USN	CBCS SCILLE ALAKATTI DR. P. G. HALAKATTI COLLEGE OF ENGINEERING LIBRARY, BIJAPUR. 15CS62
	Sixth Semester B.E. Degree Examination, June/July 2019
	Computer Graphics and Visualization
Tin	ne: 3 hrs. Max. Marks: 80
	Note: Answer any FIVE full questions, choosing ONE full question from each module.
	Module-1
1	a. Compare random scan display with rester scan display and list the applications of computer
	b. What is openGL? With the help of block diagram explain Library organization of openGL
	program and give the general structure of openGL program. (04 Marks)
	c. What is DDA? With the help of a suitable example demonstrate the working principle of Brescham's Line drawing algorithm for different slopes of a line. (08 Marks)
2	OR
4	i) Bitmap ii) Pixmap iii) aspect ratio iv) Frame buffer (04 Marks)
	 b. List and explain various openGL primitive and its attribute functions. Develop an openGL program to create human face like structure using suitable openGL primitive functions. (06 Marks)
	c. With the help of a suitable example demonstrate Bresenham's circle drwing algorithm. (06 Marks)
	Module-2
3	a. Explain scan line polygon fill algorithm. Determine the content of the active edge table to fill the polygon with vertices $A(2, 4)$, $B(4, 6)$ and $C(4, 1)$ for $y = 1$ to $y = 6$. (06 Marks)
	b. Develop composite homogeneous transformation matrix to rotate an object with respect to a
	Pivot point. For the triangle A(3, 2) B(6,2), C(6, 6) rotate it in anticlockwise direction by
	90 degree keeping A(3, 2) fixed, draw the new polygon. (06 Marks) With the help of a diagram explain shearing and reflection transformation technique
	(04 Marks)
4	a Explain the data structures used by scan line polygon fill algorithm. Determine the content
	of active edge table to fill the polygon with vertices $A(2, 4)$, $B(2, 7)$, $C(4, 9)$ and $D(4, 6)$. (06 Marks)
	b. Give the reason to convert transformation matrix to homogeneous co-ordinate representation and show the process of conversion. Shear the polygon $A(1, 1)$, $B(3, 1)$, $C(3, 3)$ $D(2, 4)$,
1	c. i) Prove that two successive 2D rotation are additive
	ii) Prove that successive scaling are multiplicative. (04 Marks)
	Module-3
5	a. Design a transformation matrix for window to viewport transformation. And explain how
	b With the help of a suitable diagram explain basic 3D Geometric transformation techniques
	and give the transformation matrix. Explain the meaning of affine transformation. (05 Marks)
	c. With the help of openGL statements and diagram explain illumination and shading models.
	1 of 2

1

https://hemanthrajhemu.github.io

- 6 a. What is Clipping? With the help of a suitable example explain cohen Southerland line clipping algorithm. (06 Marks)
 - b. Design transformation matrix to rotate an 3D object about an axis that is parallel to one of the co-ordinate axes. (06 Marks)
 - c. With the help of a suitable diagram, explain basic illumination, RGB and CMY colour models. (04 Marks)

Module-4

- 7 a. What is 3D viewing? With the help of a block diagram, explain 3D viewing pipline architecture. (04 Marks)
 - b. Design the transformation matrix for orthogonal and perspective projections. (06 Marks)
 - c. Explain Depth buffer method and give the openGL visibility detection functions. (06 Marks)

OR

- 8 a. Explain the steps for transformation from world to viewing coordinate system. (04 Marks)
 b. Design the transformation matrix for perspective projection and give openGL 3D viewing functions. (06 Marks)
 - Give the general classification of visible detection algorithm and explain any one algorithm in detail. (06 Marks)

Module-5

- 9 a. With the help of a suitable programming construct explain event driven input menu picking and Building interactive models. (08 Marks)
 - b. Write a short notes on (any two)
 - i) Curve and Quadric surfaces
 - ii) openGL curve and surface functions
 - iii) Bezier curve and surfaces.

OR

- 10 a. What are display lists? Explain the steps to develop interactive models and animating (08 Marks)
 - b. Write a short note on (any two)
 - i) Logic operations (graphics)
 - ii) Input devices or clients and servers
 - iii) Bezier spline curve and openGL curve functions.

2 of 2

https://hemanthrajhemu.github.io

(08 Marks)

(08 Marks)