, world coordinates
ywmin, ywmax: vertical range, world coordinates

OpenGL 2D Viewing

Finally, specify the viewport:
glViewport(xvmin, yvmin, vpWidth, vpHeight);
xvmin, y vmin: coordinates lower left corner (in pixel coordinates); vpWidth, vpHeight: width and height (in pixel coordinates);

OpenGL 2D Viewing

In short:

glMatrixMode (GL_PROJECTION) ;
gluOrtho2D (xwmin, xwmax, ywmin, ywmax) ;
glViewport(xvmin, yvmin, vpWidth, vpHeight);

To prevent distortion, make sure that:
(ywmax - ywmin)/(xwmax - xwmin) $=$ vpWidth/vpHeight

OpenGL 2D viewing functions

- glMatrixMode (GL_PROJECTION) ;
- glLoadIdentity();
- glMatrixMode (GL_MODELVIEW);
- gluOrtho2D(xwmin, xwmax, ywmin, ywmax);
- glViewport(xvmin, yvmin, vpWidth, vpHeight);
- glGetIntegerv (GL_VIEWPORT, vpArray);
- glutInit(\&argc,argv);
- glutInitWindowPosition $(10,10)$;
- glutInitWindowSize (500,500);
- glutCreateWindow("My First");
- glutInitDisplayMode (GLUT_SINGLE|GLUT_RGB);
- windowID = glutCreateWindow("My First");
- glutDestroyWindow(windowID);

OpenGL 2D viewing functions

- glutSetWindow(windowID);
- currentWindowID = glutGetWindow();
- glutReshapeWindow(width,height); //reset
- glutFullScreen();
- glutReshapeFunc (reshapeFunction);
- glitIconifyWindow();
- glutSetIconTitle("Icon Name");
- glutSetWindowTitle("New Window Name");
- glutSetWindow (windowID);
- glutPopWindow ();
- glutSetWindow (windowID);
- glutPushWindow ();
- glutHideWindow ();

OpenGL 2D viewing functions

- glutShowWindow ();
- glutCreateSubWindow (windowID, xBottomLeft, yBottomLeft,width, height);
- glutDisplayFunc (pictureDescrip);
- glutPostRedisplay ();
- glutMainLoop ();

Module-2

2D Geometric Transformations

2D Transformations

"Transformations are the operations applied to geometrical description of an object to change its position, orientation, or size are called geometric transformations".

Why Transformations ?

"Transformations are needed to manipulate the initially created object and to display the modified object without having to redraw it."

- Translation

- Rotation

- Scaling
- Uniform Scaling

- Un-uniform Scaling

- Reflection

- Shear

Translation

- A translation moves all points in an object along the same straight-line path to new positions.
- The path is represented by a vector, called the translation or shift vector.
- We can write the components:

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{x}}^{\prime}=\mathbf{p}_{\mathrm{x}}+\mathrm{t}_{\mathrm{x}} \\
& \mathbf{p}_{\mathrm{y}}^{\prime}=\mathrm{p}_{\mathrm{y}}+\mathrm{t}_{\mathrm{y}}
\end{aligned}
$$

- or in matrix form:

$$
\mathbf{P}^{\prime}=\mathbf{P}+\mathbf{T}
$$

$$
\left(\begin{array}{c}
\mathbf{x}^{\prime} \\
\mathbf{y}^{\prime}
\end{array}\right]=\left(\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]+\binom{t_{x}}{t_{y}}
$$

Rotation

- A rotation repositions all points in an object along a circular path in the plane centered at the pivot point.
- First, we'll assume the pivot is at the origin.

Rotation

- Review Trigonometry
$\Rightarrow \cos \phi=\mathbf{x} / \mathbf{r}, \sin \phi=\mathbf{y} / \mathbf{r}$
- $\mathbf{x}=\mathbf{r} \cdot \cos \phi, \mathbf{y}=\mathbf{r} \cdot \sin \phi$
$\left(\begin{array}{l}=>\cos (\phi+\theta)=x^{\prime} / r \\ \cdot x^{\prime}=r . \cos (\phi+\theta) \\ \bullet \mathbf{x}^{\prime}=\mathbf{r} \cdot \cos \phi \cos \theta-r . \sin \phi \sin \theta\end{array}\right.$
$\cdot \mathbf{x}^{\prime}=\mathbf{x} \cdot \boldsymbol{\operatorname { c o s }} \theta-\mathbf{y} \cdot \boldsymbol{\operatorname { s i n }} \theta$
$\Rightarrow>\sin (\phi+\theta)=y^{\prime} / r$
$\mathbf{X}^{\prime}=\mathbf{r} \cdot \sin (\phi+\theta)$
$\cdot y^{\prime}=r . \cos \phi \sin \theta+r . \sin \phi \cos \theta$

$\cdot y^{\prime}=x \cdot \sin \theta+y \cdot \cos \theta$

Rotation

- We can write the components:

$$
\begin{aligned}
& p_{x}^{\prime}=p_{x} \cos \theta-p_{y} \sin \theta \\
& p_{y}^{\prime}=p_{x} \sin \theta+p_{y} \cos \theta
\end{aligned}
$$

- or in matrix form:

$$
P^{\prime}=\mathbf{R} \cdot \mathbf{P}
$$

- θ can be clockwise (-ve) or counterclockwise (+ve as our example).
- Rotation matrix

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Scaling

- Scaling changes the size of an object and involves two scale factors, S_{x} and S_{y} for the x and y-coordinates respectively.
- Scales are about the origin.
- We can write the components:

$$
\begin{aligned}
& \boldsymbol{p}_{x}^{\prime}=s_{x} \bullet \boldsymbol{p}_{x} \\
& \boldsymbol{p}_{y}^{\prime}=s_{y} \bullet \boldsymbol{p}_{y}
\end{aligned}
$$

or in matrix form:

$$
\mathbf{P}^{\prime}=\mathbf{S} \cdot \mathbf{P}
$$

Scale matrix as:

$$
S=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

Scaling

- If the scale factors are in between 0 and 1:---
- \rightarrow the points will be moved closer to the origin
- \Rightarrow the object will be smaller.
- Example :

$$
\cdot P(2,5), S_{x}=0.5, S_{y}=0.5
$$

- If the scale factors are in between 0 and $1 \rightarrow$ the points will be moved closer to the origin \rightarrow the object will be smaller.
- Example :

$$
\cdot P(2,5), S_{x}=0.5, S_{y}=0.5
$$

-If the scale factors are larger than 1
\rightarrow the points will be moved away from the origin \rightarrow the object will be larger.

- Example :

$$
\cdot P(2,5), S_{x}=2, S_{y}=2
$$

Scaling

- If the scale factors are the same, $S_{x}=S_{y} \rightarrow$ uniform scaling
- Only change in size (as previous example)
-If $S_{x} \neq S_{y} \rightarrow$ differential scaling. -Change in size and shape
\cdot Example : square \rightarrow rectangle

$$
\cdot P(1,3), S_{x}=2, S_{y}=5
$$

Matrix Representations \& Homogenous Coordinates

$$
\begin{aligned}
P^{\prime} & =P+T \\
P^{\prime} & =S \cdot P \\
P^{\prime} & =R \cdot P
\end{aligned}
$$

$$
\begin{aligned}
& \text { Translation } P^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right] \\
& \text { Rotation } P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { Scaling } P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Combining above equations, we can say that

$$
\mathrm{P}^{\prime}=\mathrm{M}_{\mathrm{i}} \cdot \mathrm{P}+\mathrm{M}_{2}
$$

Using homogenous co-ordinates, the transformations could be combined easily reformulate equation to eliminate matrix addition.

In homogenous co-ordinate system, we combine multiplicative and translatio by expanding the 2×2 matrix representation to $\mathbf{3 \times 3}$ matrices. Also expand the ter representation for co-ordinate position

We represent each Cartesian co-ordinate((x, y) with homogeneous co-ordinat where $x=x_{h} / h, y=y_{h} / h \quad$ co-ordinate $\left(x_{b}, y_{b}, h\right)$

$$
\begin{aligned}
& \left(h^{*} x, h^{*} y, h\right) \\
& \text { set } h=1 \\
& (x, y, 1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Homogenous co-ordinates representation for translation, scaling and rotation are as } \\
& \text { follows: } \\
& \qquad \begin{array}{l}
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \\
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
s_{x} & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \\
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
\end{array}
\end{aligned}
$$

Problem: Rotate the given Triangle by 90 degrees about the origin

rigin by 90°

Salietion
Applying homogenous co-ordinate system for rotation,
For co-ordinate A (3, 2),

$$
\begin{aligned}
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right) & =\left(\begin{array}{ccc}
\cos (90) & -\sin (90) & 0 \\
\sin (90) & \cos (90) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \\
A\left(x^{\prime \prime}, y^{\prime}, 1\right) & =(-2,3,1)
\end{aligned}
$$

For co-ondinate $\mathrm{B}(6,2)$.

$$
\begin{aligned}
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right) & =\left(\begin{array}{ccc}
\cos (90) & -\sin (90) & 0 \\
\sin (90) & \cos (90) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right) \\
B\left(x^{\prime}, y^{\prime \prime}, 1\right) & =(-2,6,1)
\end{aligned}
$$

For co-ordinate $\mathrm{C}(6,6)$.

$$
\begin{aligned}
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime \prime} \\
1
\end{array}\right) & =\left(\begin{array}{ccc}
\cos (90) & -\sin (90) & 0 \\
\sin (90) & \cos (90) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
6 \\
6 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{l}
6 \\
6 \\
1
\end{array}\right) \\
C\left(x^{\prime \prime}, y^{\prime \prime}, 1\right) & =(-6,6,1)
\end{aligned}
$$

Problem: Prove that successive translations are additive

2. Prove that successive translations are additive

If a point P is translated by $\mathrm{T}\left(\mathrm{tx}_{1}\right.$, ty y_{1}) to P^{\prime} and then translated by $\mathrm{T}\left(\mathrm{tx}_{2}, \mathrm{ty}_{2}\right)$ to $\mathrm{P}^{\prime \prime}$

$$
\begin{align*}
P^{\prime} & =T\left(x_{1}, t y_{1}\right)^{*} P \tag{3.6}\\
P^{\prime \prime} & =T\left(x_{2}, y_{2}\right)^{\prime} \cdot P^{\prime} \tag{3.7}
\end{align*}
$$

Substituting equation (3.6) into (3.7), we obtain

$$
\begin{aligned}
P^{\prime \prime} & \left.\left.=\mathrm{T}\left(\mathrm{tx}_{2}, \mathrm{ty}\right)_{2}\right)^{*}\left(\mathrm{~T}\left(\mathrm{tx}_{1}, \mathrm{ty}\right)_{1}\right)^{*} \mathrm{P}\right) \\
& =\left(\mathrm{T}\left(t x_{2}, t y_{2}\right)^{*} \mathrm{~T}\left(t x_{1}, t y_{1}\right)\right)^{*} \mathrm{P} \\
p^{*} & =\left[\begin{array}{ccc}
1 & 0 & x_{2} \\
0 & 1 & b_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & x_{1} \\
0 & 1 & t y_{1} \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
p^{*} & =\left[\begin{array}{lll}
1 & 0 & x_{1}+t x_{2} \\
0 & 1 & t y_{1}+t y_{2} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

The matrix product $\left(T\left(\mathrm{Tx}_{2}, t y_{2}\right)^{*} \mathrm{~T}\left(\mathrm{tx}_{1}\right.\right.$, ty $\left.\left.\mathrm{t}_{1}\right)\right)$ is the net translation is indeed $\mathrm{T}\left(\mathrm{tx}_{1}+\mathrm{tx}_{2}, \mathrm{ty}+\mathrm{ty}_{2}\right)$

Problem: Prove that successive scaling is multiplicative

$$
\begin{aligned}
\bar{P}^{\prime} & =\mathrm{S}\left(s x_{1}, s y_{1}\right)^{*} \mathrm{P} \\
P^{\prime \prime} & =\mathrm{S}\left(s x_{2}, s y_{2}\right)^{*} \mathrm{P}^{\prime}
\end{aligned}
$$

Substituting equation (3.8) in (3.9)

$$
\begin{aligned}
\mathrm{P}^{\prime \prime} & =\mathrm{S}\left(\mathrm{sx}_{2}, s y_{2}\right)^{*}\left(\mathrm{~S}\left(\mathrm{sx}_{1}, s y_{1}\right)^{*} \mathrm{P}\right) \\
& =\left(\mathrm{S}\left(\mathrm{sx}_{2}, s y_{2}\right)^{*} \mathrm{~S}\left(\mathrm{sx}_{1}, s y_{1}\right)\right)^{*} \mathrm{P}
\end{aligned}
$$

The matrix product $\mathrm{S}\left(\mathrm{sx}_{2}, s y_{2}\right)^{*} \mathrm{~S}\left(\mathrm{sx}_{1}, s y_{4}\right)$ is the net scaling transformations. Thus, scaling is indeed multiplicative.

$$
\begin{aligned}
P^{*} & =\left[\begin{array}{ccc}
s x_{2} & \overrightarrow{0} & 0 \\
0 & s y_{2} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
s x_{1} & 0 & 0 \\
0 & s y_{1} & 0 \\
0 & 0 & 1
\end{array}\right] \downarrow \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
P^{*} & =\left[\begin{array}{ccc}
s x_{1} \cdot s x_{2} & 0 & 0 \\
0 & s y_{1} \cdot s y_{2} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

- Similarly successive rotations are additive.

General pivot point rotation

- Translate the object so that pivot-position is moved to the coordinate origin
- Rotate the object about the coordinate origin
- Translate the object so that the pivot point is returned to its

(a)

Original Position of Object and pivot point

(b)

Translation of object so that pivot point $\left(x_{r}, y_{r}\right)$ is at origin

(c)

Rotation was about origin

(d)

Translation of the object so that the pivot point is returned to position ($\mathrm{x}_{\mathrm{r}}, \mathrm{y}_{\mathrm{r}}$)

General fixed point scaling

- Translate object so that the fixed point coincides with the coordinate origin
- Scale the object with respect to the coordinate origin
- Use the inverse translation of step 1 to return the object to its original position

Composite Transformations (A) Translations

If two successive translation vectors $\left(\mathrm{t}_{\mathrm{x} 1}, \mathrm{t}_{\mathrm{y} 1}\right)$ and $\left(\mathrm{t}_{\mathrm{x} 2}, \mathrm{t}_{\mathrm{y} 2}\right)$ are applied to a coordinate position P , the final transformed location P^{\prime} is calculated as: -

$$
\begin{aligned}
\mathrm{P}^{\prime} & =\mathrm{T}\left(\mathrm{t}_{\mathrm{x} 2}, \mathrm{t}_{\mathrm{y} 2}\right) \cdot\left\{\mathrm{T}\left(\mathrm{t}_{\mathrm{x} 1}, \mathrm{t}_{\mathrm{y} 1}\right) \cdot \mathrm{P}\right\} \\
& =\left\{\mathrm{T}\left(\mathrm{t}_{\mathrm{x} 2}, \mathrm{t}_{\mathrm{y} 2}\right) \cdot \mathrm{T}\left(\mathrm{t}_{\mathrm{x} 1}, \mathrm{t}_{\mathrm{y} 1}\right)\right\} \cdot \mathrm{P}
\end{aligned}
$$

Where P and P^{\prime} are represented as homogeneous-coordinate column vectors. We can verify this result by calculating the matrix product for the two associative groupings. Also, the composite transformation matrix for this sequence of transformations is: -
\(\left|$$
\begin{array}{ccc}1 & 0 & t_{x} \\
0 & 1 & t_{y 2} \\
0 & 0 & 1\end{array}
$$\right| \cdot\left|\begin{array}{ccc}1 \& 0 \& t_{x}

0 \& 1 \& t_{\mathrm{t} 1}

0 \& 0 \& 1\end{array}\right|=|\)| 1 | 0 | $t_{x}+t_{x}$ |
| :---: | :---: | :---: |
| 0 | 1 | $t_{y 1}+t_{y 2}$ |
| 0 | 0 | 1 |

Or, $\quad \mathbf{T}\left(\mathbf{t}_{\mathbf{x} 2}, \mathbf{t}_{\mathbf{y} 2}\right) . \mathbf{T}\left(\mathbf{t}_{\mathbf{x} 1}, \mathbf{t}_{\mathbf{y} 1}\right)=\mathbf{T}\left(\mathbf{t}_{\mathbf{x} 1}+\mathbf{t}_{\mathbf{x} 2}, \mathbf{t}_{\mathbf{y} 1}+\mathbf{t}_{\mathbf{y} 2}\right)$

(B) Rotations

Two successive rotations applied to point P produce the transformed position: -

$$
\begin{aligned}
\mathrm{P}^{\prime} & =\mathrm{R}\left(\Theta_{2}\right) \cdot\left\{\mathrm{R}\left(\Theta_{1}\right) \cdot \mathrm{P}\right\} \\
& =\left\{\mathrm{R}\left(\Theta_{2}\right) \cdot \mathrm{R}\left(\Theta_{1}\right)\right\} \cdot \mathrm{P}
\end{aligned}
$$

By multiplication the two rotation matrices, we can verify that two successive rotations are additive:

$$
\mathbf{R}\left(\boldsymbol{\theta}_{2}\right) \cdot \mathbf{R}\left(\boldsymbol{\theta}_{1}\right)=\mathbf{R}\left(\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right)
$$

So that the final rotated coordinates can be calculated with the composite rotation matrix as: -

$$
\mathbf{P}^{\prime}=\mathbf{R}\left(\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right) . \mathbf{P}
$$

(C) Scaling

Concatenating transformation matrices for two successive scaling operations produces the following composite scaling matrix: -

$$
\left|\begin{array}{lll}
S_{x 2} & 0 & 0 \\
0 & S_{y 2} & 0 \\
0 & 0 & 1
\end{array}\right| \cdot\left|\begin{array}{ccc}
S_{x 1} & 0 & 0 \\
0 & S_{y 1} & 0 \\
0 & 0 & 1
\end{array}\right|=\left|\begin{array}{lll}
S_{x 1} \cdot S_{x 2} & 0 & 0 \\
0 & S_{y 1} \cdot S_{y 2} & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Or, $\quad \mathbf{S}\left(\mathbf{S}_{\mathrm{x} 2}, \mathrm{~S}_{\mathrm{y} 2}\right) \cdot \mathbf{S}\left(\mathbf{S}_{\mathrm{x} 1}, \mathrm{~S}_{\mathrm{y} 1}\right)=\mathbf{S}\left(\mathbf{S}_{\mathrm{x} 1} \cdot \mathbf{S}_{\mathrm{x} 2}, \mathrm{~S}_{\mathrm{y} 1} \cdot \mathbf{S}_{\mathrm{y} 2}\right)$
The resulting matrix in this case indicates that successive scaling operations are multiplicative.

2D Composition Problems

Rotate an object about an arbitrary point P_{f}

To rotate about P_{p} we need a sequence of 3 fundamental transformations

- Translate such that P_{f} is at the origin
- Rotate
- Translate such that the point at the origin returns to P_{r}

the square about the fixed point (x, y) by an angle θ

The net transformation is
$T\left(x_{p}, y_{f}\right)^{*} R(\Theta)^{*} T\left(-x_{p}-y_{p}\right)$
$=\left[\begin{array}{lll}1 & 0 & x_{r} \\ 0 & 1 & y_{r} \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{ccc}1 & 0 & -x_{r} \\ 0 & 1 & -y_{r} \\ 0 & 0 & 1\end{array}\right]+$
$=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & x_{r}(1-\cos \theta)+y_{r} \sin \theta \\ \sin \theta & \cos \theta & y_{r}(1-\cos \theta)-x_{r} \sin \theta \\ 0 & 0 & 1\end{array}\right]$
4. Draw a polygon $A B C, A(3,2), B(6,2)$ and $C(6,6)$ rotate it in anticlockwise direction by 90 degree by keeping a poini $A(3,2)$ fixed

Figure 3.10 Origin position of the polygon

Figure 3.11 Translate the polygon to the origin
by translation factor $t_{x}=-3, t_{y}=-2$

PROBLEM 1

Step 1

Figure 3.12 Rotate the polygon anti-clockwise by 90° degrees

Figure 3.13 Translate the polygon by translation factor $t_{2}=3, t_{r}=2$

The transformations shown in figure 3.10 to 3.13 , could be done using homogenous coordinates as follows:

$$
\mathrm{P}^{\prime}=\mathrm{T}(\mathrm{x}, \mathrm{y})^{\bullet} \mathrm{R}(\theta)^{\bullet} \mathrm{T}(-\mathrm{x},-\mathrm{y})^{*} \mathrm{P}(\mathrm{x}, \mathrm{y})
$$

θ is positive because anti-clockwise rotation

$$
\mathrm{P}^{\prime}=\mathrm{T}(3,2)^{*} \mathrm{R}\left(90^{\circ}\right)^{*} \mathrm{~T}(-3,-2)^{*} \mathrm{P}(\mathrm{x}, \mathrm{y})
$$

$$
\left.=\left[\begin{array}{ccc}
1 & 0 & x_{\mathrm{t}} \\
0 & 1 & y_{\mathrm{t}} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x_{\mathrm{f}} \\
0 & 1 & -y_{\mathrm{t}} \\
0 & 0 & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos 90 & -\sin 90 & 0 \\
\sin 90 & \cos 90 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left.=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left.=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
0 & -1 & 2 \\
1 & 0 & -3 \\
0 & 0 & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$=\left[\begin{array}{ccc}0 & -1 & 5 \\ 1 & 0 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

$P_{B}^{\prime}=\left[\begin{array}{ccc}0 & -1 & 5 \\ 1 & 0 & -1 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}6 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 5 \\ 1\end{array}\right] \quad P_{C}^{\prime}=\left[\begin{array}{ccc}0 & -1 & 5 \\ 1 & 0 & -1 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}6 \\ 6 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 5 \\ 1\end{array}\right]$
Solution: $P_{A}^{\prime}(3,2) \quad P_{B}^{\prime}(3,5) \quad P_{c}^{\prime}(-1,5)$

Difference between rotation of a triangle about the origin by 90°, and rotation about a fixed point $A(3,2)$ is shown in fig 3.13a

Figure 3.13a Difference between rotation about the origin and fixed point rotation

THEORY

3.2.1.2 Scale an object about an arbitrary point P_{f},

To scale an object about an arbitrary point P_{f} the following three steps are required:

- Translate such that P_{f} goes to origin
- Scale
- Translate back to P_{f}

Composition of these transformation is: $\mathrm{T}\left(\mathrm{x}_{\mathrm{p}} \mathrm{y}_{\mathrm{p}}\right)^{*} \mathrm{~S}\left(\mathrm{~s}_{\mathrm{x}}, \mathrm{s}_{y}\right) \bullet \mathrm{T}\left(-\mathrm{x}_{\mathrm{p}}-\mathrm{y}_{\mathrm{f}}\right)$

gure 3.14 Scale the triangle $A B C$ abourt the origin by $s_{k}=1 / 3$ and $s_{v}=1 / 2$
zaled with respect to origin

$$
\mathbf{P}^{\prime}=\mathbf{S}\left(\mathbf{s}_{x^{\prime}}, s_{y}\right)^{*} \mathbf{P}(x, y)
$$

$$
\left[\begin{array}{l}
x^{*} \\
y^{*} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \hline P_{A}^{\prime}=\left[\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad P_{B}^{\prime}=\left[\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
6 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] \\
& P_{c}^{\prime}=\left[\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
6 \\
6 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] \quad \text { Solution } \quad \begin{array}{l}
\mathbf{P}^{\prime} \mathbf{P}^{\prime}(1,1) \\
\mathbf{P}_{B}^{\prime}(2,1) \\
\mathbf{P}_{c}^{\prime \prime}(2,3)
\end{array}
\end{aligned}
$$

Other transformations

- Reflection is a transformation that produces a mirror image of an object. It is obtained by rotating the object by 180 deg about the reflection axis

Reflection about the line $y=0$, the X - axis , is accomplished with the transformation matrix

1	0	0
0	-1	0
0	0	1

Reflection

Reflection

Reflection of an object relative to an axis perpendicular to the xy plane and passing through the coordinate origin

Reflection of an object w.r.t the straight line $y=x$

Reflection of an object w.r.t the

Reflection of an arbitrary axis $y=m x+b$

Rotate so that it coincides with x axis and reflect also about x-axis

Original position

Shear Transformations

- Shear is a transformation that distorts the shape of an object such that the transformed shape appears as if the object were composed of internal layers that had been caused to slide over each other
- Two common shearing transformations are those that shift coordinate x values and those that shift y values

Shears

An X- direction Shear

For example, $\mathbf{S h}_{\mathrm{x}}=\mathbf{2}$

An Y- direction Shear

For example, $\mathrm{Sh}_{\mathrm{y}}=\mathbf{2}$

MODULE-2

1. Polygon Filling with a color
scaling,
2. $2 D$ Transformation [translation, Rotation, Shearing, Reflection]
3. 2D Kienving

* 2D viewing tranformation pie

2D MEWING
The aim is to lear how exactly we can view $20.0 b j e c t s$ and the mathematics behind conversion of world coordinates to screen coordinates.

2D viewing pipeline (imp)

view Port

$$
\square \underbrace{\text { has }}_{\begin{array}{l}
\text { viewport } \\
\text { (where to displayed }
\end{array}}\left\{\begin{array}{l}
x_{v \min }, y_{v \text { min }} \\
x_{v \text { max }}, y_{v \text { max }}
\end{array}\right\}
$$

So, wetare to map (convert) window to viewport coordinates

Relative position will be sarre for both window \& viewport, but size of object changes.

Since relative position is sarre, we can have.
for $x \rightarrow \frac{x_{w}-x_{w \text { min }}}{x_{\text {max }}-x_{w \text { min }}}=\frac{x_{v}-x_{v \text { min }}}{x_{\text {max }}-x_{v \text { min }}}$
for $y \rightarrow \frac{y_{N}-y_{w \text { min }}}{y_{w \text { max }}-y_{w \text { min }}}=\frac{y_{v}-y_{v \text { min }}}{y_{v \text { max }}-y_{v \text { min }}}$-(2)

We have to find corresponding viewport coordinates x_{v}, y_{v} from above equations so from (1) $\Rightarrow x_{v}-x_{v \text { mi s }}=\left(x_{v \text { max }}-x_{v \text { min }}\right)\left(\frac{x_{w}-x_{w \text { min }}}{x_{w \text { max }}-x_{w \text { min }}}\right)$

$$
\begin{aligned}
& x_{v}-x_{v \text { min }}=\left(x_{w}-x_{w_{\text {min }}}\right)\left(\frac{x_{v \text { max }}-x_{v \text { min }}}{x_{w \text { max }}-x_{w \text { min }}}\right)=x_{w}\left(\frac{x_{v \text { max }}-x_{v \text { min }}}{x_{w \text { max }}-x_{w \text { min }}}\right)-x_{w \text { min }}\left(\frac{x_{v \text { max }}-x_{v \text { min }}}{x_{w_{\text {max }}}-x_{u_{\text {mir }}}}\right. \\
& x_{v}-x_{v \text { min }}=x_{\omega}\left(\frac{x_{v m a x}-x_{v m i n}}{x_{w \max }-x_{w \text { min }}}\right)-\frac{x_{w \text { min }} x_{v \text { max }}+x_{w \text { min }} x_{v m \text { min }}}{x_{w \text { max }}-x_{w \text { min }}}+x_{\text {min }}
\end{aligned}
$$

$$
\begin{aligned}
& x_{v}=x_{\omega}\left(\frac{x_{v \text { max }}-x_{v \text { min }}}{x_{\omega \text { max }}-x_{\omega \text { min }}}\right)+\left(\frac{x_{\omega \text { max }} x_{v \text { min }}+x_{v \text { min }} x_{v \text { max }}}{x_{\text {max }}-x_{w \text { min }}}\right)
\end{aligned}
$$

$\Rightarrow x_{v}=x_{w} S_{x}+T_{3_{4}}$ where

$$
\begin{aligned}
& S_{x}=\frac{x_{v \text { max }}-x_{v m i n}}{x_{w \text { max }}-x_{w \text { min }}} \\
& T_{y_{x}}=\frac{x_{w \text { max }} x_{v \text { min }}-x_{\text {main }} x_{v \text { max }}}{x_{w \text { max }}-x_{w \text { min }}}
\end{aligned}
$$

$y_{v}=Y_{\omega} S_{y}+T y$ where

$$
\begin{aligned}
& \text { Sy }=\frac{y_{v m a x}-y_{v m i n}}{y_{u m a x}-y_{w m i n}} \\
& T y=\frac{y_{u m a x} y_{v m i n}-y_{u m \text { min }} y_{v m a x}}{y_{w \text { max }}-y_{\text {min }}}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(1 \Rightarrow \frac{x_{v}-30}{60-30}=\frac{50-20}{80-20} \Rightarrow x_{v}-30=15 \Rightarrow x_{v}=45\right. \\
& (2) \Rightarrow \frac{y_{v}-40}{60-40}=\frac{60-40}{80-40} \Rightarrow y_{v}-40=10 \Rightarrow y_{v}=50
\end{aligned}
$$

Given: $x_{\text {uris }}=20$

$$
\text { turmax }=80
$$

$$
\text { ywrin } \leq 40
$$

$$
y_{\text {wax }}=80
$$

$$
\left(x_{v}, y_{v}\right)=?
$$

$x_{\text {v min }}=30$
$x_{\text {max }}=60$
$y_{\text {min }}=40$
conclusion: An object which was at $(50,60)$ in world coordinates; when captured by camera it got placed at screen coordinate (x_{v}, y_{v}) at (45,:

$$
\begin{aligned}
& x_{v}-x_{\min }=\left(x_{w}-x_{w \min }\right)\left(\frac{x_{v \max }-x_{v \min }}{x_{w \max }-x_{\text {main }}}\right) \\
& \therefore x_{v}=x_{\text {min }}+\left(x_{w}-x_{w \min }\right) s_{x} \quad y_{v}=y_{v \min }+\left(y_{w}-y_{w \min }\right) s_{y}
\end{aligned}
$$

Aspect Ratio
Aspect ratio means making sure the object remains same or looks sn . even when the display window gets changed.

Open GL by default uses 0,tho2D, Windowsiz:
case 1:
\# include < GL/glut $h>$ void display() \{ gluOrth $020\left(\begin{array}{ll}L & R \\ 0,400,0,400\end{array}\right)$;
and Window Position. $(0,0)$

500 (window) is divided into 400 writs
$L, B \rightarrow$ starting position
RT \rightarrow width, height

Polygon Filling
Ias transformation.
translation, rotation, scaling shearing \& reflection.
[moving] [liasomedegre] [uniform [the orle] clockwise or
or anticlockwise nonuniform]

Homogeneous coordinates
we require homagencous coordinates to represent transformation is the form of matrix.

Translation

$$
\begin{aligned}
& p_{x}^{\prime}=p_{x}+t x \\
& p_{y}^{\prime}=p_{y}+t y \\
& p^{\prime}=P+T \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t x \\
t y
\end{array}\right]}
\end{aligned}
$$

Rotation.

$$
\begin{aligned}
& \cos \phi=\frac{x}{r} \quad \sin \phi=\frac{y}{x} \\
& x=r \cos \phi \quad y=r \sin \phi \\
& \cos (\phi+\theta)=\frac{x^{\prime}}{r} \\
& x^{\prime}=r \cos (\phi+\theta)=r \cos \phi \cos \theta-r \sin \phi \sin \theta \\
& x^{\prime}=x \cos \theta-y \sin \theta
\end{aligned}
$$

$$
\sin (\phi+\theta)=\frac{y^{\prime}}{r}
$$

$$
y^{\prime}=r \sin (\phi+\theta)=r \cos \phi \sin \theta+r \sin \phi \cos \theta=x \sin \theta+y \cos \theta
$$

$$
y^{\prime}=x \sin \theta+y \cos \theta
$$

$$
\begin{aligned}
& P_{x}^{\prime}=P_{x} \cos \theta-P_{y} \sin \theta \\
& P_{y}^{\prime}=P_{x} \sin \theta+P_{y} \cos \theta
\end{aligned}
$$

$$
P^{\prime}=R * P
$$

clockwise (-ve) anticlockwise (tue)

$$
R=\left[\begin{array}{lc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Scaling.

$$
\begin{aligned}
& P_{x}^{\prime}=S_{x} \cdot P_{x} \\
& P_{y}^{\prime}=S_{y} \cdot P_{y}
\end{aligned}
$$

In matrix form:

$$
P^{\prime}=S * P
$$

Scale matrix as:

$$
S=\left[\begin{array}{cc}
S x & 0 \\
0 & S y
\end{array}\right]
$$

If scale factors are in between 0 and 1 : \rightarrow the points will be moved closer to origin \rightarrow the objet will be smaller

$$
\varepsilon_{x}: \quad P(2,5) \quad S x=0.5 \quad \delta y=0.5
$$

If scale factors are bx $\varnothing \times x$ greater than 1
\rightarrow points will be moved away from origin
\rightarrow objects will be larger
Uniform \& Non uniform scaling.
uniform scaling $S_{x}=S_{y}$ [only change in size]
Nonunyorm scaling $S x \neq S y$. [differential scaling]
change in sire \& shape
Square \rightarrow rectangle

$$
\begin{aligned}
& \text { Square } \rightarrow \text { rectangle } \\
& p(1,3) \quad S_{x}=2, S_{y}=5
\end{aligned}
$$

Summary:

$$
\begin{array}{ll}
P^{\prime}=P+T & {[\text { Translation }]} \\
P^{\prime}=S * P & {[\text { Scaling }]} \\
P^{\prime}=R * P & {[\text { Rotation }]}
\end{array}
$$

Translation $p^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}t x \\ t y\end{array}\right]$
Rotation $p^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
scaling $p^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}5 x & 0 \\ 0 & 5 y\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
combing above, we can say that

$$
P^{\prime}=M_{i} * P+M_{2}
$$

Homogenous coordinates.
Using homogeneous coordinates, the transformations could be combined easily. Here we reformulate equation to diminate matrix addition.

In hornogenous coordinate system, we combine multiplicative t translational terms by expanding 2×2 matrix representation to 3×3 matrices. 1 exp expand matrix sep for coordinate position.
such Cartes an
We represent, coordinates (x, y) with homogeneous coordinate $\left(x_{f}, y_{h}, h\right)$
where $x=r_{h} / h, y=y_{n} / h$

$$
\left(h^{*} \underset{z}{ }, h_{-j}^{*}, h\right)
$$

set $h=1$

$$
(x, y, 1)
$$

Fomogenous co ordinate representation for translation, scaling t rotation are as follows.

$$
\begin{aligned}
& \begin{array}{l}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & \text { Sc } & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{array} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& \text { antilock } \rightarrow \theta \rightarrow \text { the } \\
& \text { Mockwise } \rightarrow \theta \rightarrow-v e \\
& \text { Translation matrix induiding Homogeneous toudinat } \\
& \begin{array}{l}
\text { (} t x, \text { ty ty translation parameters along } x, y \\
(x, y \text {) currut pos }
\end{array} \\
& \text { (} x^{\prime}, y^{\prime} \text {) new post }
\end{aligned}
$$

with fixed point
Q. Rotate given $\Delta^{l e}$ by 90 about origin.

Applying homogeneous coordinate system for rotation. For coordinate $(3,2)$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos 90 & -\sin 90 & 0 \\
\sin 90 & \cos 90 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \downarrow} \\
& A\left(x^{\prime}, y^{\prime}, 1\right)=(-2,3,1)
\end{aligned}
$$

For coordinate $B(6,2)$

$$
\begin{aligned}
& \text { For coordinate } B(6,2) \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos 90 & -\sin 90 & 0 \\
\sin 90 & \cos 90 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
2 \\
1
\end{array}\right]} \\
& \text { f(} \left.x^{\prime}, y^{\prime}, 1\right)=(-2,6,1) \\
& \text { for } \operatorname{cocrdinate} c(6,6) \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos 90 & -\sin 90 & 0 \\
\sin 90 & \cos 90 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
6 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
6 \\
1
\end{array}\right]}
\end{aligned}
$$

Prove that successive translations are additive.
If a point P is translated by $T\left(t_{x_{1}}, t_{y_{p}}\right)$ to p^{\prime} \& then translated by $\left(t x_{2}, t y_{2}\right)$ to $p^{\prime \prime}$

$$
\begin{aligned}
& P^{\prime}=T\left(t x_{1}, t y_{1}\right) * P \\
& P^{\prime \prime}=T\left(t x_{2}, t y_{2}\right) * P^{t}
\end{aligned}
$$

Substituting these equations we obtain

$$
\begin{aligned}
P^{\prime \prime} & =T\left(t x_{2}, t y_{2}\right) *\left(T\left(t x_{2}, t y_{1}\right) * P\right) \\
& =T\left(t x_{2}, t y_{2}\right) * T\left(t x_{1}, t y_{1}\right) * P
\end{aligned}
$$

Successive scaling is multiplicative
Successive inttiplicerotation is additive
General Pivot point rotation: bring to origin a push it back Polygon Data Stricture.

13
12
11
$10 \quad e 6$
9
8
7 en es
6 es eff es
5
4
3

1 ez el ell

- ell eg

	$x \min$	$y \max$	$1 / m$
$e 1$		6	$-2 / 5$
$e 2$	2	12	$1 / 3$
$e 3$	$y / 30$	12	$-2 / 5$
$e 4$	4	12	0
$e 5$	4	13	$-4 / 3$
$e 6$	$62 / 3$	13	$-1 / 2$
$e 7$	10	10	2
$e 8$	10	8	$3 / 8$
$e 9$	11	8	$-3 / 4$
$e 10$	11	4	$2 / 3$
$e 11$	6	4	

$$
\begin{aligned}
& e^{2} \rightarrow(2,1) \quad(0,6) \\
& x \text { min } \rightarrow 2 \\
& y_{\text {max }} \rightarrow 6 \\
& y m=-\frac{2}{5} \\
& \text { er : }-(0,6) \text { to }(2,12) \\
& e_{4} \text { :- }(2,12)(4,7) \\
& x_{\text {min }} \rightarrow 0 \\
& y_{\text {max }} \rightarrow 12 \\
& y_{\text {max }} \rightarrow 12 \\
& y m=\frac{2}{6}=\frac{1}{3} \\
& 1 / m=-\frac{2}{5}
\end{aligned}
$$

Rules to befollowed: 3 riles.

Inside outsiderest : to detect whether a pixel is inside polygon or outside polygon.
 odd \rightarrow inside. even \rightarrow outside

Nonzero winding rule
2) Composite problems:-

NOTE: If we have to rotate about origin, the eq e is $p^{\prime}=T(x, y) * R(\theta) * T(-x,-y) * P(x, y) \underset{y}{ }$ for every point in polygon.

Apply above formula for all points
If we want to rotate a polygon keeping any point fixed $P^{\prime}=T(x, y) \forall R(\theta) * T(-x,-y) \notin P(x, y)$
First apply $p l x$ point to befixed as $F(x, y)$ is above formula. In final eq put other points
*Other transformations
Reflection, shearing
Reflection: H is producing a mirror object
$\frac{\text { Case } 1}{\text { Reflection about } x \text {-axis }}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
case 2

$$
y \text {-axis }\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Case: 3 .
Reflect (about) of objet rdative to an axis $\frac{1 r}{}$ to $x y$ plane \& passing through coordinate origin. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Module 2

- Polygon filling
-2D Transformation
2D viewing

Module -3
Illumination t
3D trawioimatrens
Clipping - 5 ways.
\rightarrow point, line, polygon wee tet

Module 3
Clipping Sutherland Hodgeman
\rightarrow Point \rightarrow Line \rightarrow Polygon \rightarrow curve \rightarrow text cohen-Sutherland ago
$\frac{\text { Cohen-Sutherland algo }}{T B R L}$

Test using bitwise functions.
if $c_{0} \backslash c_{1}=0000$ accept (draw)
else of coxcl$\neq 0000$
reject (doris draw)

Bottom
else clip a retest

Challenge 1: To find intersection points

Suibeland Hodgeman

out \rightarrow in
in \rightarrow in
in \rightarrow ow
output: v_{1}^{\prime}, v_{2}

$[1,2]:($ in $-i n) \rightarrow[2]$
$[2,3]:($ in -out $) \rightarrow\left[2^{\prime}\right]\left[2,2^{\prime}\right]:($ in -in $) \rightarrow\left[2^{\prime}\right]$

